
PII: SOOlO-4485(97)00082-l

Computer-Aided Design, Vol. 30, No. 5, pp. 333441, 1998

0 1998 Published by Elsevier Science Ltd. All rights resewed

Printed in Great Britain

0010-4485/98/$19.00+0.M)

ELSEVIER

DeWall: A fast divide and
conquer Delaunay triangulation
algorithm in Ed

P Cignonit, C Montanit and R Scopigno*

The paper deals with Delaunay Triangulations (DT) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd space.

This classic computational geometry problem is studied from the

point of view of the efficiency, extendibility to any dimensionality,

and ease of implementation. A new solution to DT is proposed,

based on an original interpretation of the well-known Divide and

Conquer paradigm. One of the main characteristics of this new

algorithm is its generality: it can be simply extended to triangulate

point sets in any dimension. The technique adopted is very efficient

and presents a subquadratic behaviour in real applications in E’,

although its computational complexity does not improve the

theoretical bounds reported in the literature. An evaluation of the

performance on a number of datasets is reported, together with a

comparison with other DT algorithms. 0 1998 Published by

Elsevier Science Ltd. All rights reserved.

Keywords: Delaunay triangulation, divide and conquer,

uniform grids

INTRODUCTION

Triangulation is one of the main topics in computational

geometry and it is commonly used in a large set of

applications, such as computer graphics, scientific visuali-

zation, robotics, computer vision and image synthesis, as

well as in mathematical and natural science. Given a point

set P, the Delaunay Triangulation (DT) is a particular

triangulation, built on the points in P, which satisfy the

empty circum-circle property: the circum-circle (-sphere in

E3 or -hypersphere in Ed) of each simplicial cell in the

triangulation does not contain any input point p E P. Man

a$orithms were proposed for the DT of a set of si$s in E
r
,

E or Ed, and most of them are reviewed in Ref. ’ .

Unfortunately there has been little research into imple-

mentations and performance evaluations of Delaunay trian-

gulators. Few papers report evaluations of real

‘To whom correspondence should be addressed at: CNUCE-Consiglio

Nazionale delle Ricerche, Via S. Maria 36, 56126, Pisa, Italy. Tel: +39

50 593304; E-mail: r.scopigno@cnuce.cnr.it

tI.E.1. - Consiglio Nazionale delle Ricerche, Via S. Maria 46, 56126 Pisa,

ldY
Paper Received: 9 August 1996. Revised: 25 October 1997. Accepted: 25

October 1997

implementations or give experimental comparisons of dif-

ferent algorithms. Worst case time complexities are gener-

ally given, but such analyses, from the point of view of the

application programmer, are not always sufficient to make

the correct decisions. In fact, theoretically better algorithms

can sometimes be outperformed by more naive methods; the

theoretical asymptotic worst case complexity sometimes

fails to consider the optimization techniques that can be

applied to reduce the expected complexity.

A new divide and conquer DT algorithm is proposed in

this paper. The algorithm gives a general and simple solu-

tion to DT in Ed space and makes use of accelerating tech-

niques which are specific to computer graphics.

The paper is organized as follows: definitions and a tax-

onomy of Delaunay triangulation algorithms are presented

in the second section. The proposed algorithm is described

in detail in the third section, together with some optimiza-

tion techniques. The performances of the proposed solution

are evaluated on a number of datasets and compared with

other solutions in the penultimate section. Conclusions are

drawn in the last section.

DELAUNAY TRIANGULATION

Given a point set P in Ed, a k-simplex, with k 5 d, is defined

as the convex combination of k + 1 affinely independent

points in P, called vertices of the simplex (e.g. a triangle is a

2-simplex and a tetrahedron is a 3-simplex). An s-Face of a

simplex is the convex combination of a subset of s + 1

vertices of the simplex (i.e. a 2-face is a triangular facet, l-

face is an edge, O-face is a vertex).

A triangulation C defined on a point set P in Ed space is

the set of d-simplices such that:

(1) a point p in Ed is a vertex of a simplex u in Z if p E P;

(2) the intersection of two simplices in 1 is either empty or

a common face;

(3) the set X is maximal: there does not exist any simplex u

that can be added to C without violating the previous rules.

