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Abstract

In this paper, we focus on complex event detection in
internet videos while also providing the key evidences of the
detection results. Convolutional Neural Networks (CNNs)
have achieved promising performance in image classifica-
tion and action recognition tasks. However, it remains an
open problem how to use CNNs for video event detection
and recounting, mainly due to the complexity and diversity
of video events. In this work, we propose a flexible deep
CNN infrastructure, namely Deep Event Network (DevNet),
that simultaneously detects pre-defined events and provides
key spatial-temporal evidences. Taking key frames of videos
as input, we first detect the event of interest at the video lev-
el by aggregating the CNN features of the key frames. The
pieces of evidences which recount the detection results, are
also automatically localized, both temporally and spatial-
ly. The challenge is that we only have video level label-
s, while the key evidences usually take place at the frame
levels. Based on the intrinsic property of CNNs, we first
generate a spatial-temporal saliency map by back passing
through DevNet, which then can be used to find the key
frames which are most indicative to the event, as well as
to localize the specific spatial position, usually an object, in
the frame of the highly indicative area. Experiments on the
large scale TRECVID 2014 MEDTest dataset demonstrate
the promising performance of our method, both for event
detection and evidence recounting.

1. Introduction

Detecting complex events in videos is a challenging
task which has received significant research attention in the

∗The first two authors contribute equally to this work.
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Figure 1. Given a video for testing, DevNet not only provides an
event label but also spatial-temporal key evidences.

computer vision community. Compared to atomic concept
recognition, which mainly focuses on recognizing particu-
lar objects and scene in still images or simple motions in
short video clips of 5-10 seconds, multimedia event detec-
tion deals with more complex videos that consist of various
interactions of human actions and objects in different scenes
often lasting for several minutes to even an hour. Thus, an
event is a semantic abstraction of video sequences of higher
level than a concept and often consists of multiple concepts.
For example, a “Town hall meeting” event can be described
by multiple objects (e.g., persons, podium), a scene (e.g.,
in a conference room), actions (e.g., talking, meeting) and
acoustic concepts (e.g., speech, clapping). Besides the con-
cern of detecting semantic events, in many situations just
assigning a video an event label is not enough, as discussed
in [35, 34, 25, 45], because a long unconstrained video
may contain a lot of irrelevant information and even the
same event label may contain large intra-class variation-
s. Besides providing a single event label, many users also
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want to know why the video is recognized as this event,
namely the key evidences that lead to the detection deci-
sion. This process is called Multimedia Event Recounting
(MER). If event detection answers the question “Is this the
desired event?”, event recounting answers the next ques-
tion, “Why does this video contain the desired event?”. The
key step of event recounting is localizing the key evidences,
referred to here as evidence recounting, which is the focus
of this paper. The recounting result is category-specific. It
is unlike traditional video summarization tasks [24, 27, 12],
which mainly seek to reduce the redundancy of the videos.
As a result, the localized key evidences could effectively
summarize the videos, and then allow the users to browse
the videos and grasp the important parts quickly.

Although many algorithms have been proposed for the
event detection and recounting problems recently, the chal-
lenges have not been fully addressed. The most success-
ful methods for event detection are still aggregating shallow
hand-crafted visual features, e.g., SIFT [26], MOSIFT [4],
trajectory [37], improved dense trajectory [38], followed by
feature pooling and a conventional classifier, such as Sup-
port Vector Machine (SVM) [2] or Kernel Ridge Regres-
sion (KR) [36]. However, such shallow features and event
detection pipeline cannot capture the high complexity and
variability of unconstrained videos. For recounting, most of
the previous works focus on generating temporal-level key
evidences (informative key frames or shots). However, this
is still far from satisfactory because even within one frame,
the scene and objects may be cluttered and non-informative.
As the example in Figure 1 shows, the spatial localized bike
wheel may suggest that this video is an “Attempting a bike
trick” event, while the background window does not. There-
fore, we decide to take it a step further, not only to local-
ize the temporal evidences but also the spatial evidences.
However, simultaneously assigning the retrieved video an
event label and providing spatial-temporal key evidences is
a non-trivial task due to the following reasons. First, differ-
ent video sequences of the same event may have dramatic
variations. Taking the “Winning a race without vehicle”
event as an example, it may take place in a stadium, in a
swimming pool or even in an urban park, where the visual
features could be very different. Therefore, we can hardly
utilize the rigid templates or rules to localize the key evi-
dences. Second, the cost of collection and annotation of
spatial-temporal key evidences is generally extremely high.
It is prohibitive to extend the traditional fully-supervised
object localization approaches for images, which employ
the ground-truth bounding box information for training, to
the video event recounting task directly.

