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Abstract. We introduce Devito, a new domain-specific lan-

guage for implementing high-performance finite-difference

partial differential equation solvers. The motivating applica-

tion is exploration seismology for which methods such as

full-waveform inversion and reverse-time migration are used

to invert terabytes of seismic data to create images of the

Earth’s subsurface. Even using modern supercomputers, it

can take weeks to process a single seismic survey and create

a useful subsurface image. The computational cost is domi-

nated by the numerical solution of wave equations and their

corresponding adjoints. Therefore, a great deal of effort is

invested in aggressively optimizing the performance of these

wave-equation propagators for different computer architec-

tures. Additionally, the actual set of partial differential equa-

tions being solved and their numerical discretization is under

constant innovation as increasingly realistic representations

of the physics are developed, further ratcheting up the cost of

practical solvers. By embedding a domain-specific language

within Python and making heavy use of SymPy, a symbolic

mathematics library, we make it possible to develop finite-

difference simulators quickly using a syntax that strongly

resembles the mathematics. The Devito compiler reads this

code and applies a wide range of analysis to generate highly

optimized and parallel code. This approach can reduce the

development time of a verified and optimized solver from

months to days.

1 Introduction

Large-scale inversion problems in exploration seismology

constitute some of the most computationally demanding

problems in industrial and academic research. Developing

computationally efficient solutions for applications such as

seismic inversion requires expertise ranging from theoreti-

cal and numerical methods for optimization constrained by

a partial differential equation (PDE) to the low-level perfor-

mance optimization of PDE solvers. Progress in this area is

often limited by the complexity and cost of developing be-

spoke wave propagators (and their discrete adjoints) for each

new inversion algorithm or formulation of wave physics. Tra-

ditional software engineering approaches often lead devel-

opers to make critical choices regarding the numerical dis-

cretization before manual performance optimization for a

specific target architecture and making it ready for produc-

tion. This workflow of bringing new algorithms into produc-

tion, or even to a stage that they can be evaluated on realistic

datasets, can take many person months or even person years.

Furthermore, it leads to mathematical software that is not

easily ported, maintained, or extended. In contrast, the use of

high-level abstractions and symbolic reasoning provided by

domain-specific languages (DSLs) can significantly reduce

the time it takes to implement and verify individual operators

for use in inversion frameworks, as has already been shown

for the finite-element method (Logg et al., 2012; Rathgeber

et al., 2015; Farrell et al., 2013).

State-of-the-art seismic imaging is primarily based upon

explicit finite-difference schemes due to their relative sim-

plicity and ease of implementation (Virieux, 1986; Symes,
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2015a; Weiss and Shragge, 2013). When considering how to

design a DSL for explicit finite-difference schemes, it is use-

ful to recognize the algorithm as being primarily a subclass of

stencil algorithms or polyhedral computation (Henretty et al.,

2013; Andreolli et al., 2015; Yount, 2015). However, stencil

compilers lack two significant features required to develop

a DSL for finite differences: symbolic computational sup-

port required to express finite-difference discretizations at a

high level, enabling these expressions to be composed and

manipulated algorithmically; and support for algorithms that

are not stencil-like, such as source and receiver terms that

are both sparse and unaligned with the finite-difference grid.

Therefore, the design aims behind the Devito DSL can be

summarized as

– creating a high-level mathematical abstraction for pro-

gramming finite differences to enable composability

and algorithmic optimization;

– insofar as possible using existing compiler technologies

to optimize the affine loop nests of the computation,

which account for most of the computational cost; and

– developing specific extensions for other parts of the

computation that are non-affine (e.g., source and re-

ceiver terms).

The first of these aims is primarily accomplished by em-

bedding the DSL in Python and leveraging the symbolic

mathematics package Sympy (Meurer et al., 2017). From this

starting point, an abstract syntax tree is generated and stan-

dard compiler algorithms can be employed to either generate

optimized and parallel C code or to write code for a stencil

DSL – which itself will be passed to the next compiler in

the chain. The fact that this can all be performed just in time

(JIT) means that a combination of static and dynamic analy-

sis can be used to generate optimized code. However, in some

circumstances, one might also choose to compile offline.

The use of symbolic manipulation, code generation, and

just-in-time compilation allows for the definition of individ-

ual wave propagators for inversion in only a few lines of

Python code, while aspects such as varying the problem dis-

cretization become as simple as changing a single parame-

ter in the problem specification, for example changing the

order of the spatial discretization (Louboutin et al., 2017a).

This article explains what can be accomplished with De-

vito, showing how to express real-life wave propagators as

well as their integration within larger workflows typical of

seismic exploration, such as the popular full-waveform in-

version (FWI) and reverse-time migration (RTM) methods.

The Devito compiler, and in particular how the user-provided

SymPy equations are translated into high-performance C, are

also briefly summarized, although for a complete description

the interested reader should refer to Luporini et al. (2018).

The remainder of this paper is structured as follows: first,

we provide a brief history of optimizing compilers, DSL, and

existing wave-equation seismic frameworks. Next, we high-

light the core features of Devito and describe the implemen-

tation of the featured wave-equation operators in Sect. 3. We

outline the seismic inversion theory in Sect. 4. Code verifi-

cation and analysis of accuracy in Sect. 5 are followed by a

discussion of the propagator computational performance in

Sect. 6. We conclude by presenting a set of realistic exam-

ples, such as seismic inversion and computational fluid dy-

namics, and a discussion of future work.

2 Background

Improving the runtime performance of a critical piece of

code on a particular computing platform is a nontrivial task

that has received significant attention throughout the history

of computing. The desire to automate the performance opti-

mization process itself across a range of target architectures

is not new either, although it is often met with skepticism.

Even the very first compiler, A0 (Hopper, 1952), was re-

ceived with resistance, as best summarized in the following

quote (Jones, 1954):

Dr. Hopper believes . . . that the result of a com-

piling technique should be a routine just as effi-

cient as a hand tailored routine. Some others do not

completely agree with this. They feel the machine-

made routine can approach hand tailored coding,

but they believe there are “tricks of the trade” that

apply to various special cases that a computer can-

not be expected to utilize.

Given the challenges of porting optimized codes to a wide

range of rapidly evolving computer architectures, it seems

natural to again raise the layer of abstraction and use com-

piler techniques to replace much of the manual labor.