A triangulation C is a Delaunay Triangulation if the

hypersphere circumscribing each simplex does not contain

any point of the set P3*4. The Delaunay triangulation of a

given point set P is unique if these do not exist in P d + 2

points lying on the same hypersphere. Such cases, also

known as degeneracies, can be managed by using local

perturbation schemes 5.

333

A fast divide and conquer Delaunay triangulation algorithm in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE’: P Cignoni et al.

Figure 1 Merging of two partial DT in E’ space

The duality between DTs and Voronoi diagrams is well

known4 and therefore algorithms are given for the construc-

tion of DT from Voronoi diagrams. However, direct con-

struction methods are generally more efficient because the

Voronoi diagram does not need to be computed and stored.

Direct DT algorithms ’ can be classified as follows:

local improvement-starting with an arbitrary triangu-

lation, these algorithms locally modify the faces of pairs

of adjacent simplices according to the circum-sphere

criterion;

on-line (or incremental insertion)-starting with a

simplex which contains the convex hull of the point

set, these algorithms insert the points in P one at a

time: the simplex containing the currently added point

is partitioned by inserting it as a new vertex. The circum-

sphere criterion is tested on all the simplices adjacent to

the new ones, recursively, and, if necessary, their faces

are flipped;

incremental construction-the DT is constructed by

successively building simplices whose circum-

hyperspheres contain no points in P;

higher dimensional embedding-these algorithms trans-

form the points into the Edi’ space and then compute the

convex hull of the transformed points; the DT is

obtained by simply projecting the convex hull into Ed;

for a comparison of the different approaches see63

divide and conquer (D&C)-this is based on the recur-

sive partition and local triangulation of the point set, and

then on a merging phase where the resulting triangula-

tions are joined. Current algorithms are not generalized

to Ed space, but limited to E2 space alone.

On-line methods7.* hold the lower worst case time com-

plexity, O(n log n + Ad’*’). Moreover, these methods in their

naive implementation are simple to

generalized to manage point sets in E
B

rogram and can be

space.

D&C solutions hold in E* the same complexity as on-line

methods, but a general D&C Ed (d > 2) solution has not

been proposed yet. The main problem here is the design of

the merging phase. Because of the explicit ordering of the

edges incident in a vertex (Figure I), the merging phase is

simple in E29, but hard to design in Ed where this ordering is

not given.

The algorithm proposed in this paper by-passes this pro-

blem by reversing the order between the solutions of sub-

problems and the merging phase. The classical D&C algo-

rithms recursively subdivide the input points, construct two

partial DTs and then merge them. Our solution is based on a

more complex division phase, in which the input dataset P is

split into PI and P2, and a section of the DT is immediately

built. This partial triangulation allows the algorithm to

recursively triangulate the two point sets PI and P2, taking

into account the border of the partial triangulation and

avoiding the need for a further merging phase. A “merging”

simplex set is thus built before the subproblems are solved:

we partition the problem solution, instead of its instance.

The partial triangulation can be built very simply using a

constructive rule similar to McLain’s in its incremental con-

struction approach lo. This means we can specify a general

Ed D&C Delaunay triangulator. Its simple structure permits

an efficient implementation using some well known optimi-

zation techniques.

THE DEWALL ALGORITHM

A new algorithm for the DT of a point set P in E” is

presented in this section. The algorithm is based on the

D&C paradigm, but this paradigm is applied in a different

way with respect previous DT algorithms9,“. The general

structure of D&C algorithms is: divide the input data into

subset PI and P2; recursively solve on PI and P2; and merge

the partial results S, and S2 to build solution S.

In the case of triangulations, the input point set P can

easily be divided using a cutting plane such that the two

associated halfspaces contain two point sets PI and P2 of

comparable cardinality. The problem is how to implement

the merging phase, i.e. how to build the union of the two

solutions Sr and S2. This union requires the triangulation of

the space separating S1 and S2, and generally also requires a

number of local modifications to St and S2. As previously

stated, this problem was efficiently solved for the E2

case9,*‘, but not for the general Ed case.

