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algorithm in Ed 
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The paper deals with Delaunay Triangulations (DT) in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd space. 

This classic computational geometry problem is studied from the 

point of view of the efficiency, extendibility to any dimensionality, 

and ease of implementation. A new solution to DT is proposed, 

based on an original interpretation of the well-known Divide and 

Conquer paradigm. One of the main characteristics of this new 

algorithm is its generality: it can be simply extended to triangulate 

point sets in any dimension. The technique adopted is very efficient 

and presents a subquadratic behaviour in real applications in E’, 

although its computational complexity does not improve the 

theoretical bounds reported in the literature. An evaluation of the 

performance on a number of datasets is reported, together with a 

comparison with other DT algorithms. 0 1998 Published by 

Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

Triangulation is one of the main topics in computational 

geometry and it is commonly used in a large set of 

applications, such as computer graphics, scientific visuali- 

zation, robotics, computer vision and image synthesis, as 

well as in mathematical and natural science. Given a point 

set P, the Delaunay Triangulation (DT) is a particular 

triangulation, built on the points in P, which satisfy the 

empty circum-circle property: the circum-circle (-sphere in 

E3 or -hypersphere in Ed) of each simplicial cell in the 

triangulation does not contain any input point p E P. Man 

a$orithms were proposed for the DT of a set of si$s in E 
r 
, 

E or Ed, and most of them are reviewed in Ref. ’ . 

Unfortunately there has been little research into imple- 

mentations and performance evaluations of Delaunay trian- 

gulators. Few papers report evaluations of real 
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implementations or give experimental comparisons of dif- 

ferent algorithms. Worst case time complexities are gener- 

ally given, but such analyses, from the point of view of the 

application programmer, are not always sufficient to make 

the correct decisions. In fact, theoretically better algorithms 

can sometimes be outperformed by more naive methods; the 

theoretical asymptotic worst case complexity sometimes 

fails to consider the optimization techniques that can be 

applied to reduce the expected complexity. 

A new divide and conquer DT algorithm is proposed in 

this paper. The algorithm gives a general and simple solu- 

tion to DT in Ed space and makes use of accelerating tech- 

niques which are specific to computer graphics. 

The paper is organized as follows: definitions and a tax- 

onomy of Delaunay triangulation algorithms are presented 

in the second section. The proposed algorithm is described 

in detail in the third section, together with some optimiza- 

tion techniques. The performances of the proposed solution 

are evaluated on a number of datasets and compared with 

other solutions in the penultimate section. Conclusions are 

drawn in the last section. 

DELAUNAY TRIANGULATION 

Given a point set P in Ed, a k-simplex, with k 5 d, is defined 

as the convex combination of k + 1 affinely independent 

points in P, called vertices of the simplex (e.g. a triangle is a 

2-simplex and a tetrahedron is a 3-simplex). An s-Face of a 

simplex is the convex combination of a subset of s + 1 

vertices of the simplex (i.e. a 2-face is a triangular facet, l-  

face is an edge, O-face is a vertex). 

A triangulation C defined on a point set P in Ed space is 

the set of d-simplices such that: 

(1) a point p in Ed is a vertex of a simplex u in Z if p E P; 

(2) the intersection of two simplices in 1 is either empty or 

a common face; 

(3) the set X is maximal: there does not exist any simplex u 

that can be added to C without violating the previous rules. 

A triangulation C is a Delaunay Triangulation if the 

hypersphere circumscribing each simplex does not contain 

any point of the set P3*4. The Delaunay triangulation of a 

given point set P is unique if these do not exist in P d + 2 

points lying on the same hypersphere. Such cases, also 

known as degeneracies, can be managed by using local 

perturbation schemes 5. 
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Figure 1 Merging of two partial DT in E’ space 

The duality between DTs and Voronoi diagrams is well 

known4 and therefore algorithms are given for the construc- 

tion of DT from Voronoi diagrams. However, direct con- 

struction methods are generally more efficient because the 

Voronoi diagram does not need to be computed and stored. 

Direct DT algorithms ’ can be classified as follows: 

local improvement-starting with an arbitrary triangu- 

lation, these algorithms locally modify the faces of pairs 

of adjacent simplices according to the circum-sphere 

criterion; 

on-line (or incremental insertion)-starting with a 

simplex which contains the convex hull of the point 

set, these algorithms insert the points in P one at a 

time: the simplex containing the currently added point 

is partitioned by inserting it as a new vertex. The circum- 

sphere criterion is tested on all the simplices adjacent to 

the new ones, recursively, and, if necessary, their faces 

are flipped; 

incremental construction-the DT is constructed by 

successively building simplices whose circum- 

hyperspheres contain no points in P; 

higher dimensional embedding-these algorithms trans- 

form the points into the Edi’ space and then compute the 

convex hull of the transformed points; the DT is 

obtained by simply projecting the convex hull into Ed; 

for a comparison of the different approaches see63 

divide and conquer (D&C)-this is based on the recur- 

sive partition and local triangulation of the point set, and 

then on a merging phase where the resulting triangula- 

tions are joined. Current algorithms are not generalized 

to Ed space, but limited to E2 space alone. 