Community acceptance of these new “automatic coding

systems” began when concerns about the performance of

the generated code were addressed by the first “optimizing

compiler”, Fortran, released in 1957 – which not only trans-

lated code from one language to another but also ensured

that the final code performed at least as good as a handwrit-

ten low-level code (Backus, 1978). Since then, as program

and hardware complexity rose, the same problem has been

solved over and over again, each time by the introduction of

higher levels of abstractions. The first high-level languages

and compilers were targeted at solving a large variety of

problems and hence were restricted in the kind of optimiza-

tions they could leverage. As these generic languages became

commonplace and the need for further improvement in per-

formance was felt, restricted languages focusing on smaller

problem domains were developed that could leverage more

“tricks of the trade” to optimize performance. This led to

the proliferation of DSLs for broad mathematical domains

or sub-domains, such as APL (Iverson, 1962), Mathematica,

MATLAB®, and R.
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In addition to these relatively general mathematical lan-

guages, more specialized frameworks targeting the auto-

mated solution of PDEs have long been of interest (Cárdenas

and Karplus, 1970; Umetani, 1985; Cook Jr., 1988; Van En-

gelen et al., 1996). More recent examples not only aim to en-

capsulate the high-level notation of PDEs, but are often cen-

tered around a particular numerical method. Two prominent

contemporary projects based on the finite-element method

(FEM), FEniCS (Logg et al., 2012) and Firedrake (Rathge-

ber et al., 2015), both implement a common DSL, UFL (Al-

næs et al., 2014), that allows for the expression of variational

problems in weak form. Multiple DSLs to express stencil-

like algorithms have also emerged over time (Henretty et al.,

2013; Zhang and Mueller, 2012; Christen et al., 2011; Unat

et al., 2011; Köster et al., 2014; Membarth et al., 2012; Os-

una et al., 2014; Tang et al., 2011; Bondhugula et al., 2008;

Yount, 2015). Other stencil DSLs have been developed with

the objective of solving PDEs using finite differences (Haw-

ick and Playne, 2013; Arbona et al., 2017; Jacobs et al.,

2016). However, in all cases their use in seismic imaging

problems (or even more broadly in science and engineering)

has been limited by a number of factors other than technol-

ogy inertia. Firstly, they only raise the abstraction to the level

of polyhedral-like (affine) loops. As they do not generally

use a symbolic mathematics engine to write the mathemat-

ical expressions at a high level, developers must still write

potentially complex numerical kernels in the target low-level

programming language. For complex formulations, this pro-

cess can be time-consuming and error prone, as hand-tuned

codes for wave propagators can reach thousands of lines of

code. Secondly, most DSLs rarely offer enough flexibility

for extension beyond their original scope (e.g., sparse oper-

ators for source terms and interpolation), making it difficult

to work the DSL into a more complex science or engineering

workflow. Finally, since finite-difference wave propagators

only form part of the overarching PDE-constrained (wave-

equation) optimization problem, composability with external

packages, such as the SciPy optimization toolbox, is a key re-

quirement that is often ignored by self-contained stand-alone

DSLs. The use of a fully embedded Python DSL, on the other

hand, allows users to leverage a variety of higher-level opti-

mization techniques through a rich variety of software pack-

ages provided by the scientific Python ecosystem.

Moreover, several computational frameworks for seismic

imaging exist, although they provide varying degrees of ab-

straction and are typically limited to a single representation

of the wave equation. IWAVE (Symes et al., 2011; Symes,

2015a, b; Sun and Symes, 2010), although not a DSL, pro-

vides a high level of abstraction and a mathematical frame-

work to abstract the algebra related to the wave equation

and its solution. IWAVE provides a rigorous mathematical

abstraction for linear operations and vector representations

including Hilbert space abstraction for norms and distances.

However, its C++ implementation limits the extensibility of

the framework to new wave equations. Other software frame-

works, such as Madagascar (Fomel et al., 2013), offer a broad

range of applications. Madagascar is based on a set of sub-

routines for each individual problem and offers modeling and

imaging operators for multiple wave equations. However, the

lack of high-level abstraction restricts its flexibility and inter-

facing with high-level external software (i.e., Python, Java).

The subroutines are also mostly written in C or Fortran and

limit the architecture portability.

3 Symbolic definition of finite-difference stencils with

Devito

In general, the majority of the computational workload

in wave-equation-based seismic inversion algorithms arises

from computing solutions to discrete wave equations and

their adjoints. There are a wide range of mathematical mod-

els used in seismic imaging that approximate the physics to

varying degrees of fidelity. To improve development and in-

novation time, including code verification, we describe the

use of the symbolic finite-difference framework Devito to

create a set of explicit matrix-free operators of arbitrary spa-

tial discretization order. These operators are derived, for ex-

ample, from the acoustic wave equation

m(x)
∂2u(t,x)

∂t2
− 1u(t,x) = q(t,x), (1)

where m(x) = 1
c(x)2 is the squared slowness with c(x), the

spatially dependent speed of sound, the symbol 1u(t,x) de-

notes the Laplacian of the wave field u(t,x), and q(t,x)

is a source usually located at a single location xs in space

(q(t,x) = f (t)δ(xs)). This formulation will be used as a run-

ning example throughout the section.

3.1 Code generation – an overview

Devito aims to combine the performance benefits of ded-

icated stencil frameworks (Bondhugula et al., 2008; Tang

et al., 2011; Henretty et al., 2013; Yount, 2015) with the

expressiveness of symbolic PDE-solving DSLs (Logg et al.,

2012; Rathgeber et al., 2015) through automated code gener-

ation and optimization from high-level symbolic expressions

of the mathematics. Thus, the primary design objectives of

the Devito DSL are to allow users to define explicit finite-

difference operators for (time-dependent) PDEs in a concise

symbolic manner and provide an API that is flexible enough

to fully support realistic scientific use cases. To this end,

Devito offers a set of symbolic classes that are fully com-

patible with the general-purpose symbolic algebra package

SymPy that enables users to derive discretized stencil expres-

sions in symbolic form. As we show in Fig. 1, the primary

symbols in such expressions are associated with user data

that carry domain-specific metadata information to be used

by the compiler engine (e.g., dimensions, data type, grid).

The discretized expressions form an abstract operator defi-
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Figure 1. Overview of the Devito architecture and the associated example workflow. Devito’s top-level API allows users to generate symbolic

stencil expressions using data-carrying function objects that can be used for symbolic expressions via SymPy. From this high-level definition,

an operator then generates, compiles, and executes high-performance C code.

Figure 2. Defining a Devito Function on a Grid.

nition that Devito uses to generate low-level C code (C99)

and OpenMP at runtime. The encapsulating Operator ob-

ject can be used to execute the generated code from within

the Python interpreter, making Devito natively compatible

with the wide range of tools available in the scientific Python

software stack. We manage memory using our own alloca-

tors (e.g., to enforce alignment and NUMA optimizations)

and therefore we also take control over freeing memory. We

wrap everything with the NumPy array API to ensure inter-

operability with other modules that use NumPy.

A Devito Operator takes as input a collection of sym-

bolic expressions and progressively lowers the symbolic rep-

resentation to semantically equivalent C code. The code gen-

eration process consists of a sequence of compiler passes

during which multiple automated performance optimization

techniques are employed. These can be broadly categorized

into two classes and are performed by distinct sub-packages.

– Devito symbolic engine (DSE). Symbolic optimization

techniques, such as common sub-expression elimina-

tion (CSE), factorization, and loop-invariant code mo-

tion, are utilized to reduce the number of floating point

operations (flops) performed within the computational

kernel (Luporini et al., 2015). These optimization tech-

niques are inspired by SymPy but are custom imple-

mented in Devito and do not rely on the SymPy imple-

mentation of CSE, for example.

– Devito loop engine (DLE). Well-known loop optimiza-

tion techniques, such as explicit vectorization, thread-

level parallelization, and loop blocking with auto-tuned

block sizes, are employed to increase the cache utiliza-

tion and thus memory bandwidth utilization of the ker-

nels.

A complete description of the compilation pipeline is pro-

vided in Luporini et al. (2018).

