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A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin
transform. �e phase key for decryption is obtained by an iterative phase retrieval algorithm. �e proposed scheme has been
validated for grayscale secret target images, by numerical simulation. �e e	cacy of the scheme has been evaluated by computing
mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to
variations in various encryption parameters has been carried out. �e proposed encryption scheme has been seen to exhibit
reasonable robustness against occlusion attack.

1. Introduction

Phase 
lters play an important role in designing an optical
image encryption system. One of the most e	cient zone
plates is based on Devil’s vortex Fresnel lens (DVFL) derived
from Devil’s staircase function called the Cantor function
[1]. �is function, related to the standard Cantor set, 
nds
applications in areas like wave-particle interactions [2], crys-
tal growth [3], and mode locking of the 3D coherent states
in high-Q laser cavities [4]. Devil’s staircase also shows up
in the context [5, 6] of dynamical systems and periodic
structures with long spatial periods and so forth. Many such
examples along with their physical interpretation are given
in [5–8]. Devil’s lens (DL), also called blazed fractal zone
plate, has a phase distribution much similar to a ramped
stair-step pattern and has a quadratic fractal blazed pro
le
[9, 10]. Devil’s vortex lens (DVL) is phase-only Devil’s lens
modulated by a helical structure [11–14]. When a spiral
phase plate is introduced, the DVL generates multiple axial
vortices. When a converging Fresnel lens is incorporated
in the DVL, it results in a DVFL [15]. Barrera et al. [16]
have presented results on multiple image encryptions and
multiplexing based on fractal encrypting masks, using joint
transform correlator architecture. In the present study, we

have used DVFL as a structured phase 
lter in the frequency
domain of a fractional Mellin transform-based encryption
system to attain enhanced security.

A number of image encryption studies carried out in the
past are based on the double randomphase encoding (DRPE)
technique. However, DRPE using the Fourier transform (FT)
su�ers from the problems of security and its vulnerability
to a variety of attacks [17]. �is has motivated researchers
to design more secure systems by introducing additional
parameters through phase 
lters and the use of a variety of
integral transforms such as the fractional Fourier transform
[18, 19], gyrator transform [20, 21], the Hartley transform
[22, 23], and the Arnold transform [24]. It is now well known
that optical and hybrid techniques for information security
[25–27] have several advantages over the digital techniques.

�e encryption scheme proposed in our paper is asym-
metric and is based on the FrMT [28–30]. Compared to
most transform-based techniques which are linear in nature,
the fractional Mellin transform (FrMT) is a nonlinear trans-
form and could potentially provide security against most
known attacks [17, 31]. Here, we have used FrMT on an
arbitrary input image transformed to an annular domain.�e
transformed image is multiplied by a structured phase mask
(DVFL) in the frequency domain, aimed at enhancing the
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Table 1: Values of ��,� and ��,�+1 for S = 0, 1, 2, and 3 [15].

S. Number Values of � ��,� and ��,�+1 Values of ��,� and ��,�+1
1. � = 0 �0,0 �0,1 0, 1

2. � = 1 �1,0 �1,1 �1,1 �1,2 0, 1/3, 2/3, 1

3. � = 2 �2,0, �2,1, �2,1, �2,2 �2,2 �2,3 �2,3 �2,4 0, 1/9, 2/9, 1/3, 2/3, 7/9, 8/9, 1

4. � = 3 �3,0, �3,1, �3,1, �3,2 �3,2 �3,3 �3,3 �3,4,�3,4 �3,5, �3,5 �3,6, �3,6 �3,7, �3,7 �3,8
0, 1/27, 2/27, 3/27, 6/27, 7/27, 8/27, 9/27, 18/27,
19/27, 20/27, 21/27, 24/27, 25/27, 26/27, 1

security by increasing the key space.�is is followed by phase
retrieval algorithm (PRA) [32, 33] to generate the phase key
for decryption.