Our approach to D&C is slightly different. Instead of

merging partial results, we apply a more complex dividing

phase which partitions the point set and builds, as first step,

the merging triangulation. The algorithm is then recursively

applied to triangulate the two subsets of the input dataset P.

The splitting plane a separates the point set P into two

subsets P, and P2. Analogously, the splitting plane (Y

divides a triangulation C into three disjoint subsets: the

simplices that are intersected by the plane, which we call

the simplex wall X:,, and the two sets of simplices 2, and C2

that are completely contained in the two halfspaces defined

by (Y (Figure 2). Za can be chosen as a valid merging trian-

gulation: (a) each u E I.a is also in IX and (b) subtracting Ea

from C generates two disconnected simplicial complexes Xl

and IX:.

334

A fast divide and conquer Delaunay triangulation algorithm in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd: P Cignoni et a/.

Function DeWall (P : pointset, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAFL : (d-l)face_list) : d-simplexlist;

var f : (d-1)face; AFL,, AFL1, AFL2 : (d-l)face_list;

t : d-simplex; C : d-simplexlist; a : splittingplane;

begin

AFL,, AFL1 , AFL2 : =emptylist ;

Pointset_Partition(P, a, PI, P2);

/* Simplex Wall Construction */

if AFL = 0 then

t:=HakeFirstSimplex(P, a) ;

AFL:=(d-l)faces(t); Insert(t,C);

for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf E AFL do

if IsIntersectedcf ,cu) then Insert (f , AFL,) ;

if Vertices(f) C PIthen Insert (f , AFLI) ;

if Vertices(f) C Pz then Insert (f , AFL2) ;

while AFL, # 8 do

f : =Extract (AFL,) ;

t : =MakeSimplex (f , P) ;

if t # null then

c:=c u {t};

for each f’: f’ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d- l)faces(t) AND f’# f do

if IsIntersected(f’,a) then Update(f’,AFL,)

if Vertices(f’) C PI then Update(f’,AFLl)

if Vertices(f’) C Pz then Update(f’,AFLz) ;

/* Recursive Triangulation */

if AFL1 #

if AFL2 #

DeYall : =c ;

end ;

Procedure Update

begin ;

8 then C:=C U DeUall(P~,AFL1);

8 then C:=C U DeWall(&,AFL2);

(f

if Member (f , L) then Deletecf, L)

:face, L : face-list)

end ;

else Insert (f , L) ;

Figure 3 DeWall algorithm

current triangulation progress status. As soon as all of the

simplices incident in p were built, p may be removed from P

and it will no longer be tested in the further invocations of

MakeSimplex. The control on the number of incident

simplices was implemented with a counter associated with

each vertex p, increased each time a new face incident in p is

built and decreased for each invocation of MakeSimplex on

an incident face; as soon as the counter returns zero, p may

be deleted from P.

Construction of simplices in C, alone

A slight modification to the canonical incremental

336

construction approach is needed to build only those

simplices intersected by the splitting plane CY. Instead of

using a single list of active faces (AFL), the algorithm uses

three disjoint lists containing:

l AFL,: the (d - 1)-faces intersected by plane a;

l AFL,: the (d - I)-faces with all of the vertices in P,;

l AFL,: the (d - 1)-faces with all of the vertices in P,;

For each simplex O, the algorithm inserts its (d - 1)-faces

in the suitable face list. It then extracts faces (on which the

next simplices will be built) from the AFL, alone; this

ensures that each simplex built is part of the simplex wall ,X:,.

A fast divide and conquer Delaunay triangulation algorithm in Ed: P Cignoni et al.

.
i *

.i

. !
I .

i .

. I .

.

l ;

Lp=

.
i * .

.

.

.

.

*

.

.

.

.

.

.

.
. .

.
.

.
.i .

. ! ,

.i .

. !
, -

.

i . . .
B--_

. :., .,: .:i:i::, ! l

. ! .
. .

.
.

.
i l

. .
.

. .

.
.

.
. .

.
.