3.2 Discrete function symbols

The primary user-facing API of Devito allows for the def-

inition of complex stencil operators from a concise math-

ematical notation. For this purpose, Devito relies strongly

on SymPy (Devito 3.1.0 depends upon SymPy 1.1, and all

dependency versions are specified in Devito’s requirements

file). Devito provides two symbolic object types that mimic

SymPy symbols, enabling the construction of stencil expres-

sions in symbolic form.

– Function. The primary class of symbols provided

by Devito behaves like sympy.Function ob-

jects, allowing for symbolic differentiation via finite-

difference discretization and general symbolic manip-

ulation through SymPy utilities. Symbolic function ob-
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Figure 3. Example code defining the two-dimensional wave equation without damping using Devito symbols and symbolic processing

utilities from SymPy. Assuming hx = 1x, hy = 1y, and s = 1t , the output is equivalent to Eq. (1) without the source term qs.

Figure 4. Example definition of a forward operator.

jects encapsulate state variables (parameters and solu-

tion of the PDE) in the operator definition and asso-

ciated user data (function value) with the represented

symbol. The metadata, such as grid information and

numerical type, which provide domain-specific infor-

mation to the Devito compiler, are also carried by the

sympy.Function object.

– Dimension. Each sympy.Function object defines an

iteration space for stencil operations through a set of

Dimension objects that are used to define and gener-

ate the corresponding loop structure from the symbolic

expressions.

In addition to sympy.Function and Dimension

symbols, Devito supplies the construct Grid, which encap-

sulates the definition of the computational domain and de-

fines the discrete shape (number of grid points, grid spac-

ing) of the function data. The number of spatial dimen-

sions is hereby derived from the shape of the Grid ob-

ject and inherited by all Function objects, allowing for

the same symbolic operator definitions to be used for two-

and three-dimensional problem definitions. As an example, a

two-dimensional discrete representation of the square slow-

ness of an acoustic wave m[x,y] inside a 5 × 6 grid point

domain can be created as a symbolic function object as illus-

trated in Fig. 2.

It is important to note here that m[x,y] is constant in

time, while the discrete wave field u[t,x,y] is time depen-

dent. Since time is often used as the stepping dimension

for buffered stencil operators, Devito provides an additional

function type TimeFunction, which automatically adds

a special TimeDimension object to the list of dimen-

sions. TimeFunction objects derive from Function

with an extra time dimension and inherit all the symbolic

properties. The creation of a TimeFunction requires the

www.geosci-model-dev.net/12/1165/2019/ Geosci. Model Dev., 12, 1165–1187, 2019



1170 M. Louboutin et al.: Devito: an embedded domain-specific language for finite differences

Figure 5. Example definition of an adjoint operator.

same parameters as a Function, with an extra optional

time_order property that defines the discretization or-

der for the time dimension and an integer save parame-

ter that defines the size of the time axis when the full time

history of the field is stored in memory. In the case of a

buffered time dimension save is equal to None and the

size of the buffered dimension is automatically inferred from

the time_order value. As an example, we can create an

equivalent symbolic representation of the wave field as u

= TimeFunction(name=’u’, grid=grid), which

is denoted symbolically as u(t, x, y).

3.2.1 Spatial discretization

The symbolic nature of the function objects allows for the

automatic derivation of discretized finite-difference expres-

sions for derivatives. Devito Function objects provide a

set of shorthand notations that allow users to express, for ex-

ample, du[t, x, y, z]
dx

as u.dx and d2u[t, x, y, z]

dx2 as u.dx2. More-

over, the discrete Laplacian, defined in three dimensions

as 1u[t, x, y, z] =
d2u[t, x, y, z]

dx2 +
d2u[t, x, y, z]

dy2 +
d2u[t, x, y, z]

dz2 ,

can be expressed in shorthand simply as u.laplace. The

shorthand expression u.laplace is agnostic to the num-

ber of spatial dimensions and may be used for two- or three-

dimensional problems.

The discretization of the spatial derivatives can be defined

for any order. In the most general case, we can write the spa-

tial discretization in the x direction of order k (and equiva-

lently in the y and z direction) as

Figure 6. Example definition of a gradient operator.

∂2u[t,x,y,z]

∂x2

=
1

h2
x

k
2

∑

j=0

[

αj (u[t,x + jhx,y,z]

+u[t,x − jhx,y,z])
]

, (2)

where hx is the discrete grid spacing for the dimension x,

the constants in αj are the coefficients of the finite-difference

scheme, and the spatial discretization error is of order O(hk
x).

3.2.2 Temporal discretization

We consider here a second-order time discretization for the

acoustic wave equation, as higher-order time discretization

requires us to rewrite the PDE (Seongjai Kim, 2007). The

discrete second-order time derivative with this scheme can

be derived from the Taylor expansion of the discrete wave

field u(t,x,y,z) as

d2u[t,x,y,z]

dt2
=

u[t + 1t,x,y,z] − 2u[t,x,y,z] +u[t − 1t,x,y,z]

1t2
. (3)

In this expression, 1t is the size of a discrete time step.

The discretization error is O(1t2) (second order in time) and

will be verified in Sect. 5.

Following the convention used for spatial derivatives, the

above expression can be automatically generated using the
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M. Louboutin et al.: Devito: an embedded domain-specific language for finite differences 1171

Figure 7. Definition of FWI gradient update.

shorthand expression u.dt2. Combining the temporal and

spatial derivative notations, and ignoring the source term

q, we can now define the wave propagation component

of Eq. (1) as a symbolic expression via Eq(m * u.dt2

- u.laplace, 0), where Eq is the SymPy represen-

tation of an equation. In the resulting expression, all spa-

tial and temporal derivatives are expanded using the cor-

responding finite-difference terms. To define the propaga-

tion of the wave in time, we can now rearrange the ex-

pression to derive a stencil expression for the forward sten-

cil point in time, u(t + 1t,x,y,z), denoted by the short-

hand expression u.forward. The forward stencil corre-

sponds to the explicit Euler time stepping that updates the

next time step u.forward from the two previous ones u

and u.backward (Eq. 4). We use the SymPy utility solve

to automatically derive the explicit time-stepping scheme, as

shown in Fig. 3 for the second order in space discretization.

u[t + 1t,x,y,z] = 2u[t,x,y,z] −u[t − 1t,x,y,z]

+
1t2

m[x,y,z]
1u[t,x,y,z]. (4)

The iteration over time to obtain the full solution is then

generated by the Devito compiler from the time dimension

information. Solving the wave equation with the above ex-

Figure 8. FWI algorithm with line search.

plicit Euler scheme is equivalent to a linear system A(m)u =

qs, where the vector u is the discrete wave field solution of

the discrete wave equation, qs is the source term, and A(m)

is the matrix representation of the discrete wave equation.