In contrast to hand-crafted features, learning features
with Convolutional Neural Networks (CNNs) [17], has
shown great potentials in various computer vision tasks giv-
ing state-of-the-art performance in image recognition [17,

11, 3, 13, 40, 39] and promising results in action recogni-
tion [16, 32]. The successes of CNNs also shed light on
the multimedia event detection and recounting problems.
However, whether and how the CNN architecture could be
exploited for the video event detection and recounting prob-
lems has never been studied before. This motivates us to
apply CNNs to detecting and recounting event videos.

In this paper, we propose a Deep Event Network
(DevNet) that can simultaneously detect high-level events
and localize spatial-temporal key evidences. To reduce
the influence of limited training data, we first pre-train
the DevNet using the largest image dataset to date, Ima-
geNet [7], and then transfer the image-level features and
train a new video-level event detector by fine-tuning the net-
work. Next, we exploit the intrinsic property of CNNs to
generate a spatial-temporal saliency map without resorting
to additional training steps. We only need to rank the salien-
cy scores on the key frame level to localize the informa-
tive temporal evidences. For the top ranked key frames, we
apply the graph-cut algorithm [1] to the segmentation of dis-
criminative regions as the spatial key evidences. Note that
the localization process only utilizes the video-level event
label without requiring the annotations of key frames and
bounding boxes. Our work makes the following contribu-
tions:

• To the best of our knowledge, we are the first to
conduct high-level video event detection and spatial-
temporal key evidence localization based on CNNs.
• This is the first paper that attempts to not only localize

temporal key evidences (informative key frames and
shots), but also provide discriminative spatial regions
for evidence recounting.
• We show that our framework significantly outperforms

state-of-the-art hand-crafted shallow features on event
detection tasks and achieves satisfactory results for
localizing spatial-temporal key evidences, which con-
firm the importance of representation learning for the
event detection and evidence recounting tasks.

The rest of this paper is organized as follows. In Sec-
tion 2, we review related work in multimedia event detec-
tion, multimedia event recounting and CNNs. Section 3
presents the DevNet and in particular details on how it can
be applied to multimedia event detection and recounting.
The experimental settings and evaluation results are pre-
sented in Section 4. Section 5 concludes the paper.

2. Related Work

Our framework relates to three research directions: event
detection, event recounting, and CNNs, which will be
briefly reviewed in this section.
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2.1. Event Detection

Complex event detection has attracted a lot of research
interest in the past decade. A recent review can be found
in [15]. A video event detection system usually consists
of the following procedure: feature extraction, quantiza-
tion/pooling, and classifier training. Many event detec-
tion approaches rely on shallow low-level features such
as SIFT [26] for static key frames, and STIP [20] and
MOSIFT [4] for videos. Recently, state-of-the-art shal-
low video representation makes use of dense point trajec-
tories [37, 38]. Its feature vectors are obtained by track-
ing densely sampled points and describing the volume
around tracklets by histograms of optical flow (HOF) [21],
histograms of oriented gradients (HOG) [5], and motion
boundary histograms (MBH) [6]. To aggregate video-level
features, it then applies Fisher vector coding [29] on the
shallow low-level features. Moreover, there are also sev-
eral attempts to conduct few-shots [44, 28] and even zero-
shot [42, 10] event detection.

2.2. Event Recounting

Multimedia event recounting aims to find the event-
specific discriminative parts of video. Most existing
approaches focus on the temporal domain. In [34, 25, 45,
30], they apply object and action detectors or low-level
visual features to localize temporal key evidences. They
train a video-level classifier and then use it to rank the key
frames or shots. These approaches are based on the assump-
tion that the video-level classifiers that can distinguish pos-
itive and negative exemplars can also be used to distinguish
the informative shots. However, these approaches equally
treat the shots or key frames within the video. Consequent-
ly, the classifier may be confused by the ubiquitous but non-
informative shots from videos. To overcome these limita-
tions, [18] and [19] formulated the problem as a multiple-
instance learning problem, aiming at learning an instance-
level event detection and recounting model by selecting the
informative shots or key fames during the training process.
However, these approaches could only localize temporal
key evidences.