Figure 4 Incremental construction of the simplex wall (first steps in a 2D example)

The simplex wall construction process terminates when Uniform grid
AFL, is empty. This process returns both xa and the pair of

active face lists AFL1 and AFL*. DeWall is then recursively

applied to the pairs (P,,AFL,) and (P2,AFL2), unless all the

active face lists are empty. The splitting plane (Y is cyclically

selected as a plane orthogonal to the axes of the Ed space

(X, Y or Z in E3), in order to recursively partition the

space with a regular pattern. Two-dimensional examples

of the simplex wall construction and of the recursive appli-

cation of the algorithm are shown in Figures 4 and 5,

respectively.

The DeWall algorithm is simple and easy to implement

although in its naive implementation the asymptotic time

complexity is not optimal nor is its practical efficiency

good. An analysis of the algorithm shows that the main

inefficiency is in the MakeSimplex function,

Each simplex is constructed from an adjacent simplex

face, by finding the dd-nearest point (i.e. the nearest accord-

ing to the dd metric). This search entails performing an O(n)

test for each simplex, where n is the number of sites in P.

Figure 5 Some steps of the DeWall algorithm on a point set in E2

337

A fast divide and conquer Delaunay triangulation algorithm in Ed: P Cignoni et al.

VG visiting order

RI first

La second

pJ third

Figure 6 On the left, a 2D example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe cell visiting order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMaus (sphere scan conversion) and. on the right, our technique (based on the analysis of all the

UG cells contained in the bounding box of each sphere)

However, the construction of a new simplex in expected edge length) the discretized circumsphere and the circum-

constant time is possible. cube are identical.

The concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal processing is often adopted in com-

puter graphics either to speed up sequential algorithms or to

achieve parallelism. The speed-up technique proposed here

is based on the Ed extension of the uniform grid (UC) 13: for

simplicit
Y?

the use of the UC is described here for the case of

DT in E-, supporting a regular partition of the space into

hexahedral cells:

The choice of the right resolution for the uniform grid

space crucially affects the efficiency of the algorithm. In the

reported implementation, the resolution of the UG is defined

such that the number of cells is equal to the number of sites.

DeWall time complexity

UG= (C,jk); i,j,k E [O..N] (1)

The main reason why uniform grid techniques are effective

in geometric computations is that two points, which are far

apart, generally have little or no effect on each other. A

large class of geometric algorithms possesses this property,

ranging from visibility, to modeling (boolean operations,

intersection detection, etc.) and computational geometry

(point location, triangulation, etc.) 14.

The uniform grid is used as an indexing scheme for the

fast detection of the dd-nearest point. A similar technique

was also used by Fang and Piegl 1 .” to speed up incremental

2D and 3D Delaunay triangulation.

The worst-case time complexity of the DeWall algorithm

may be misleading: neither of the two techniques used

(D&C strategy and Uniform Grid optimization) guarantee

worst case optimality whilst they do offering good

performances in practical situations. It is possible to

define patological datasets which cancel the efficiency of

both the D&C strategy and the UG: if DeWall is applied to

the dataset depicted in Figure 7, the construction of the first

wall originates the entire triangulation (all the simplices in

the triangulation intersect the splitting plane a); analo-

gously, it is possible to choose site distributions that make

the Uniform Grid not useful at all. In these pathological

The space E” is partitioned into cubic cells following a

regular pattern. The UG structure is built in a preprocessing

phase, by computing for each cell Cijk the subset of points in

P contained in cljk.

The MakeSimplex function is designed such that, analo-

gously to Maus’s proposal “, the UG is scanned in order of

increasing distance from f. Given this partial ordering of the

sites, not all the points in P have to be analyzed for each face

f. In fact, given a point p, such that dd(f,p,) = d ,, all the

points which are not contained in the sphere around f and p ,

will certainly have a dd value greater than d,, and it is

pointless to evaluate their dd value. The analysis of the

cells of UG can be stopped when there are no more

cells contained in the circumsphere around f and the current

dd-nearest point (Figure 6).

The cells scanning order used is simpler than that pro-

posed by Maus. Indeed we do not test the cells contained in

circumspheres with increasing radius (the sphere to cells

conversion is not a simple task) but we simply select and

test all of the cells contained in the smallest cube circum-

scribed to each circumsphere. This method is simpler

because it avoids the scan-conversion of spheres, and the

number of cells selected is not much higher. Note that if the

sphere radius selected is small (up to three times the cell Figure 7 The worst-case input dataset for the DeWall algorithm

338

A fast divide and conquer Delaunay triangulation algorithm in Ed: P Cignoni et al.