�e paper is organised as follows. �e construction of
phase function based on DVFL is explained in Section 2.�e
details of the encryption-decryption processes and PRA are
given in Section 3. In Section 4, we have presented the results
of numerical simulation followed by conclusions in Section 5.

2. DVFL-Based Phase Function

A phase mask based on Devil’s lens can be described by the
one-dimensional Cantor function, a particular case of Devil’s
staircase. A triadic Cantor set in the interval [0, 1] can be
de
ned as [9]

�� (�) =
{{{{{{{{{

�2� if ��,� ≤ � ≤ ��,�,12�
� − ��,���,�+1 − ��,� +

�2� if ��,� ≤ � ≤ ��,�+1, (1)

where ��(0) = 0, ��(1) = 1, � is the order of the Cantor
function, and � de
nes the number of horizontal sections of
the function, having a value from 0 to 2� − 1. Here � and �
are the start and end points of each segment of the Cantor
set. For some basic values of �, the values of ��,� and ��,�+1 are
provided in Table 1 [15].

From (1), one can easily note that the function ��(�)
increases linearly from ��,� to ��,�+1. �e phase function
corresponding to Devil’s lens is de
ned as

� () = �DL (, �) = exp [−�2�+1��� ()] , (2)

where  = (�/�)2 is the normalized quadratic radial
coordinate and � is the lens radius. �e phase function �()
increases linearly from 0 to 2�. A DVL can be constructed
by combining Devil’s lens and a vortex lens (VL). A vortex
lens is based on an azimuthally dependent vortex function,
and its phase function can be given as ��(�) = exp(���),
where� is a nonzero integer called topological charge and �
is the azimuthal angle. Incidentally, the concept of topological
charge has given rise to an important branch of optics called
singular optics which plays an important role in various
contexts (e.g., [34, 35]).

�e phase function corresponding to DVL can be given
as

ΦDVL (�, �) = � (�) × �� (�) ,
ΦDVL (�, �) = exp [−�2�+1��� (�)] exp (���) . (3)

In the samemanner, we can combine a Fresnel zone platewith
DVL.�e phase function of a Fresnel zone plate is de
ned as
[15]

��0 (�) = exp[−��� �
2

��0] , (4)

where �0 is focal length and � is the incident wavelength. A
combination of the Fresnel lens (FL) and DVL results in the
formation of DVFL, having a phase function given by [15]

Ω�,�,�0 (�, �) = � (�) × �� (�) × ��0 (�) ,
Ω�,�,�0 (�, �) = exp [−�2�+1��� (�)]

× exp (���) exp[−��� �2��0] .
(5)

A plot of DVFL, which is a combination of Devil’s lens, a
vortex lens, and a Fresnel lens, is shown in Figure 1.

3. The Encryption Scheme

�e scheme proposed in our paper is based on the FrMT, a
nonlinear integral transform [28–30]. According to this, an
arbitrary image is 
rst transformed to log-polar coordinates
and is then subjected to the fractional Fourier transform
(FrFT), which is a generalization of the Fourier transform
in fractional order [18] and provides additional degree of
freedom for encryption.

�e FrMT is inspired by the FrFT. A two-dimensional
FrMT of order (�1, �2) is the FrFT of the same order (�1,�2)
of a function in its log-polar transformation.

In a Cartesian coordinate system, the two-dimensional
FrMT of order (�1, �2) of an image �(�, �) is given by [28]

 �1 ,�2 (!, V)
= ∬+∞
−∞
� (�, �) �−(2	
�/ sinB1)−1

× exp[�� (!2 + ln2�)
tanB1

] × �−(2	V�/ sinB2)−1

× exp[�� (V2 + ln2�)
tanB2

]-�-�,

(6)
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Figure 1: Phase plots of each component which when combined result in Devil’s vortex Fresnel lens (DVFL). Sum of all components, that is,� = 2,� = 3, � = 632.8 nm, and � = 4 cm, constitutes the 
nal DVFL [15].