2.3. Convolutional Neural Networks

Deep learning tries to model high-level abstraction of
data by using model architectures composed of multiple
nonlinear transformations. Specifically, CNNs [23] cor-
respond to a biologically-inspired class of deep learning
models that have demonstrated extraordinary abilities for
some high-level vision tasks, such as image classifica-
tion [17], object detection [11], and scene labeling [9].
Moreover, the features learned by large networks trained on
the ImageNet dataset [7] show great generalization abili-
ty that yields state-of-the-art performance beyond standard

image classification tasks, e.g., on several action recogni-
tion datasets [16, 32]. Besides, the problem of understand-
ing and visualizing deep CNNs [47, 22, 8] has also attract-
ed a lot of research attention. Very recently, [31, 47] pro-
posed to localize the objects in images in a weakly super-
vised manner without relying on bounding box annotations.
Compared to still image data and shot action videos, there is
relatively little work on applying CNNs to multimedia event
detection and recounting tasks. This motivates us to exploit
the powerful features learned by CNNs to solve these prob-
lems.

3. DevNet Framework
In the proposed DevNet, the CNN architecture is similar

to the network described in [17] except that it is much deep-
er. The CNN contains nine convolutional layers and three
fully-connected layers. Between these two parts, a spatial
pyramid pooling layer [13] is adopted. Consequently, with-
out sufficient training data, it is very difficult to obtain an
effective DevNet model for event detection. Thus, we first
use the large ImageNet dataset [7] to pre-train the CNN for
parameter initialization. The goal of this pre-training stage
is to learn generic image-level features. However, directly
using the parameters obtained from training on ImageNet
for video event detection is not a proper choice, due to
the domain difference between multimedia event detection
and image classification. Thus we apply dataset-specific
fine-tuning [3, 11, 41, 32] to adjust the parameters. After
fine-tuning the parameters of the DevNet, we apply a sin-
gle backward pass to identify the pixels in the same video
with strong responses as spatial-temporal key evidences for
event recounting. The DevNet framework is depicted in
Figure 2.

3.1. DevNet Pre-training

Our experiments start with a deep CNN trained on the
ILSVRC-2014 dataset [16] which includes 1.2M training
images categorized into 1000 classes. The structure of our
CNN is shown in Figure 2. It is implemented using the
Caffe [14] toolbox. Given a training image, we first resize
its shorter edge to 256 pixels. Then, we randomly extract
fixed-size 224× 224 patches from the resized images
and train our network with these extracted patches. Each
extracted patch is pre-processed by image mean subtrac-
tion, random illumination and contrast augmentation [33].
As described in [17], the output of the last fully-connected
layer is fed into a 1000-way softmax layer with the multi-
nomial logistic regression used to define the loss function,
which is equivalent to defining a probability distribution
over the 1000 classes. For all layers, we use Rectified Lin-
ear Units (ReLU) [17] as the nonlinear activation function.
We train the network by using stochastic gradient descent
with a momentum of 0.9 and weight decay of 0.0005. To
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Figure 2. An illustration of the infrastructure of DevNet. We first pre-trained the DevNet using the ImageNet, and then fine-tuning on the
MED video dataset.

overcome over-fitting, the first two fully-connected layers
are followed by a dropout layer with a dropout rate of 0.5.
The learning rate is initialized to 0.01 for all layers and
is reduced to one-tenth of the current rate after every 20
epochs (80 epochs in all). Our weight layer configuration
is: conv64-conv192-conv384-conv384-conv384-conv384-
conv384-conv384-conv384-full4096-full4096-full1000.
On ILSVRC2014 [7] validation set, the network achieves
the top-1/top-5 classification error of 29.7%/10.5%.

3.2. DevNet Fine-tuning

Inspired by the recent success of domain-specific fine-
tuning [11, 3, 41], we also utilize the training video data in
the MED dataset as target data to further adjust the parame-
ters. This is to adapt the model pre-trained on the ImageNet
dataset to the video event detection task. The steps of video-
level fine-tuning are described as follows.