From Eq. (4) we can see that the matrix A(m) is a lower

triangular matrix that reflects the time-marching structure

of the stencil. Simulation of the wave field is equivalent to

a forward substitution (solve row by row from the top) on

the lower triangular matrix A(m). Since we do not consider

complex valued PDEs, the adjoint of A(m) is equivalent to

its transpose denoted as A⊤(m) and is an upper triangular

matrix. The solution v of the discrete adjoint wave equa-

tion A(m)⊤v = qa for an adjoint source qa is equivalent to

a backward substitution (solve from the bottom row to top

row) on the upper triangular matrix A(m)⊤ and is simulated

backward in time starting from the last time step. These ma-

trices are never explicitly formed, but are instead matrix-free

operators with implicit implementation of the matrix–vector

product, u = A(m)−1qs as a forward stencil. The stencil for

the adjoint wave equation in this self-adjoint case would sim-

ply be obtained with solve(eqn, u.backward) and

the compiler will detect the backward-in-time update.

3.2.3 Boundary conditions

The field recorded data are measured on a wave field that

propagates in an infinite domain. However, solving the wave

equation in a discrete infinite domain is not feasible with fi-

www.geosci-model-dev.net/12/1165/2019/ Geosci. Model Dev., 12, 1165–1187, 2019
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Figure 9. Numerical wave field for a constant velocity dt = 0.1ms, h = 1m and comparison with the analytical solution.

nite differences. In order to mimic an infinite domain, absorb-

ing boundary conditions (ABCs) or perfectly matched layers

(PMLs) are necessary (Clayton and Engquist, 1977). These

two methods allow for the approximation of the wave field

as it is in an infinite medium by damping and absorbing the

waves within an extra layer at the limit of the domain to avoid

unnatural reflections from the edge of the discrete domain.

The least computationally expensive method is the absorb-

ing boundary condition that adds a single damping mask in a

finite layer around the physical domain. This absorbing con-

dition can be included in the wave equation as

m[x, y, z]
d2u[t, x, y, z]

dt2
− 1u[t, x, y, z]

+ η[x, y, z]
du[t, x, y, z]

dt
= 0. (5)

The η[x, y, z] parameter is equal to 0 inside the physi-

cal domain and increasing from inside to outside within the

damping layer. The dampening parameter η can follow a lin-

ear or exponential curve depending on the frequency band

and width of the dampening layer. For methods based on

more accurate modeling, for example in simulation-based ac-

quisition design (Liu and Fomel, 2011; Wason et al., 2017;

Naghizadeh and Sacchi, 2009; Kumar et al., 2015), a full im-

plementation of the PML will be necessary to avoid weak

reflections from the domain limits.

3.2.4 Sparse point interpolation

Seismic inversion relies on data-fitting algorithms, and hence

we need to support sparse operations such as source injection

and wave field (u[t,x, y, z]) measurement at arbitrary grid

locations. Both operations occur at sparse domain points,

which do not necessarily align with the logical Cartesian grid

used to compute the discrete solution u(t, x, y, z). Since

such operations are not captured by the finite-difference ab-

stractions for implementing PDEs, Devito implements a sec-

ondary high-level representation of sparse objects (Lange

et al., 2017) to create a set of SymPy expressions that per-

form polynomial interpolation within the containing grid cell

from predefined coefficient matrices.

The necessary expressions to perform interpolation and in-

jection are automatically generated through a dedicated sym-

bol type, SparseFunction, which associates a set of co-

ordinates with the symbol representing a set of nonaligned

points. For example, the syntax p.interpolate(expr)

provided by a SparseFunction p will generate a sym-

bolic expression that interpolates a generic expression

expr onto the sparse point locations defined by p, while

p.inject(field, expr) will evaluate and add expr

to each enclosing point in field. The generated SymPy ex-

pressions are passed to Devito Operator objects alongside

the main stencil expression to be incorporated into the gener-

ated C kernel code. A complete setup of the acoustic wave

equation with absorbing boundaries, injection of a source

function, and measurement of wave fields via interpolation

at receiver locations can be found in Sect. 4.2.

4 Seismic modeling and inversion

Seismic inversion methods aim to reconstruct physical pa-

rameters or an image of the Earth’s subsurface from multi-

experiment field measurements. For this purpose, a wave is

generated at the ocean surface that propagates through to the

subsurface and creates reflections at the discontinuities of the

medium. The reflected and transmitted waves are then cap-
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Figure 10. Time discretization convergence analysis for a fixed grid, fixed propagation time (150 ms), and varying time step values. The

result is plotted in a logarithmic scale and the numerical convergence rate (1.94 slope) shows that the numerical solution is accurate.

Figure 11. Comparison of the numerical convergence rate of the spatial finite-difference scheme with the theoretical convergence rate from

the Taylor theory. The theoretical rates are the dotted line with the corresponding colors. The result is plotted in a logarithmic scale to

highlight the convergence orders as linear slopes and the numerical convergence rates show that numerical solution is accurate.

tured by a set of hydrophones that can be classified as ei-

ther moving receivers (cables dragged behind a source ves-

sel) or static receivers (ocean bottom nodes or cables). From

the acquired data, physical properties of the subsurface such

as wave speed or density can be reconstructed by minimiz-

ing the misfit between the recorded measurements and the

numerically modeled seismic data.

4.1 Full-waveform inversion

Recovering the wave speed of the subsurface from surface

seismic measurements is commonly cast into a nonlinear
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Figure 12. Gradient test for the acoustic propagator. The first-order (blue) and second-order (red) errors are displayed in logarithmic scales

to highlight the slopes. The numerical convergence order (1.06 and 2.01) shows that we have a correct implementation of the FWI operators.

optimization problem called full-waveform inversion (FWI).

The method aims at recovering an accurate model of the dis-

crete wave velocity, c, or alternatively the square slowness

of the wave, m = 1
c2 (not an overload), from a given set of

measurements of the pressure wave field u. Lions (1971),

Tarantola (1984), Virieux and Operto (2009), and Haber et al.

(2012) show that this can be expressed as a PDE-constrained

optimization problem. After elimination of the PDE con-

straint, the reduced objective function is defined as

minimize
m 8s(m) =

1

2
‖ Pru − d‖2

2 with u = A(m)−1PT
s qs, (6)

where Pr is the sampling operator at the receiver locations,

PT
s (T is the transpose or adjoint) is the injection operator at

the source locations, A(m) is the operator representing the

discretized wave-equation matrix, u is the discrete synthetic

pressure wave field, qs is the corresponding pressure source,

and d is the measured data. While we consider the acoustic

isotropic wave equation for simplicity here, in practice, mul-

tiple implementations of the wave-equation operator A(m)

are possible depending on the choice of physics. In the most

advanced case, m would not only contain the square slow-

ness but also anisotropic or orthorhombic parameters.

To solve this optimization problem with a gradient-based

method, we use the adjoint-state method to evaluate the gra-

dient (Plessix, 2006; Haber et al., 2012):

∇8s(m) =

nt
∑

t=1

u[t]vt t [t] = JT δds, (7)

where nt is the number of computational time steps, δds =

(Pru − d) is the data residual (difference between the mea-

sured data and the modeled data), J is the Jacobian operator,

and vt t is the second-order time derivative of the adjoint wave

field that solves

AT (m)v = PT
r δds. (8)

The discretized adjoint system in Eq. (8) represents an up-

per triangular matrix that is solvable by modeling wave prop-

agation backwards in time (starting from the last time step).

The adjoint-state method therefore requires a wave-equation

solve for both the forward and adjoint wave fields to com-

pute the gradient. An accurate and consistent adjoint model

for the solution of the optimization problem is therefore of

fundamental importance.