Figure 8 Spatial distribution of the sites: uniform dataset on the left, bubbles on the right

situations the DeWall algorithm reduces itself to an

incremental construction algorithm, yielding a O(nrd”‘+ ’)
worst case time complexity. In spite of this result, the

algorithm behaves well in practical cases (as shown in

Section 4) yielding, in the three-dimensional case, a plain

subquadratic behaviour versus a 0(n3) worst case

complexity.

DeWall space complexity

The algorithm space requirements are bounded by the space

complexity of:

the point set P;

the active fact list AFL; each AFL(n,d) is always a set of

connected (d - 1)-faces forming a unique (d - 1) surface

in Ed. Recalling that the number of (d - I)-faces of

a polytope in Ed of II vertices is at most O(nkd’z’),

the worst case space complexity of AFL(n,d) is O(n’d’2’);

the outcoming triangulation; however, like the incre-

mental construction algorithms, DeWall can return

each simplex as soon as it is built, avoiding explicitly

storing the triangulation at run time.

Therefore, the worst case space complexity of DeWall is

0(n’d’2’), so it is interesting to note that the maximum

space required by the algorithm in this worst case is lower

than (or at most equal to in E2) the size of the outcoming

triangulation. In contrast, on line triangulators need the

current triangulation to be stored which is generally repre-

sented by the use of a hierarchical structure which holds the

history of the construction process for fast point-in-triangle

computations.

RESULTS AND EMPIRICAL EVALUATION

The performance of the algorithm was tested on two classes

of datasets. The first class consists of uniform datasets,

where the locations of sites are generated using a uniform

probability distribution function (Figure 8). In the second

dataset class, the sites are organized into a number of

bubbles with the density of sites decreasing as the distance

from the bubble center increases (Figure 8). The sites in

each bubble are generated using an approximation of a

normal probability distribution function.

For each dataset class and for each resolution (number

of sites), a number of different datasets were generated in E3;

the times reported in Table I and Table 2 are the means

of the run times measured on each dataset. The machine

used for the timings was an SGI Indigo workstation

(MIPS R4000 CPU); the times include the uniform

grid preprocessing. The results obtained show an

empirically estimated complexity which is clearly subqua-

dratic in E3.

Table 1 Processing times, in seconds, required to triangulate the uniform dataset with various triangulations, plus statistical information. [#(o E Z): number

of tetrahedra in the final triangulation; #(a E jrst Z.): number of tetrahedra on the first simplex wall; #(eels visited): mean number of cells visited to build a

single tetrahedra; ma.x(si?es per cell): maximum number of sites contained in each UG cell]

Uniform dataset

(No. of sites)

2000 4000 6000 8000 10000

De Wall

times (no opt.)

times (UG opt.)

#(a E Z)

#(CJ E $rst Z,)

#(cells visited)

ma.x(sifes per cell)

Incode

times (no opt.)

times (UG opt.)

Qhull

times

Detri

times

32.1 100.3 211.1 352.1 516.4

4.4 9.4 14.8 20.1 26.5

12642 25 136 39 024 52 390 65 469

1497 2396 3106 3666 4385

12.86 13.15 14.43 14.15 14.15

8 8 9 8 10

218.8 976. 2306. 4433.

5.8 13.8 22.1 32.6

5.34 23.33 29.88 44.64 71.96

33.11 64.59 101.36 144.87 169.41

43.1

339

A fast divide and conquer Delaunay triangulation algorithm in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd: P Cignoni et al.

Table 2 Triangulation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbubble datasets using different triangulators (processing times in seconds)

Bubble dataset(No. of sites) 2000 4000
De Wall

times (UG opt.) 8.3 20.6

#(cells visited) 14.70 13.55

maafsites per cell) 250 496

Incode

times (UC opt.) 10.7 33.0

Qhull

times 5.10 12.00

Detri

times 32.55 67.5 I

200

150

100

50

0

<f

. .