On-line methods7.* hold the lower worst case time com- 

plexity, O(n log n + Ad’*’ ). Moreover, these methods in their 

naive implementation are simple to 

generalized to manage point sets in E 
B 

rogram and can be 

space. 

D&C solutions hold in E* the same complexity as on-line 

methods, but a general D&C Ed (d > 2) solution has not 

been proposed yet. The main problem here is the design of 

the merging phase. Because of the explicit ordering of the 

edges incident in a vertex (Figure I), the merging phase is 

simple in E29, but hard to design in Ed where this ordering is 

not given. 

The algorithm proposed in this paper by-passes this pro- 

blem by reversing the order between the solutions of sub- 

problems and the merging phase. The classical D&C algo- 

rithms recursively subdivide the input points, construct two 

partial DTs and then merge them. Our solution is based on a 

more complex division phase, in which the input dataset P is 

split into PI and P2, and a section of the DT is immediately 

built. This partial triangulation allows the algorithm to 

recursively triangulate the two point sets PI and P2, taking 

into account the border of the partial triangulation and 

avoiding the need for a further merging phase. A “merging” 

simplex set is thus built before the subproblems are solved: 

we partition the problem solution, instead of its instance. 

The partial triangulation can be built very simply using a 

constructive rule similar to McLain’s in its incremental con- 

struction approach lo. This means we can specify a general 

Ed D&C Delaunay triangulator. Its simple structure permits 

an efficient implementation using some well known optimi- 

zation techniques. 

THE DEWALL ALGORITHM 

A new algorithm for the DT of a point set P in E” is 

presented in this section. The algorithm is based on the 

D&C paradigm, but this paradigm is applied in a different 

way with respect previous DT algorithms9,“. The general 

structure of D&C algorithms is: divide the input data into 

subset PI and P2; recursively solve on PI and P2; and merge 

the partial results S, and S2 to build solution S. 

In the case of triangulations, the input point set P can 

easily be divided using a cutting plane such that the two 

associated halfspaces contain two point sets PI and P2 of 

comparable cardinality. The problem is how to implement 

the merging phase, i.e. how to build the union of the two 

solutions Sr and S2. This union requires the triangulation of 

the space separating S1 and S2, and generally also requires a 

number of local modifications to St and S2. As previously 

stated, this problem was efficiently solved for the E2 

case9,*‘, but not for the general Ed case. 

Our approach to D&C is slightly different. Instead of 

merging partial results, we apply a more complex dividing 

phase which partitions the point set and builds, as first step, 

the merging triangulation. The algorithm is then recursively 

applied to triangulate the two subsets of the input dataset P. 

The splitting plane a separates the point set P into two 

subsets P, and P2. Analogously, the splitting plane (Y 

divides a triangulation C into three disjoint subsets: the 

simplices that are intersected by the plane, which we call 

the simplex wall X:,, and the two sets of simplices 2, and C2 

that are completely contained in the two halfspaces defined 

by (Y (Figure 2). Za can be chosen as a valid merging trian- 

gulation: (a) each u E I.a is also in IX and (b) subtracting Ea 

from C generates two disconnected simplicial complexes Xl 

and IX:. 
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Function DeWall (P : pointset, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAFL : (d-l)face_list) : d-simplexlist; 

var f : (d-1)face; AFL,, AFL1, AFL2 : (d-l)face_list; 

t : d-simplex; C : d-simplexlist; a : splittingplane; 

begin 

AFL,, AFL1 , AFL2 : =emptylist ; 

Pointset_Partition(P, a, PI, P2); 

/* Simplex Wall Construction */ 

if AFL = 0 then 

t:=HakeFirstSimplex(P, a) ; 