4.2 Acoustic forward modeling operator

We consider the acoustic isotropic wave equation parameter-

ized in terms of slowness m[x, y, z] with zero initial con-

ditions assuming the wave field does not have any energy

before zero time. We define an additional dampening term

to mimic an infinite domain (see Sect. 3.2.3). At the limit

of the domain, the zero Dirichlet boundary condition is sat-

isfied as the solution is considered to be fully damped at

the limit of the computational domain. The PDE is defined

in Eq. (5). Figure 4 demonstrates the complete setup of the

acoustic wave equation with absorbing boundaries, injection

of a source function, and sampling wave fields at receiver
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Figure 13. FWI on the acoustic Marmousi-ii model. Panel (a) is the true velocity model, panel (b) is the initial velocity model, panel (c) is

the inverted velocity at the last iteration of the iterative inversion, and panel (d) is the convergence.

locations. The shape of the computational domain is hereby

provided by a utility object model, while the damping term

η
du[x, y, z, t]

dt
is implemented via a utility symbol eta defined

as a Function object. It is important to note that the dis-

cretization order of the spatial derivatives is passed as an

external parameter order and carried as metadata by the

wave field symbol u during construction, allowing the user

to freely change the underlying stencil order.

The main (PDE) stencil expression to update the state

of the wave field is derived from the high-level wave-

equation expression eqn = u.dt2 - u.laplace +

damp*u.dt using SymPy utilities as demonstrated before

in Fig. 3. Additional expressions for the injection of the

wave source via the SparseFunction object src are

then generated for the forward wave field, and the source

time signature is discretized onto the computational grid via

the symbolic expression src * dt**2 / m. The weight
dt2

m
is derived from rearranging the discretized wave equa-

tion with a source as a right-hand side similarly to the Lapla-

cian in Eq. (4). A similar expression to interpolate the current

state of the wave field at the receiver locations (measure-

ment points) is generated through the receiver symbol.
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Figure 14. Convection equation in Devito. In this example,

the initial Dirichlet boundary conditions are set to 1 using the

API indexing feature, which allows us to assign values to the

TensorFunction data.

The combined list of stencils, a sum in Python that adds the

different expressions that update the wave field at the next

time step, injects the source, interpolates at the receivers, and

is then passed to the Operator constructor alongside a defi-

nition of the spatial and temporal spacing hx, hy, hz, 1t pro-

vided by the model utility. Devito then transforms this list

of stencil expressions into loops (inferred from the symbolic

functions), replaces all necessary constants by their values if

requested, prints the generated C code, and compiles it. The

operator is finally callable in Python with op.apply().

A more detailed explanation of the seismic setup and pa-

rameters such as the source and receiver terms in Fig. 4 is

covered in Louboutin et al. (2017b).

4.3 Discrete adjoint wave equation and FWI gradient

To create the adjoint that pairs with the above forward

modeling propagator we can make use of the fact that the

isotropic acoustic wave equation is self-adjoint. This means

that for the implementation of the forward wave equation

eqn, shown in Fig. 5, only the sign of the damping term

needs to be inverted, as the dampening time derivative has

to be defined in the direction of propagation ( ∂
∂n(t)

). For

the PDE stencil, however, we now rearrange the stencil ex-

pression to update the backward wave field from the two

next time steps as v[t − 1t, x, y, z] = f (v[t, x, y, z],v[t +

1t, x, y, z]). Moreover, the role of the sparse point symbols

has changed (Eq. 8) so that we now inject time-dependent

data at the receiver locations (adj_src), while sampling

the wave field at the original source location (adj_rec).

Based on the definition of the adjoint operator, we can now

define a similar operator to update the gradient according to

Eq. (7). As shown in Fig. 6, we can replace the expression

to sample the wave field at the original source location with

an accumulative update of the gradient field grad via the

symbolic expression Eq(grad, grad - u * v.dt2).

To compute the gradient, the forward wave field at each

time step must be available, which leads to significant mem-

ory requirements. Many methods exist to tackle this mem-

ory issue, but all come with their advantages and disadvan-

tages. For instance, we implemented optimal checkpointing

with the library Revolve (Griewank and Walther, 2000) in

Devito to drastically reduce the memory cost by only saving

a partial time history and recomputing the forward wave field

when needed (Kukreja et al., 2018). The memory reduction

comes at an extra computational cost as optimal checkpoint-

ing requires log(nt)+2 extra PDE solves. Another method is

boundary wave field reconstruction (McMechan, 1983; Mit-

tet, 1994; Raknes and Weibull, 2016) that saves the wave

field only at the boundary of the model, but still requires

us to recompute the forward wave field during the back-

propagation. This boundary method has a reduced memory

cost but necessitates the computation of the forward wave

field twice (one extra PDE solve), once to get the data and a

second time from the boundary values to compute the gradi-

ent.

4.4 FWI using Devito operators

At this point, we have a forward propagator to model syn-

thetic data in Fig. 4, the adjoint propagator for Eq. (8), and

the FWI gradient of Eq. (7) in Fig. 6. With these three op-

erators, we show the implementation of the FWI objective

and gradient with Devito in Fig. 8. With the forward and ad-

joint and/or gradient operator defined for a given source, we

only need to add a loop over all the source experiments and

the reduction operation on the gradients (sum the gradient

for each source experiment together). In practice, this loop

over sources is where the main task-based or MPI-based par-

allelization happens. The wave-equation propagator does use

some parallelization with multithreading or domain decom-

position, but that parallelism requires communication. The

parallelism-over-source experiment is task based and does

not require any communication between the separate tasks

as the gradient for each source can be computed indepen-

dently and reduced to obtain the full gradient. With the com-

plete gradient summed over the source experiments, we up-

date the model with a simple fixed step-length gradient up-

date (Cauchy, 1847).

This FWI function in Fig. 7 can then be included in any

black-box optimization toolbox such as SciPy optimize to

solve the inversion problem in Eq. (6). While black-box op-

timization methods aim to minimize the objective, there are

no guarantees that they will find a global minimum because

the objective is highly nonlinear in m and other more sophis-

ticated methods are required (Warner and Guasch, 2014; van

Leeuwen and Herrmann, 2015; Peters and Herrmann, 2017;

Witte et al., 2018).
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Figure 15. Initial (a) and final (b) time of the simulation of the convection equation.

Table 1. Adjoint test for different discretization orders in 2-D, com-

puted on a two-layer model in double precision. The highlighted

values represent the error in the values and indicate at which deci-

mal the error appears.

Order < Fx, y > < x, FT y > Relative error

2nd order 7.9858 × 105 7.9858 × 105 0.0000 × 100

4th order 7.3044 × 105 7.3044 × 105 0.0000 × 100

6th order 7.2190 × 105 7.2190 × 105 4.8379 × 10−16

8th order 7.1960 × 105 7.1960 × 105 4.8534 × 10−16

10th order 7.1860 × 105 7.1860 × 105 3.2401 × 10−16

12th order 7.1804 × 105 7.1804 × 105 6.4852 × 10−16

Table 2. Adjoint test for different discretization orders in 3-D, com-

puted on a two-layer model in double precision. The highlighted

values indicate the error in the values and indicate at which decimal

the error appears.