First, we remove the softmax classifier and the last fully
connected layer of the pre-trained network since it is spe-
cific to the ImageNet classification task. Next, to aggre-
gate image-level features into the video-level representa-
tion, cross-image max-pooling is applied to fuse the outputs
of the second fully-connected layer from all the key frames
within the same video. Let st = (s1t, ..., snt)

T ∈ Rn be the
feature vector of key frame t and f = (f1, ..., fn)

T ∈ Rn

be the video-level feature vector. Then the ith dimension of
the video-level feature vector f can be represented as:

fi = max
t
sit. (1)

Considering that the evaluation of event detection tasks

is based on ranking, there is no inter-event competition
and so we replace the softmax loss with a more appropri-
ate c-way independent logistic regression, which produces
a detection score for each event class. Here c denotes the
number of event classes. To handle the imbalance of posi-
tive and negative exemplars, we randomly sample them in a
1:1 ratio during the fine-tuning process.

Implementation details. Similar to the approach
described in [46], we sample several key frames from each
video and then follow the same preprocessing and data aug-
mentation steps as in the pre-training stage. Furthermore, as
inspired by the experience of [11, 3], we use different learn-
ing rates for different layers. The learning rates of the con-
volutional layers, the first two fully-connected layers and
the last fully-connected layer are initialized to 0.001, 0.001
and 0.01, respectively. We fine-tune for 30 epochs in total
and decrease the learning rate to one-tenth of the current
rate of each layer after 10 epochs.

After fine-tuning, we use the video-level representation
after cross-image max-pooling (i.e., f in Eq. (1), the last
fully connected layer) as the features for the event detection
task.

3.3. Gradient-based Spatial-temporal Saliency Map

In this section, we extend a previous method [31] which
generates class saliency maps for images to the video
domain. The main idea of our event recounting approach is
that, given a learned detection DevNet and a class of inter-
est, we trace back to the original input image by a backward
pass with which we can find how each pixel affects the final
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detection score for the specified event class.
Let us start with a motivational example. For a video

V , we represent it as X ∈ Rp×q×n, where p and q denote
the height and width of each frame and n is the number of
frames. We consider a simple case in which the detection
score of event class c is linear with respect to the video, i.e.

Sc(V ) = wT
c x+ bc, (2)

where x ∈ Rpqn×1 is a vectorized form of the video V ,
and wc ∈ Rpqn×1 and bc are the weight vector and bias
of the model. In this case, it is easy to see that the magni-
tude of the elements of wc specifies the importance of the
corresponding pixels of V for class c.

In the case of a deep CNN, however, the class score
Sc(V ) is a highly nonlinear function of V , so the assump-
tion and analysis in the previous paragraph cannot be
applied directly. However, we can approximate Sc(V ) by
a first-order Taylor expansion expanding at V0, where

Sc(V ) ≈ wT
c x+ b, (3)

with the derivative of Sc(V ) with respect to V at point V0
as:

wc =
∂Sc

∂V

∣∣∣∣
V0

. (4)

The magnitude of the derivative of Eq. (4) indicates which
pixels within the video need to be changed the least to affect
the class score the most. We can expect that such pixels are
the spatial-temporal key evidences to detect this event.

Given a video that belongs to event class c with k key
frames of size p × q, the spatial and temporal key evi-
dences are computed as follows. First, the derivative wc in
Eq. (4) is found by back-propagation. After that, the salien-
cy map is obtained by rearranging the elements of vector
wc. In the case of a gray scale image, the number of ele-
ments in wc is equal to the number of pixels in each frame
multiplied by the number of key frames. So the saliency
score of each pixel in each key frame can be computed as
M(i, j, k) = |wc(h(i, j, k))|, where h(i, j, k) is the index
of the element of wc corresponding to the image pixel in the
ith row and jth column of the kth key frame. In the case of
a multi-channel (e.g. RGB) image, we take the maximum
magnitude of wc across all color channels of each pixel as
the saliency value. Thus for each event class, we can derive
a single class-specific saliency score for each pixel in the
video.

It is important to note that our spatial-temporal saliency
maps M ∈ Rp×q×n are extracted using the DevNet trained
on the video-level label and hence no additional annotation
(such as informative key frames and bounding boxes) is
required. The computation of saliency maps is extremely
fast since it only requires a single backward pass without
additional training.