AFL:=(d-l)faces(t); Insert(t,C); 

for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf E AFL do 

if IsIntersectedcf ,cu) then Insert (f , AFL,) ; 

if Vertices(f) C PIthen Insert (f , AFLI) ; 

if Vertices(f) C Pz then Insert (f , AFL2) ; 

while AFL, # 8 do 

f : =Extract (AFL,) ; 

t : =MakeSimplex (f , P) ; 

if t # null then 

c:=c u {t}; 

for each f’: f’ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d- l)faces(t) AND f’# f do 

if IsIntersected(f’,a) then Update(f’,AFL,) 

if Vertices(f’) C PI then Update(f’,AFLl) 

if Vertices(f’) C Pz then Update(f’,AFLz) ; 

/* Recursive Triangulation */ 

if AFL1 # 

if AFL2 # 

DeYall : =c ; 

end ; 

Procedure Update 

begin ; 

8 then C:=C U DeUall(P~,AFL1); 

8 then C:=C U DeWall(&,AFL2); 

(f 

if Member (f , L) then Deletecf, L) 

:face, L : face-list) 

end ; 

else Insert (f , L) ; 

Figure 3 DeWall algorithm 

current triangulation progress status. As soon as all of the 

simplices incident in p were built, p may be removed from P 

and it will no longer be tested in the further invocations of 

MakeSimplex. The control on the number of incident 

simplices was implemented with a counter associated with 

each vertex p, increased each time a new face incident in p is 

built and decreased for each invocation of MakeSimplex on 

an incident face; as soon as the counter returns zero, p may 

be deleted from P. 

Construction of simplices in C, alone 

A slight modification to the canonical incremental 
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construction approach is needed to build only those 

simplices intersected by the splitting plane CY. Instead of 

using a single list of active faces (AFL), the algorithm uses 

three disjoint lists containing: 

l AFL,: the (d - 1)-faces intersected by plane a; 

l AFL,: the (d - I)-faces with all of the vertices in P,; 

l AFL,: the (d - 1)-faces with all of the vertices in P,; 

For each simplex O, the algorithm inserts its (d - 1)-faces 

in the suitable face list. It then extracts faces (on which the 

next simplices will be built) from the AFL, alone; this 

ensures that each simplex built is part of the simplex wall ,X:,. 
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Figure 4 Incremental construction of the simplex wall (first steps in a 2D example) 

The simplex wall construction process terminates when Uniform grid 
AFL, is empty. This process returns both xa and the pair of 

active face lists AFL1 and AFL*. DeWall is then recursively 

applied to the pairs (P,,AFL,) and (P2,AFL2), unless all the 

active face lists are empty. The splitting plane (Y is cyclically 

selected as a plane orthogonal to the axes of the Ed space 

(X, Y or Z in E3), in order to recursively partition the 

space with a regular pattern. Two-dimensional examples 

of the simplex wall construction and of the recursive appli- 

cation of the algorithm are shown in Figures 4 and 5, 

respectively. 

The DeWall algorithm is simple and easy to implement 

although in its naive implementation the asymptotic time 

complexity is not optimal nor is its practical efficiency 

good. An analysis of the algorithm shows that the main 

inefficiency is in the MakeSimplex function, 

Each simplex is constructed from an adjacent simplex 

face, by finding the dd-nearest point (i.e. the nearest accord- 

ing to the dd metric). This search entails performing an O(n) 

test for each simplex, where n is the number of sites in P. 

Figure 5 Some steps of the DeWall algorithm on a point set in E2 
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VG visiting order 

RI first 

La second 

pJ third 

Figure 6 On the left, a 2D example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe  cell visiting order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMaus (sphere scan conversion) and. on the right, our technique (based on the analysis of all the 

UG cells contained in the bounding box of each sphere) 

However, the construction of a new simplex in expected edge length) the discretized circumsphere and the circum- 

constant time is possible. cube are identical. 

The concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal processing is often adopted in com- 

puter graphics either to speed up sequential algorithms or to 

achieve parallelism. The speed-up technique proposed here 

is based on the Ed extension of the uniform grid (UC) 13: for 

simplicit 
Y? 

the use of the UC is described here for the case of 

DT in E-, supporting a regular partition of the space into 

hexahedral cells: 

The choice of the right resolution for the uniform grid 

space crucially affects the efficiency of the algorithm. In the 

reported implementation, the resolution of the UG is defined 

such that the number of cells is equal to the number of sites. 

DeWall time complexity 

UG= (C,jk); i,j,k E [O..N] (1) 

The main reason why uniform grid techniques are effective 

in geometric computations is that two points, which are far 

apart, generally have little or no effect on each other. A 

large class of geometric algorithms possesses this property, 

ranging from visibility, to modeling (boolean operations, 

intersection detection, etc.) and computational geometry 

(point location, triangulation, etc.) 14. 