Order < Fx, y > < x, FT y > Relative error

2nd order 5.3840 × 104 5.3840 × 104 1.3514 × 10−16

4th order 4.4725 × 104 4.4725 × 104 3.2536 × 10−16

6th order 4.3097 × 104 4.3097 × 104 3.3766 × 10−16

8th order 4.2529 × 104 4.2529 × 104 3.4216 × 10−16

10th order 4.2254 × 104 4.2254 × 104 0.0000 × 100

12th order 4.2094 × 104 4.2094 × 104 1.7285 × 10−16

5 Verification

Given the operators defined in Sect. 3 we now verify the cor-

rectness of the code generated by the Devito compiler. We

first verify that the discretized wave equation satisfies the

convergence properties defined by the order of discretization,

and secondly we verify the correctness of the discrete adjoint

and computed gradient.

5.1 Numerical accuracy

The numerical accuracies of the forward modeling operator

(Fig. 4) and the runtime achieved for a given spatial dis-

cretization order and grid size are compared to the analyti-

cal solution of the wave equation in constant media. We de-

fine two measures of the accuracy that compare the numer-

ical wave field in constant velocity media to the analytical

solution:

– accuracy versus size, whereby we compare the obtained

numerical accuracy as a function of the spatial sampling

size (grid spacing); and

– accuracy versus time, whereby we compare the ob-

tained numerical accuracy as a function of runtime for

a given physical model (fixed shape in physical units,

variable grid spacing).

The measure of accuracy of a numerical solution relies on

a hypothesis that we satisfy for these two tests:

– the domain is large enough and the propagation time

small enough to ignore boundary-related effects, i.e.,

the wave field never reaches the limits of the domain;

and

– the source is located on the grid and is a discrete approx-

imation of the Dirac to avoid spatial interpolation errors.

This hypothesis guarantees the existence of the analyti-

cal and numerical solution for any spatial discretization

(Igel, 2016).

5.1.1 Convergence in time

We analyze the numerical solution against the analytical so-

lution and verify that the error between these two decreases

at a second-order rate as a function of the time step size 1t .

The velocity model is a 400m×400m domain with a source
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Figure 16. Burgers’ equations in Devito. In this example, we ex-

plicitly use the FD function first_derivative. This function

provides more flexibility and allows us to take an upwind derivative,

rather than a standard centered derivative (x), to avoid odd–even

coupling, which leads to chessboard artifacts in the solution.

at the center. We compare the numerical solution to the ana-

lytical solution in Fig. 9.

The analytical solution is defined as (Watanabe, 2015)

us(r, t) =
1

2π

∞
∫

−∞

{−iπH
(2)
0 (kr)q(ω)eiωtdω}, (9)

r =

√

(x − xsrc)2 + (y − ysrc)2, (10)

where H
(2)
0 is the Hankel function of second kind and q(ω) is

the spectrum of the source function. As we can see in Fig. 10

the error decreases nearly quadratically with the size of the

time step with a time convergence rate slope of 1.94 in loga-

rithmic scale that matches the theoretical expectation from a

second-order temporal discretization.

5.1.2 Spatial discretization analysis

The spatial discretization analysis follows the same method

as the temporal discretization analysis. We model a wave

field for a fixed temporal setup with a small enough time

step to ensure negligible time discretization error (dt =

0.00625 ms). We vary the grid spacing (dx) and spatial dis-

cretization order and then compute the error between the

numerical and analytical solution. The convergence rates

should follow the theoretical rates defined in Eq. (2). In

detail, for a kth-order discretization in space, the error be-

tween the numerical and analytical solution should decrease

as O(dxk). The best way to look at the convergence results is

to plot the error in logarithmic scale and verify that the error

decreases linearly with slope k. We show the convergence re-

sults in Fig. 11. The numerical convergence rates follow the

theoretical ones for every tested order k = 2, 4, 6, 8 with the

exception of the 10th order for small grid size. This is mainly

due to reaching the limits of the numerical accuracy and a

value of the error on par with the temporal discretization er-

ror. This behavior for high-order and small grids is, however,

in accordance with the literature as in Wang et al. (2017).

The numerical slopes obtained and displayed in Fig. 11

demonstrate that the spatial finite difference follows the the-

oretical errors and converges to the analytical solution at

the expected rate. These two convergence results (time and

space) verify the accuracy and correctness of the symbolic

discretization with Devito. With this validated simulated

wave field, we can now verify the implementation of the op-

erators for inversion.

5.2 Propagators verification for inversion

We concentrate now on two tests, namely the adjoint test

(or dot test) and the gradient test. The adjoint-state gradi-

ent of the objective function defined in Eq. (7) relies on

the solutions of the forward and adjoint wave equations;

therefore, the first mandatory property to verify is the ex-

act derivation of the discrete adjoint wave equation. The

mathematical test we use is the standard adjoint property

or dot test: for any random x ∈ span(P sA(m)−T P −T
r ), y ∈

span(P rA(m)−1P −T
s )

< P rA(m)−1P −T
s x, y > − < x,P sA(m)−T P −T

r y >

< P rA(m)−1P −T
s x, y >

= 0.0. (11)

The adjoint test is also individually performed on the

source–receiver injection–interpolation operators in the De-

vito test suite. The results, summarized in Tables 1 and 2

with F = P rA(m)−1P −T
s , verify the correct implementation
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Figure 17. Initial (a) and final (b) time of the simulation of the Burgers’ equations.

of the adjoint operator for any order in both 2-D and 3-D. We

observe that the discrete adjoint is accurate up to numerical

precision for any order in 2-D and 3-D with an error of order

1 × 10−16. In combination with the previous numerical anal-

ysis of the forward modeling propagator that guarantees that

we solve the wave equation, this result verifies that the ad-

joint propagator is the exact numerical adjoint of the forward

propagator and that it implements the adjoint wave equation.

With the forward and adjoint propagators tested, we finally

verify that the Devito operator that implements the gradient

of the FWI objective function (Eq. 7, Fig. 6) is accurate with

respect to the Taylor expansion of the FWI objective func-

tion. For a given velocity model and associated squared slow-

ness m, the Taylor expansion of the FWI objective function

from Eq. (6) for a model perturbation dm and a perturbation

scale h is

8s(m + hdm) = 8s(m) +O(h)

8s(m + hdm) = 8s(m) + h〈∇8s(m), dm〉 +O(h2). (12)

These two equations constitute the gradient test whereby we

define a small model perturbation dm and vary the value of

h between 10−6 and 100 and compute the error terms:

ǫ0 =8s(m + hdm) − 8s(m)

ǫ1 =8s(m + hdm) − 8s(m) − h〈∇8s(m), dm〉. (13)

We plot the evolution of the error terms as a function of the

perturbation scale h knowing ǫ0 should be first order (linear

with slope 1 in a logarithmic scale) and ǫ1 should be second

order (linear with slope 2 in a logarithmic scale). We exe-

cuted the gradient test defined in Eq. (12) in double precision

with an eighth-order spatial discretization. The test can be

run for higher orders in the same manner but since it has al-

ready been demonstrated that the adjoint is accurate for all

orders, the same results would be obtained.