whereB1 = �1�/2 andB2 = �2�/2.When the image is trans-
formed to an annular domain by log-polar transformation, its
FrMT of order (�1, �2) can be written [28] as

 �1,�2 (!, V)
= 5∬+∞

−∞
� (7, �)

× exp⌊ − 2�� ( !7
sinB1

+ V�
sinB2

)

+ �� (!2 + 72)
tanB1

+ �� (V2 + �2)
tanB2

⌋-7-�
= ��1,�2 {� (7, �)} ,

(7)

where 5 is a constant. Since FrMT involves log-polar trans-
formation of the input image prior to its transformation by
FrFT, it requires the setting up of parameters for transforming
the input image to an annular domain. Hence, a few param-
eters are set in advance such as centre position of annular
domain, @�, @, the radii of the innermost (�in) and outermost
(�out) rings of annular domain, and the number of sampling
points along distance axis A� and along angle axis A�.

Some recent image encryption studies have preferred
structured phase masks over the commonly used random
phase masks (RPM) because of some advantages. Unlike
in the conventional DRPE scheme, here we have used a
structured phase mask based on Devil’s vortex Fresnel lens
(DVFL) in the frequency plane [15] by multiplying the FrMT
transformed image with phase function based onDVFL.�is
is followed by an iterative phase retrieval algorithm (PRA).

In the iterative process, the initial amplitude is taken
from the FrMT transformed image and the initial phase is
randomly generated with the uniform distribution in [0, 2�]
as in a recent study [30]. To initiate PRA, we take FrFT of
order B of the initial input. �e amplitude of the resulting
complex function is replaced by a secret (target) amplitude
image. Next, we perform the inverse FrFT to obtain complex
distribution in the image plane.�e phase of the transformed
result substitutes the phase of input in the 
rst step and the
next iteration starts. �e above steps are repeated until the
algorithm converges or reaches a preset number of iterations.

We can summarize the steps of encryption scheme as
follows.

(i) Start with an arbitrary input image for generating
ciphertext.

(ii) Transform the arbitrary image to log-polar coor-
dinates and then subject it to a fractional Fourier
transformation, resulting in a fractional Mellin trans-
formed image.

(iii) Multiply the transformed image by a structured phase
mask based on (DVFL).

(iv) Apply the PRA based on FrFT.

Flow chart of the encryption scheme including the PRA is
shown in Figure 2. In our scheme, we consider an arbitrary
real valued image C(�, �). �e selected annular domain
image of C(�, �) is C�(�, �) with inner and outer radii,
respectively, as �in and �out. �e image in the annular domain
is then subjected to FrFT of order � (taken same in both
directions, i.e., �1 = �2 = �). �is transformed image is
multiplied by aDVFL-based structured phase function.�us,
the transformed result D(!, V), a complex-valued image, can
be expressed as

D (!, V) = C� (!, V) exp [�F0 (!, V)]
× exp [�F1 (!, V)] exp [�F2 (!, V)] exp [�F3 (!, V)] ,

(8)

where F1, F2, and F3 are the phases of DL, VL, and FL, respec-
tively, and C�(!, V) and F0 are, respectively, the amplitude
and phase of the FrMT transformed image.

�e next step of the encryption process is the use of an
iterative PRA to determine the phase key corresponding to
the secret image [30]. �e input amplitude of the complex-
valued image for PRA can be written as

C� (!, V) = HHHHD (!, V)HHHH . (9)

�e next step of PRA can be expressed mathematically as

I (�, �) exp (�A (�, �))
= ��1,�2 {C� (!, V) exp [�� (!, V)]} . (10)

Initially �(!, V) is taken as uniform random distribution in
the interval [0, 2�] and subsequently it is generated from the
PRA iteratively. �� on the right hand side of (10) represents
the FrFT of order B (taken same in both directions, i.e., B1 =
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Figure 2: Flow chart of phase retrieval algorithm (adapted from Zhou et al. [30]).