The uniform grid is used as an indexing scheme for the 

fast detection of the dd-nearest point. A similar technique 

was also used by Fang and Piegl 1 .” to speed up incremental 

2D and 3D Delaunay triangulation. 

The worst-case time complexity of the DeWall algorithm 

may be misleading: neither of the two techniques used 

(D&C strategy and Uniform Grid optimization) guarantee 

worst case optimality whilst they do offering good 

performances in practical situations. It is possible to 

define patological datasets which cancel the efficiency of 

both the D&C strategy and the UG: if DeWall is applied to 

the dataset depicted in Figure 7, the construction of the first 

wall originates the entire triangulation (all the simplices in 

the triangulation intersect the splitting plane a); analo- 

gously, it is possible to choose site distributions that make 

the Uniform Grid not useful at all. In these pathological 

The space E” is partitioned into cubic cells following a 

regular pattern. The UG structure is built in a preprocessing 

phase, by computing for each cell Cijk the subset of points in 

P contained in cljk. 

The MakeSimplex function is designed such that, analo- 

gously to Maus’s proposal “, the UG is scanned in order of 

increasing distance from f. Given this partial ordering of the 

sites, not all the points in P have to be analyzed for each face 

f. In fact, given a point p, such that dd(f,p,) = d ,, all the 

points which are not contained in the sphere around f and p , 

will certainly have a dd value greater than d,, and it is 

pointless to evaluate their dd value. The analysis of the 

cells of UG can be stopped when there are no more 

cells contained in the circumsphere around f and the current 

dd-nearest point (Figure 6). 

The cells scanning order used is simpler than that pro- 

posed by Maus. Indeed we do not test the cells contained in 

circumspheres with increasing radius (the sphere to cells 

conversion is not a simple task) but we simply select and 

test all of the cells contained in the smallest cube circum- 

scribed to each circumsphere. This method is simpler 

because it avoids the scan-conversion of spheres, and the 

number of cells selected is not much higher. Note that if the 

sphere radius selected is small (up to three times the cell Figure 7 The worst-case input dataset for the DeWall algorithm 
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Figure 8 Spatial distribution of the sites: uniform dataset on the left, bubbles on the right 

situations the DeWall algorithm reduces itself to an 

incremental construction algorithm, yielding a O(nrd”‘+ ’ ) 
worst case time complexity. In spite of this result, the 

algorithm behaves well in practical cases (as shown in 

Section 4) yielding, in the three-dimensional case, a plain 

subquadratic behaviour versus a 0(n3) worst case 

complexity. 

DeWall space complexity 

The algorithm space requirements are bounded by the space 

complexity of: 

the point set P; 

the active fact list AFL; each AFL(n,d) is always a set of 

connected (d - 1)-faces forming a unique (d - 1) surface 

in Ed. Recalling that the number of (d - I)-faces of 

a polytope in Ed of II vertices is at most O(nkd’z’), 

the worst case space complexity of AFL(n,d) is O(n’d’2’); 

the outcoming triangulation; however, like the incre- 

mental construction algorithms, DeWall can return 

each simplex as soon as it is built, avoiding explicitly 

storing the triangulation at run time. 

Therefore, the worst case space complexity of DeWall is 

0(n’d’2’), so it is interesting to note that the maximum 

space required by the algorithm in this worst case is lower 

than (or at most equal to in E2) the size of the outcoming 

triangulation. In contrast, on line triangulators need the 

current triangulation to be stored which is generally repre- 

sented by the use of a hierarchical structure which holds the 

history of the construction process for fast point-in-triangle 

computations. 

RESULTS AND EMPIRICAL EVALUATION 

The performance of the algorithm was tested on two classes 

of datasets. The first class consists of uniform datasets, 

where the locations of sites are generated using a uniform 

probability distribution function (Figure 8). In the second 

dataset class, the sites are organized into a number of 

bubbles with the density of sites decreasing as the distance 

from the bubble center increases (Figure 8). The sites in 

each bubble are generated using an approximation of a 

normal probability distribution function. 

For each dataset class and for each resolution (number 

of sites), a number of different datasets were generated in E3; 

the times reported in Table I and Table 2 are the means 

of the run times measured on each dataset. The machine 

used for the timings was an SGI Indigo workstation 

(MIPS R4000 CPU); the times include the uniform 

grid preprocessing. The results obtained show an 

empirically estimated complexity which is clearly subqua- 

dratic in E3. 