After obtaining the spatial-temporal saliency map, we
average the saliency scores of all the pixels within a key
frame to obtain a key-frame level saliency score, and then
we rank the key-frame level saliency scores to obtain the
informative key frame. For the top ranked key frames, we
use the saliency scores as guidance and apply the graph-cut
algorithm [1] to segment the spatial salient regions.

4. Experiments
We present the dataset, experimental settings, evaluation

criteria and experimental results in this section.

4.1. Evaluation Dataset

We perform our experiments on the challenging NIST
TRECVID 2014 Multimedia Event Detection dataset ∗. To
the best of our knowledge, it is the largest publicly avail-
able video corpora in the literature for event detection and
recounting. This dataset contains unconstrained web videos
with large variation in length, quality and resolution. In
addition, it also comes with ground-truth video-level anno-
tations for 20 event categories. Following the 100EX evalu-
ation procedure outlined by the NIST TRECVID detection
task, we used three different partitions for evaluation: Back-
ground, which contains about 5000 background videos not
belonging to any of the target events, and 100EX, which
contains 100 positive videos for each event, are used as the
training set. MEDTest, which contains 23,954 videos, is
used as the test set.

4.2. Event Detection Protocol

The event detection task is to rank the videos in the
database according to the specific query. We may also
regard it as a video retrieval task. Our event detection
approach consists of the following consecutive steps:

1. Extracting key frames. As processing all MED video
frames will be computationally expensive, we only
extract features from the key frames. Thus we start
with detecting the shot boundaries by calculating the
color histograms for all the frames. For each frame,
we then subtract the previous color histogram from
the current one. If the absolute value of the differ-
ence is larger than a certain threshold, this key frame
is marked as a shot boundary [46]. After detecting
the shot, we use the frame in the middle to represent
that shot. By using this algorithm, we extracted about
1.2 million key frames from the TRECVID MED 2014
dataset.

2. Extracting features. We use the features of the last
fully-connected layer after cross-frame max-pooling
for video representation. We then normalize the fea-
tures to make the l2 norm of the feature vector equal

∗http://nist.gov/itl/iad/mig/med14.cfm
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to 1. More details are presented in Section 3.2.
3. Training event classifier. Due to limited training

data in the video level, directly using the classifier in
DevNet will result in inferior performance. Support
vector machines (SVMs) [2] and kernel ridge regres-
sion (KR) [36] with χ2 kernel are used. We obtain the
regularization parameters by 5-fold cross validation.

4. Testing event classifier. We apply the trained event
classifier on MEDTest and rank the videos by their
detection results.

4.3. Event Detection Results

We use two evaluation metrics for ranked lists which
are used by the NIST: Minimal Normalized Detection Cost
(MinNDC) and Average Precision (AP) for each event. The
definition of MinNDC is:

MinNDC =
CMD × PMD × PT + CFA × PFA × (1− PT )

min(CMD × PT , CMD × (1− PT ))
.

(5)
Here PMD is the miss detection probability and PFA is the
false positive rate. CMD = 80 is the cost for miss detection,
CFA = 1 is the cost for false alarm, and PT = 0.001 is a
constant which specifies the prior rate of event instances.
Average Precision (AP) is a common metric for evaluation
of ranking list. We also use the mean Average Precision
(mAP) to evaluate the results by averaging all the events.
A lower MinNDC or a higher AP and mAP value indicates
better detection performance.

We compare our method with state-of-the-art hand-
crafted features, improved dense trajectory with Fisher vec-
tor (IDTFV) for the event detection. We adopt the software
of improved trajectories provided by Heng et al. [38] to
extract raw trajectory features for each video in the MED14
dataset with default parameters, that is, frames of length 15
for each trajectory on a dense grid with 5-pixel spacing. We
use PCA to reduce the dimensionality of the raw trajectory
features from 426 to 213. Then we aggregate the features
for each video using a Fisher vector [29] with 256 Gaus-
sians, resulting in a 109,056-dimensional vector. We also
follow the suggestions to apply power normalization and l2
normalization to the feature vectors.

Table 1 reports experimental results making comparison
with state-of-the-art shallow features with a single modal-
ity. From the results, we can see that the proposed CNN-
based DevNet has 5.86% improvements in terms of mean
Average Precision (mAP) compared with the state-of-the-
art IDTFV shallow features by averaging over all events,
which validates the effectiveness of the learned representa-
tion by DevNet approach.