In Fig. 12, the matching slope of the error term with the

theoretical h and h2 slopes from the Taylor expansion veri-

fies the accuracy of the inversion operators. With all the indi-

vidual parts necessary for seismic inversion, we now validate

our implementation in a simple but realistic example.

5.3 Validation: full-waveform inversion

We show a simple example of FWI in Eq. (7) on the

Marmousi-ii model (Versteeg, 1994). This result was ob-

tained with the Julia interface to Devito JUDI (Witte et al.,

2018, 2019) that provides high-level abstraction for opti-

mization and linear algebra. The model size is 4km × 16km

discretized with a 10m grid in both directions. We use a

10Hz Ricker wavelet with 4s recording. The receivers are

placed at the ocean bottom (210m of depth) every 10m. We

invert for the velocity with all the sources, spaced by 50m

at 10m of depth for a total of 300 sources. The inversion

algorithm used is minConf_PQN (Schmidt et al., 2009), an l-

BFGS algorithm with bound constraints (minimum and max-

imum velocity value constraints). While conventional opti-

mization would run the algorithm to convergence, this strat-

egy is computationally not feasible for FWI. As each itera-

tion requires two PDE solves per source qs (see adjoint state

in Sect. 4), we can only afford O(10) iterations in practice

(O(104) PDE solves in total). In this example, we fix the

number of function evaluations to 20, which, with the line

search, corresponds to 15 iterations. The result is shown in

Fig. 13 and we can see that we obtain a good reconstruc-

tion of the true model. More advanced algorithms and con-

straints will be necessary for more complex problems such

as a less accurate initial model, noisy data, or field-recorded

data (Witte et al., 2018; Peters and Herrmann, 2017); how-

ever, the wave propagator would not be impacted, making

this example a good proof of concept for Devito.

This result highlights two main contributions of Devito.

First, we provide PDE simulation tools that allow for the

easy and efficient implementation of an inversion operator

for seismic problems and potentially any PDE-constrained

optimization problems. As described in Sects. 3 and 4, we
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Figure 18. Poisson equation in Devito with field swap in Python.

can implement all the required propagators and the FWI gra-

dient in a few lines in a concise and mathematical manner.

Second, as we obtained these results with JUDI (Witte et al.,

2019), a seismic inversion framework that provides a high-

level linear abstraction layer on top of Devito for seismic in-

version, this example illustrates that Devito is fully compat-

ible with external languages and optimization toolboxes and

allows users to use our symbolic DSL for finite differences

within their own inversion framework.

5.4 Computational fluid dynamics

Finally, we describe three classical computational fluid dy-

namics examples to highlight the flexibility of Devito for an-

other application domain. Additional CFD examples can be

Figure 19. Poisson equation in Devito with buffered dimension for

automatic swap at each iteration.

found in the Devito code repository in the form of a set of

Jupyter notebooks. The three examples we describe here are

the convection equation, the Burgers’ equation, and the Pois-

son equation. These examples are adapted from Barba and

Forsyth (2018), and the example repository contains both the

original Python implementation with NumPy and the imple-

mentation with Devito for comparison.

5.4.1 Convection

The convection governing equation for a field u and a speed

c in two dimensions is

∂u

∂t
+ c

∂u

∂x
+ c

∂u

∂y
= 0. (14)

The same way we previously described it for the wave

equation, u is then defined as a TimeFunction. In this

simple case, the speed is a constant and does not need a

symbolic representation, but a more general definition of

this equation is possible with the creation of c as a Devito
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Figure 20. Right-hand side (a) and solution (b) of the Poisson equations.

Constant that can accept any runtime value. We then dis-

cretized the PDE using forward differences in time and back-

ward differences in space:

un+1
i, j = un

i, j − c
1t

1x
(un

i, j − un
i−1, j )

− c
1t

1y
(un

i, j − un
i, j−1), (15)

which is implemented in Devito as in Fig. 14.

The solution of the convection equation is displayed in

Fig. 15 that shows the evolution of the field u, and the solu-

tion is consistent with the expected result produced by Barba

and Forsyth (2018).

5.4.2 Burgers’ equation

In this second example, we show the solution of the Burg-

ers’ equation. This example demonstrates that Devito sup-

ports coupled systems of equations and nonlinear equations

easily. The Burgers’ equation in two dimensions is defined as

the following coupled PDE system:







∂u
∂t

+ u ∂u
∂x

+ v ∂u
∂y

= ν
(

∂2u

∂x2 + ∂2u

∂y2

)

,

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

= ν
(

∂2v

∂x2 + ∂2v

∂y2

)

,
(16)

where u and v are the two components of the solution and

ν is the diffusion coefficient of the medium. The system of

coupled equations is implemented in Devito in a few lines as

shown in Fig. 16.

We show the initial state and the solution at the last time

step of the Burgers’ equation in Fig. 17. Once again, the

solution corresponds to the reference solution of Barba and

Forsyth (2018).

5.4.3 Poisson

We finally show the implementation of a solver for the Pois-

son equation in Devito. While the Poisson equation is not

time dependent, the solution is obtained with an iterative

solver and the simplest one can easily be implemented with

finite differences. The Poisson equation for a field p and a

right-hand side b is defined as

∂2p

∂x2
+

∂2p

∂y2
= b, (17)

and its solution can be computed iteratively with

pn+1
i, j =

(pn
i+1, j + pn

i−1, j )1y2 + (pn
i, j+1 + pn

i, j−1)1x2 − bn
i, j 1x21y2

2(1x2 + 1y2)
, (18)

where the expression in Eq. (18) is computed until either

the number of iterations is reached (our example case) or

more realistically when ||pn+1
i, j − pn

i, j || < ǫ. We show two

different implementations of a Poisson solver in Figs. 18

and 19. While these two implementations produce the

same result, the second one takes advantage of Devito’s

BufferedDimension that allows us to iterate automat-

ically alternating between pn and pn+1 as the two different

time buffers in the TimeFunction.

The solution of the Poisson equation is displayed in Fig. 20

with its right-hand side b.

These examples demonstrate the flexibility of Devito and

show that a broad range of PDEs can easily be implemented

with Devito, including a nonlinear equation, a coupled PDE

system, and steady-state problems.

6 Performance

In this section we demonstrate the performance of Devito

from a numerical and inversion point of view, as well as the

absolute performance from a hardware point of view. This

section only provides a brief overview of Devito’s perfor-

mance, and a more detailed description of the compiler and

its performance is covered in Luporini et al. (2018).
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Figure 21. Different spatial discretization order accuracies against runtime for a fixed physical setup (model size in m and propagation time).

6.1 Error–cost analysis

Devito’s automatic code generation lets users define the spa-

tial and temporal order of FD stencils symbolically and with-

out having to re-implement long stencils by hand. This al-

lows users to experiment with trade-offs between discretiza-

tion errors and runtime, as higher-order FD stencils provide

more accurate solutions that come at increased runtime. For

our error–cost analysis, we compare absolute error in L2

norm between the numerical and the reference solution to

the time to solution (the numerical and reference solution are

defined in Sect. 5). Figure 21 shows the runtime and numeri-

cal error obtained for a fixed physical setup. We use the same

parameter as in Sect. 5.1 with a domain of 400m×400m and

we simulate the wave propagation for 150ms.