Uniform Dataset

I I I I I I t
Detri +-
Qhull -t--

Incode -D--

zoo0 3om 4ooo 5otKI 6ooo 7ooo %ooo 9ooo KJooo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

site numbe r

6000 8000 10000

24.6 31.1 56.0
13.21 12.40 16.47

1.178 536 200

38.9 53.3 96.2

18.04 23.15 30.47

105.82 156.00 188.14

2ooo 3ooo 4oMl 5a.lo 6ooo 7ooo 8ooo 9000 loo00

site number

Figure 9 The algorithm times in seconds: uniform datasets on the left, bubble on the right

Another way to empirically evaluate DeWall is to com-

pare it with other implementations. We tested DeWall

against two efficient Delaunay triangulators that are pub-

licly available:

Incode: a totally incremental construction algorithm,

with and without the use of the UG optimization tech-

nique*. Incode was implemented by using most of the

DeWall’s code;

Qhull: a general dimension code for computing convex

hulls and Delaunay triangulations. It is an implementa-

tion of the Quickhull algorithm I9 for computing the

convex hull?. It was chosen because it qualifies as the

fastest convex hull code for large datasets defined in low

dimension spaces;

Detri: as part of the alpha-shape software, Detri builds

* Incode and DeWall are available in public domain at the address http://

miles.cnuce.cnr.it/cg/swOnTbeWeb.html

t Qhull is provided by the Geometry Center, University of Minnesota; the

Qhull software may be downloaded from the WWW site http://freeabel-

geom.umn.edu/software/download/qhull.html

f Detri is provided by the Software Development Group at the National

Center for Supercomputing Applications (NCSA); info may be downloaded

from the WWW site http:Nwww.ncsa.uiuc.edu/SDG/Software/Brochure/

Overview/ALVIS.overview.html

the 3D DT by adopting an incremental insertion andflip

approach’+.

The results in Table I and their graphical representation

in Figure 9 show that DeWall is the most efficient of the

four software programs on regularly distributed datasets,

while it gives slightly slower times than Qhull on the

bubble datasets. This is justified by the lower speed-up

obtained by adopting a UG on irregularly distributed data-

sets; the bubble datasets contain the worst distribution of

sites for algorithms that use a UG (and therefore the DeWall

algorithm).

Some statistics on the execution of the DeWall algorithm

on the uniform dataset are also reported in Table 1. The total

number of tetrahedra returned is considerably lower than the

theoretical upper bound in E3, O(n’): it was linear with the

number of sites (approximately 7*n) in our experiments.

The growth of the number of tetrahedra in the first wall is

clearly sublinear (approximately 0(n2’3)).

The mean number of cells visited for the construction of

each simplex is not constant but shows a low increase with

the dataset resolution. This is because for each face f on the

ConvexHull all of the cells contained in the positive half-

space off have to be tested.

The simplices which do not lie on the ConvexHuZl(P)

need, on average, a constant number of cell tests. The

340

A fast divide and conquer Delaunay triangulation algorithm in Ed: P Cignoni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.

increase in the mean number of cells visited is therefore

justified by the increase in the faces on the ConvexIMl(P).

Finally, the maximum number of sites per cell is reported in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tables I and 2.

CONCLUSIONS

The DeWall algorithm was presented as an original solution

to Delaunay triangulation, based on a particular interpreta-

tion of the D&C paradigm. This new approach has greatly

simplified the merging phase and makes it possible to define

a general D&C solution for point sets defined in any

dimension.

Optimization techniques were designed to speed up the

proposed algorithm. Our results show how common com-

puter graphics techniques (e.g. data indexing and optimized

point selection) can dramatically increase the efficiency of a

typical computational geometry task. The optimality of the

DeWall algorithm from the viewpoint of asymptotic com-

plexity is hard to prove. However, the experimental results

are interesting and show an empirical1 estimated complex-

ity which is clearly subquadratic in E
Y
.

REFERENCES

1.

2.

3.

4.

5.

6.

I.

8.

Aurenhammer, F., Voronoi diagrams-a survey of a fundamental

geometric data structure. ACM Computing Survey, 1991, 2(3), 345

405.