4.4. Evidence Recounting Protocol

The goal of multimedia event evidence recounting is to
give spatial-temporal key evidences for the videos detected
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Figure 3. Comparison in terms of evidence quality against recount-
ing percentage.

Table 2. Event recounting results comparing with the baseline
approach. T means temporal key evidences and S means spatial
key evidences.

ID Baseline(T) DevNet(T) Baseline(S) DevNet(S)
E021 3 7 1 9
E022 4 6 1 9
E023 1 9 0 10
E024 3 7 3 7
E025 5 5 3 7
E026 3 7 1 9
E027 6 4 0 10
E028 4 6 0 10
E029 5 5 5 5
E030 4 6 0 10
E031 5 5 0 10
E032 2 8 3 7
E033 3 7 0 10
E034 3 7 2 8
E035 4 6 3 7
E036 5 5 4 6
E037 2 8 2 8
E038 4 6 0 10
E039 3 7 4 6
E040 3 7 3 7

Average 3.6 6.4 1.75 8.25

as positive. Our event recounting approach consists of the
following steps:

1. Extracting key frames. It is the same as that for the
event detection task.

2. Spatial-temporal saliency map. Given the event label
we are interested in, we perform a backward pass
based on the DevNet model to assign to each pixel in
the testing video a saliency score. The higher score
a pixel gets, the more likely it contributes to the key
evidence. More details can be found in Section 3.3.

3. Selecting informative key frames. For each key
frame, we compute the average of the saliency scores
of all pixels and use it as the key-frame level saliency
score. A higher score indicates that the key frame is
more discriminative. We use the key frames with the
N highest scores as temporal key evidences.

4. Segmenting discriminative regions. We use the spa-
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Table 1. Event detection results comparing with improved dense trajectory Fisher vector (IDTFV). LOWER MinNDC / HIGHER AP
indicates BETTER performance. The best results are highlighted in bold .

Event Description ID Evaluation Metric IDTFV (SVM) IDTFV (KR) DevNet (SVM) DevNet (KR)