The results in Fig. 21 illustrate that higher-order dis-

cretizations produce a more accurate solution on a coarser

grid with a shorter runtime. This result is very useful for in-

verse problems, as a coarser grid requires less memory and

fewer time steps. A grid size 2 times bigger implies a reduc-

tion of memory usage by a factor of 24 for 3-D modeling.

Devito then allows users to design FD simulators for inver-

sion in an optimal way, whereby the discretization order and

grid size can be chosen according to the desired numerical

accuracy and availability of computational resources. While

a near-linear evolution of the runtime with increasing space

order might be expected, we do not see such a behavior in

practice. The main reason for this is that the effect of De-

vito’s performance optimizations for different space orders

is difficult to predict and does not necessarily follow a linear

relationship. On top of these optimizations, the runtimes also

Figure 22. Roofline plots for a 512×512×512 model on a Skylake

8180 architecture. The runtimes correspond to 1000ms of modeling

for four different spatial discretization orders (4, 8, 12, 16).

include the source injection and receiver interpolation, which

impact the runtime in a nonlinear way. Therefore, these re-

sults are still acceptable. The order of the FD stencils also af-

fects the best possible hardware usage that can theoretically

be achieved and whether an algorithm is compute or memory

bound, a trade-off that is described by the roofline model.

6.2 Roofline analysis

We present performance results of our solver using the

roofline model, as previously discussed in Colella (2004),

Asanovic et al. (2006), Patterson and Hennessy (2007),

Williams et al. (2009), and Louboutin et al. (2017a). Given
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Figure 23. Roofline plots for a 768×768×768 model on a Skylake

8180 architecture. The runtimes correspond to 1000ms of modeling

for four different spatial discretization orders (4, 8, 12, 16).

Figure 24. Roofline plots for a 1024×1024×1024 model on a Sky-

lake 8180 architecture. The runtimes correspond to 1000ms of mod-

eling for four different spatial discretization orders (4, 8, 12, 16).

a finite-difference scheme, this method provides an estimate

of the best achievable performance on the underlying

architecture, as well as an absolute measure of the hardware

usage. We also show a more classical metric, namely time

to solution, in addition to the roofline plots, as both are

essential for a clear picture of the achieved performance.

The experiments were run on an Intel Skylake 8180 ar-

chitecture (28 physical cores, 38.5 MB shared L3 cache,

with cores operating at 2.5 Ghz). The observed STREAM

TRIAD (McCalpin, 1991–2007) was 105 GB s−1. The

maximum single-precision FLOP performance was calcu-

lated as #cores · #avx units · #data items per vector register ·

2(fused multiply-add) · core frequency = 4480 GFLOPss−1.

A (more realistic) performance peak of 3285 GFLOPss−1

was determined by running the LINPACK benchmark

(Dongarra, 1988). These values are used to construct the

roofline plots. In the performance results presented in this

section, the operational intensity (OI) is computed by the

Devito profiler from the symbolic expression after the

compiler optimization. While the theoretical OI could be

used, we chose to recompute it from the final optimized

symbolic stencil for a more accurate performance measure.

A more detailed overview of Devito’s performance model is

described in Luporini et al. (2018).

We show three different roofline plots, one plot for each

domain size attempted, in Figs. 22, 23, and 24. Different

space orders are represented as different data points. The

time to solution in seconds is annotated next to each data

point. The experiments were run with all performance opti-

mizations enabled. Because auto-tuning is used at runtime to

determine the optimal loop-blocking structure, timing only

commences after auto-tuning has finished. The reported op-

erational intensity benefits from the use of expression trans-

formations, as described in Sect. 3; particularly relevant for

this problem is the factorization of FD weights.

We observe that the time to solution increases nearly lin-

early with the size of the domain. For example, for a 16th-

order discretization, we have a 17.1s runtime for a 512 ×

512×512 domain and a 162.6s runtime for a 1024×1024×

1024 domain (a domain 8 times bigger and about 9 times

slower). This is not surprising: the computation lies in the

memory-bound regime and the working sets never fit in the

L3 cache. We also note a drop in performance with a 16th-

order discretization (relative to both the other space orders

and the attainable peak), especially when using larger do-

mains (Figs. 23 and 24). Our hypothesis, supported by pro-

filing with Intel VTune (Intel Corporation, 2016), is that this

is due to inefficient memory usage, in particular misaligned

data accesses. Our plan to improve the performance in this

regime consists of resorting to a specialized stencil optimizer

such as YASK (see Sect. 7). These results show that we have

a portable framework that achieves good performance on dif-

ferent architectures. There is small room for improvements,

as the machine peak is still relatively distant, but 50 %–60 %

of the attainable peak is usually considered very good. Fi-

nally, we remark that testing on new architectures will only

require extensions to the Devito compiler, if any, while the

application code remains unchanged.

7 Future work

A key motivation for developing an embedded DSL such

as Devito is to enable quicker development, simpler mainte-

nance, and better portability and performance of solvers. The

other benefit of this approach is that HPC developer effort

can be focused on developing the compiler technology that

is reapplied to a wide range of problems. This software reuse

is fundamental to keeping the pace of technological evolu-

tion. For example, one of the current projects in Devito re-

gards the integration of YASK (Yount, 2015), a lower-level

stencil optimizer conceived by Intel for Intel architectures.
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Adding specialized back ends such as YASK – meaning that

Devito can generate and compile YASK code, rather than

pure C/C++ – is the key for long-term performance porta-

bility, one of the goals that we are pursuing. Another mo-

tivation is to enable large-scale computations and as many

different types of PDEs as possible. In practice, this means

that a staggered grid setup with half-node discretization and

domain decomposition will be required. These two main re-

quirements to extend the DSL to a broader community and to

more applications are in full development and will be made

available in future releases.

8 Conclusions

We have introduced a DSL for time–domain simulation for

inversion and its application to a seismic inverse problem

based on the finite-difference method. Using the Devito DSL,

a highly optimized and parallel finite-difference solver can

be implemented within just a few lines of Python code. Al-

though the current application focuses on features required

for seismic imaging applications, Devito can already be used

in problems based on other equations; a series of CFD exam-

ples is included in the code repository.

The code traditionally used to solve such problems is

highly complex. The primary reason for this is that the com-

plexity introduced by the mathematics is interleaved with

the complexity introduced by the performance engineering

of the code to make it useful for practical purposes. By in-

troducing a separation of concerns, these aspects are decou-

pled and simplified. Devito successfully achieves this decou-

pling while delivering good computational performance and

maintaining generality, both of which shall continue to be

improved in future versions.

Code availability. The asset https://doi.org/10.5281/zenodo.1038305

(Louboutin et al., 2017c) is the official DOI for the release of

Devito 3.1.0. The source code, examples, and test script are avail-

able on GitHub at https://github.com/opesci/devito (last access:

24 March 2019) and contain a README for installation. A more

detailed overview of the project, with a list of publication and

documentation for the software generated with Sphinx, is available

at http://www.devitoproject.org/ (last access: 24 March 2019). To

install Devito:

git clone -b v3.1.0

https://github.com/opesci/devito

cd devito

conda env create -f environment.yml

source activate devito

pip install -e .
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