B2 = B). Here, A(�, �) is the phase distribution. �e 
nal step
of the PRA can be written by taking the inverse FrFT as

C� (!, V) exp (�F4 (!, V))
= �−�1 ,−�2 {� (�, �) exp [�A (�, �)]} , (11)

where F4(!, V) is the phase distribution obtained by iterative
method and used in the 
rst step. �e phase key can
be made complicated by modulating the phase functions,
thereby enhancing the security of the system. �e amplitudeC�(!, V) of the transformed image is used to generate a phase
distribution given by

F5 (!, V) = 2�C� (!, V)J ∈ (0, 2�) , (12)

whereJ is a positive number equal to 1 +max(C�).
�e 
nal phase key F(!, V) is obtained from the following

expression:

F (!, V) = F4 (!, V) − F0 (!, V) − F1 (!, V)
− F2 (!, V) − F3 (!, V) − F5 (!, V) . (13)

�e keys of the proposed scheme include the order B of FrFT
in the iterative process, the 
nal phase key F(!, V), and the
order � of the FrMT along with parameters of the structured
phase mask, DVFL.

Decryption Process. Generally, the decryption process is
reverse of the encryption. �e transformed image D(!, V)
is multiplied by the 
nal phase key obtained from (13).
�e resulting expression undergoes the fractional Fourier
transformation of the order B to give complex distribution
of the decrypted image. �e amplitude distribution of the
decrypted image is given by

� (�, �) = HHHH��1,�2 [D (!, V) exp {� ⌈F (!, V) + F5 (!, V)⌉}]HHHH .
(14)

4. Numerical Simulations and Discussion

�e validity of the proposed scheme has been veri
ed by
performing some numerical simulations using MATLAB 7.6.
An arbitrary input image Lena is chosen, which has 256 × 256
pixels and gray level is in the range of 0–255 (Figure 3(a)).
To start the encryption process, some parameters have to
be set since a selected annular domain of the ciphertext is
transformed by FrMT. �e FrFT in the scheme has been
computed using an algorithm proposed by Garcia et al. [36].

For simplicity, the FrMT orders in both the directions are
assumed to be the same and equal to 0.3. �e center position
of the annular domain is taken as (@�, @) = (96, 108), with
the inner and outer radii being, respectively, �in = 20, �out =80 [30]. �e annular domain with these parameters has
been shown in Figure 3(b), whereas the FrMT transformed
amplitude imageC�(!, V) is shown in Figure 3(c).�e orders
of the FrFT and IFrFT in the PRA are all taken equal to 0.7.
�e iterative process ends when the correlation coe	cient
(CC) value exceeds the prede
ned value 0.996.�roughPRA,
we are able to obtain the corresponding decryption phase key
which is the main key in the proposed scheme. When even
one incorrect parameter of DVFL is used, one can hardly
retrieve the original image with other correct parameters.

Using this scheme we have carried out numerical simula-
tions using Lena as the arbitrary image and a secret image
for encryption. As shown in Figure 4(a), the secret image
chosen to be encrypted is a grayscale image of Barbara having
a size of 256 × 256 pixels. �e corresponding phase key
generated from the PRA has been shown in Figure 4(b),
and the decrypted image using the correct keys, that is,(� = 3, � = 632.8 nm, � = 3, � = 4 cm, � = 0.3, B =0.7), is shown in Figure 4(c). Figures 5(a)–5(d) show the
decrypted images with only one incorrect parameter (with all
other parameters being correct). It is seen from Figure 5(d)
that the decryption is not very sensitive to a change in the
parameter �. Figure 5(e) shows the decrypted image with
two incorrect parameters � and �. �e decrypted image is
unrecognizable (except in Figure 5(d)), thus highlighting the
scheme’s sensitivity to the encryption parameters.