Attempting a bike trick E021
AP

MinNDC
0.1131
0.1684

0.0986
0.2984

0.2887
0.2413

0.2741
0.2293

Cleaning an appliance E022
AP

MinNDC
0.2406
0.553

0.2190
0.5783

0.2449
0.4270

0.1998
0.4251

Dog show E023
AP

MinNDC
0.6554
0.2695

0.6609
0.1705

0.7251
0.0423

0.7504
0.0537

Giving directions to a location E024
AP

MinNDC
0.0898
0.8294

0.0542
0.8164

0.1059
0.6532

0.1022
0.6510

Marriage proposal E025
AP

MinNDC
0.1187
0.8290

0.1349
0.8244

0.0782
0.8626

0.0481
0.8725

Renovating a home E026
AP

MinNDC
0.1400
0.7053

0.1683
0.7026

0.1880
0.5647

0.1911
0.5313

Rock climbing E027
AP

MinNDC
0.2258
0.3691

0.2034
0.3931

0.2272
0.3706

0.2230
0.3529

Town hall meeting E028
AP

MinNDC
0.4024
0.4180

0.3474
0.4023

0.4286
0.3805

0.3831
0.3554

Winning a race without a vehicle E029
AP

MinNDC
0.2162
0.3024

0.2346
0.2946

0.2486
0.2637

0.2463
0.2658

Working on a metal crafts project E030
AP

MinNDC
0.2145
0.6900

0.1985
0.5881

0.1606
0.5248

0.2063
0.5165

Beekeeping E031
AP

MinNDC
0.6313
0.2693

0.6790
0.1935

0.8238
0.0817

0.8041
0.0634

Wedding shower E032
AP

MinNDC
0.2140
0.4847

0.1588
0.5335

0.2716
0.3563

0.3149
0.4465

Non-motorized vehicle repair E033
AP

MinNDC
0.3489
0.4497

0.3645
0.3708

0.5787
0.2306

0.6354
0.2316

Fixing musical instrument E034
AP

MinNDC
0.2091
0.3458

0.2727
0.3494

0.4453
0.2365

0.4633
0.2475

Horse riding competition E035
AP

MinNDC
0.3526
0.3164

0.3851
0.2768

0.3943
0.2606

0.4409
0.2820

Felling a tree E036
AP

MinNDC
0.1947
0.4552

0.2611
0.3399

0.2271
0.4193

0.1979
0.4331

Parking a vehicle E037
AP

MinNDC
0.2633
0.5537

0.2848
0.5337

0.3337
0.1455

0.3735
0.1314

Playing fetch E038
AP

MinNDC
0.0676
0.5198

0.0731
0.4972

0.1093
0.5411

0.1115
0.5584

Tailgating E039
AP

MinNDC
0.4648
0.3354

0.4529
0.3464

0.4035
0.3235

0.3929
0.3339

Tuning musical instrument E040
AP

MinNDC
0.2283
0.4834

0.2347
0.4768

0.2937
0.4486

0.2982
0.4186

Average
AP

MinNDC
0.2696
0.4674

0.2743
0.4493

0.3288
0.3687

0.3329
0.3699

tial saliency maps of the selected key frames for ini-
tialization and apply graph-cut [1] to segment the dis-
criminative regions as spatial key evidences.

For the temporal key evidence localization task, we com-
pare our results with a state-of-the-art approach [35], which
won the first place in the NIST TRECVID 2013 MER task.
To the best of our knowledge, we are the first to deal with
spatial key evidence localization and hence there exist no
algorithms for comparison. Thus, we compare with the
unsupervised salient object detection approach [48] in the
selected key frames to generate spatial key evidences.

4.5. Evidence Recounting Result

Evaluation of video recounting results is difficult
because no ground-truth information is available. Thus we

conducted an experiment based on human evaluation. Two
criteria were used: evidence quality, which measures how
well the localized key evidences can convince the judge that
a specific event occurs in the video; and recounting per-
cent, which measures how compact the video snippets are
compared to the whole video. A few volunteers were asked
to serve as evaluators. Before evaluation, each evaluator
was shown the event category descriptions in text as well as
10 positive examples in the training set. For each event, we
used all the positive videos from MEDTest for evaluation.

During the evaluation process, the evaluators were first
shown 1, 5, 10, 25, 50, 75 and 100 percents of the test
videos separately. They voted on whether the key frames
shown could convince them that it is a positive exemplar.
We show the comparison results by plotting the evidence
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Dog show Dog show Dog show Wedding shower Wedding shower Wedding shower

Playing fetch Playing fetch Playing fetch Horse riding Horse riding Horse riding

Parking a vehicle Parking a vehicle Parking a vehicle Renovating a home Renovating a home Renovating a home
Figure 4. Event recounting results generated by DevNet. From left to right are top one temporal key evidence, spatial saliency map, and
spatial key evidence.

quality (percentage of test videos convinced as positive
exemplars) against the recounting percentage in Figure 3.
Then the evaluators were presented the temporal key evi-
dences (key frames) generated by [35] and DevNet with
fixed recounting percentage (5%) and the spatial key evi-
dences generated by [48] and DevNet. They voted on which
key evidences are more informative. The voting results are
shown in Table 2.

From Figure 3, we can see that DevNet can reduce the
recounting percentage by 15% to 25% to get the same evi-
dence quality as the baseline method. This validates that
our approach provides reasonably good evidences for users
to rapidly and accurately grasp the basic ideas of the video
events. Table 2 summarizes the evaluators’ preferences
between our approach and the approach compared for each
event. It can be seen that DevNet is better for most of the
events. Some visual results are also shown in Figure 4.

5. Conclusion
In this paper, we presented a novel DevNet framework to

address the video event detection and evidence recounting
problems. Based on the proposed DevNet, the CNN pre-
trained on large-scale image datasets, e.g, ImageNet, can
be successfully transferred to the video domain. In addi-
tion, we apply a single back pass on DevNet (no addition-
al annotations are required) to localize the spatial-temporal
key evidences for the event recounting. We evaluate our
experiment results on the challenging TRECVID MED

2014 dataset, and achieve a significant improvement than
the state-of-the-art hand-crafted shallow features on the
event detection task and satisfying event recounting result-
s. We believe the event detection results could be further
improved by the better model initialization and effective
feature encoding [43]. In future work, we will add the
motion information into the DevNet and also extend this
method to generate tag descriptions for the spatial-temporal
key evidences.
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