Su, P. and Drysdale, S. R. L., A comparison of sequential delaunay

triangulation algorithms. In Ilzh ACM Computational Geometry

Co@ Proc. (Vancouver Canada), ACM Press, 199561-70.

Delaunay, B., Sur la sphere vide. Bull. Acad. Science USSR VII: Class.

Sci. Mat. Nat., 1934,793-X00.

Preparata, F. P. and Shamos, M. I., Computational Geometry: an

Introduction. Springer-Verlag, 1985.

Edelsbnmner, H. and Miicke, E. P., Simulation of simpicity: a tech-

nique to cope with degenerate cases in geometric algorithms. ACM

Transaction on Graphics, 1990,9(l), 66-104.

Avis, D. and Bremner, D., How good are convex hull algorithms? In

Proceedings I1 th A. C.M. Symposium on Computational Geometry,

Vancouver, Canada, 1995. ACM Press, pp. 20-28.

Edelsbnmner, H. and Shah, N. R., Incremental topological flipping

works for regula triangulaions. In Proceedings of the 8th Annual ACM

Symposium on Computational Geometry, June 1992, pp. 43-52.

Guibas, L. J., Knuth, D. E. and Sharir, M., Randomized incremental

construction of Delaunay and voronoy diagrams. In Automata, Lan-

guages and Programming, LNCS N.443. Springer-Verlag, 1990, pp.

414-431.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lee, D. T. and Schachter, B. J., Two algorithms for constructing a

Delaunay triangulation. Int. J. of Computer end Information Science,

1980,9(3), 219-242.

McLain, D. H., Two dimensional interpolation from random data The

Computer J., 1976, 19(2), 178-181.

Dwyer, R. A., A faster divide and conquer algorithm for constructing

Delaunay triangulations. Algotithmica, 1987,2, 137- 15 1.

Dobkin, D. P. and Laszlo, M. J., Primitives for the manipulation of

three-dimensional sub-divisions. Algorithmica, 1989, 4, 3-32.

Akman, V., Franklin, W. R., Kankanhalli, M. and Narayanaswami, C.,

Geometric computing and uniform grid technique. Computer-Aided

Design, 1989, 21(7), 410-420.

Narayanaswami, C., Parallel Processing for Geometric Applications.

PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, December

1990.

Fang, T. P. and Piegl, L. A., Delaunay triangulation using a uniform

grid IEEE Computer Graphics and Applications, 1993,13(3), 36-47.

Fang, T. P. and Piegl, L. A., Delaunay triangulation in three dimen-

sions. IEEE Computer Graphics and Applications, 1995, 15(5), 62-

69.

Maus, A., Delanuay triangulation and the convex hull of n points in

expected linear time. Bit., 1984, 24, 151-163.

Edelsbrunner, H., Algorithms in Combinatorial Geometry. Springer-

Verlag, Berlin, 1987.

Bradord Barber, C., Dobkin, D. P. and Huhdanpaa, H. The quickhull

algorithm for convex hull. Tech. Rep. GCG53-93, Geometry Center,

University of Minnesota, July 1993.

Paolo CIGNONI is research scientist at the Istituto di Elaborazione

della lnformazione of the National Research Council in Piss, Italy. His

research interests include computational geometry and its interaction :._I_-- wtth computer graphtcs, sctenttjic vtsualtzatton and volume rendermg.

Cignoni received in 1998 Q PhD degree in Computer Science from the

I I

Claudio MONTANI is a research director with the Istituto di Elabor-

azione della Inform&one of the National Research Council in Pisa,

Italy. His research interests include data structures and algorithms for

volume visualization and rendering of regular or scattered datasets.

Montani received an advanced degree (Laurea) in Computer Science

from the University of Piss in 1977. He is a member of IEEE.

I I

Roberto SCOPIGNO is senior scientist at the Istituto CNUCE of the

National Research Council in Piss, Italy; since 1990 he has had a joint

appointment at the Department of Computer Engineering of the Uni-

versity of Piss. His research interests include interactive graphics,

scientific visualization, volume rendering and parallel processing. Sco-

pigno received an advanced degree (Laurea) in Computer Science zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom

the University of Pisa in 1984. He is a member of IEEE and Euro-

graphics.

341