In order to assess the e	ciency and security of the pro-
posed scheme, the mean-squared-error (MSE) between the
original image and the decrypted image has been calculated.
If I�(�, �) and I�(�, �) denote, respectively, the pixel values
of the original image and the decrypted image, the MSE
function can be written as

MSE = 1P × P
�∑
�=1

�∑
=1

HHHHI� (�, �) − I� (�, �)HHHH2. (15)

Besides the decryption phase key obtained from the PRA,
the proposed scheme also depends on some other factors
such as the DVFL parameters, as well as orders of the FrMT
and FrFT. In order to study the sensitivity of the encryption
scheme to orders of the FrMT and FrFT, theMSE values have
been plotted against the orders of the FrMT and FrFT in
Figures 6(a) and 6(b), respectively. �ese results imply that
the decryption of the original image is very sensitive to the
orders of FrMT and FrFT. Based on the above numerical
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(a) (b)

(c)

Figure 3: (a) Arbitrary Input grayscale image Lena with 256 × 256 pixels. (b) Annular domain image with center position (@�, @) = (96, 108),
and the inner and outer radii are �in = 20, �out = 80 [30]. (c)�e fractionalMellin transformed amplitude image of order 0.3 in both directions.

(a) (b)

(c)

Figure 4: (a) Secret grayscale image with 256 × 256 pixels of Barbara, (b) the corresponding phase key generated by PRA, and (c) retrieved
image with correct decryption parameters (� = 3, � = 632.8 nm, � = 3, � = 4 cm, � = 0.3, B = 0.7).
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(a) (b)

(c) (d)

(e)

Figure 5: Decrypted image with one incorrect parameter, with others being correct. (a) � = 2, (b) � = 600 nm, (c) � = 4.5 cm, and (d)� = 1.
(e) Decrypted image with two incorrect parameters (� = 2,� = 1).
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Figure 6: (a)MSE (between secret image and decrypted image) as a function of order of FrMT. (b)MSE (between secret image and decrypted
image) as a function of order of FrFT.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Impact of occlusion attack on decryption phase key. (a)Without occlusion, (b) 25% occlusion, (c) 50% occlusion, (d) 75% occlusion,
and (e)–(h) corresponding retrieved images.
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simulations, one can see that all the correct keys are required
in the decryption process. If any key of encryption process
is incorrect, it becomes increasingly di	cult to retrieve the
secret image.

�e robustness of the encryption scheme is tested against
occlusion attacks. As the decryption key contains phase
key generated by PRA, it has the phase information of the
secret image. �us, in this scheme, the phase key plays
a vital role as it bears the signature of the secret image.
We have subjected the decryption phase key to occlusion
attacks as shown in Figure 7. �e corresponding retrieved
images shown alongside indicate reasonable robustness of
the scheme up to 50% occlusion. It can be concluded that
apparently the main information of the secret image can be
recognized visually from the decrypted images.

5. Conclusions

An encryption scheme for grayscale image has been pro-
posed, which uses a nonlinear fractional Mellin transform,
a structured phase mask (Devil’s vortex Fresnel lens) in the
frequency plane, employing a phase retrieval technique to
generate the decryption phase key corresponding to each
secret input image. �e use of FrMT with DVFL phase mask
enlarges the key space, thereby making the proposed scheme
more secure. �e proposed scheme has been validated for
a few grayscale images using MATLAB 7.6. �e sensitivity
of the scheme has also been studied for various parameters
such as phase keys and orders of FrMT and FrFT. �e
scheme is considered secure against most of the known
attacks by virtue of its design being nonlinear and asymmetric
and having a larger key space. However, with the rapid
increase in computational capability and emergence of new
techniques, one can expect to break security of the system
in the future. In this context, it may be worthwhile to carry
out a cryptanalysis of the proposed scheme in the future with
a view to investigating the endurance of the scheme against
various other attacks.
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“Devil’s lenses,” Optics Express, vol. 15, no. 21, pp. 13858–13864,
2007.

[10] A. Calatayud, J. A. Monsoriu, O. Mendoza-Yero, and W. D.
Furlan, “Polyadic devil’s lenses,” Journal of the Optical Society
of America A, vol. 26, no. 12, pp. 2532–2537, 2009.
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