Table 1 Processing times, in seconds, required to triangulate the uniform dataset with various triangulations, plus statistical information. [#(o E Z): number 

of tetrahedra in the final triangulation; #(a E jrst Z.): number of tetrahedra on the first simplex wall; #(eels visited): mean number of cells visited to build a 

single tetrahedra; ma.x(si?es per cell): maximum number of sites contained in each UG cell] 

Uniform dataset 

(No. of sites) 

2000 4000 6000 8000 10000 

De Wall 

times (no opt.) 

times (UG opt.) 

#(a E Z) 

#(CJ E $rst Z,) 

#(cells visited) 

ma.x(sifes per cell) 

Incode 

times (no opt.) 

times (UG opt.) 

Qhull 

times 

Detri 

times 

32.1 100.3 211.1 352.1 516.4 

4.4 9.4 14.8 20.1 26.5 

12642 25 136 39 024 52 390 65 469 

1497 2396 3106 3666 4385 

12.86 13.15 14.43 14.15 14.15 

8 8 9 8 10 

218.8 976. 2306. 4433. 

5.8 13.8 22.1 32.6 

5.34 23.33 29.88 44.64 71.96 

33.11 64.59 101.36 144.87 169.41 

43.1 

339 



A fast divide and conquer Delaunay triangulation algorithm in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd: P Cignoni et al. 

Table 2 Triangulation of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbubble datasets using different triangulators (processing times in seconds) 

Bubble dataset(No. of sites) 2000 4000 
De Wall 

times (UG opt.) 8.3 20.6 

#(cells visited) 14.70 13.55 

maafsites per cell) 250 496 

Incode 

times (UC opt.) 10.7 33.0 

Qhull 

times 5.10 12.00 

Detri 

times 32.55 67.5 I 

200 

150 

100 

50 

0 

<f 

. . 

Uniform Dataset 

I I I I I I t 
Detri +- 
Qhull -t-- 

Incode -D-- 

zoo0 3om 4ooo 5otKI 6ooo 7ooo %ooo 9ooo KJooo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

site  numbe r 

6000 8000 10000 

24.6 31.1 56.0 
13.21 12.40 16.47 

1.178 536 200 

38.9 53.3 96.2 

18.04 23.15 30.47 

105.82 156.00 188.14 

2ooo 3ooo 4oMl 5a.lo 6ooo 7ooo 8ooo 9000 loo00 

site number 

Figure 9 The algorithm times in seconds: uniform datasets on the left, bubble on the right 

Another way to empirically evaluate DeWall is to com- 

pare it with other implementations. We tested DeWall 

against two efficient Delaunay triangulators that are pub- 

licly available: 

Incode: a totally incremental construction algorithm, 

with and without the use of the UG optimization tech- 

nique*. Incode was implemented by using most of the 

DeWall’s code; 

Qhull: a general dimension code for computing convex 

hulls and Delaunay triangulations. It is an implementa- 

tion of the Quickhull algorithm I9 for computing the 

convex hull?. It was chosen because it qualifies as the 

fastest convex hull code for large datasets defined in low 

dimension spaces; 

Detri: as part of the alpha-shape software, Detri builds 

* Incode and DeWall are available in public domain at the address http:// 

miles.cnuce.cnr.it/cg/swOnTbeWeb.html 

t Qhull is provided by the Geometry Center, University of Minnesota; the 

Qhull software may be downloaded from the WWW site http://freeabel- 

geom.umn.edu/software/download/qhull.html 

f Detri is provided by the Software Development Group at the National 

Center for Supercomputing Applications (NCSA); info may be downloaded 

from the WWW site http:Nwww.ncsa.uiuc.edu/SDG/Software/Brochure/ 

Overview/ALVIS.overview.html 

the 3D DT by adopting an incremental insertion andflip 

approach’+. 

The results in Table I and their graphical representation 

in Figure 9 show that DeWall is the most efficient of the 

four software programs on regularly distributed datasets, 

while it gives slightly slower times than Qhull on the 

bubble datasets. This is justified by the lower speed-up 

obtained by adopting a UG on irregularly distributed data- 

sets; the bubble datasets contain the worst distribution of 

sites for algorithms that use a UG (and therefore the DeWall 

algorithm). 

Some statistics on the execution of the DeWall algorithm 

on the uniform dataset are also reported in Table 1. The total 

number of tetrahedra returned is considerably lower than the 

theoretical upper bound in E3, O(n’): it was linear with the 

number of sites (approximately 7*n) in our experiments. 

The growth of the number of tetrahedra in the first wall is 

clearly sublinear (approximately 0(n2’3)). 

The mean number of cells visited for the construction of 

each simplex is not constant but shows a low increase with 

the dataset resolution. This is because for each face f on the 

ConvexHull all of the cells contained in the positive half- 

space off have to be tested. 

The simplices which do not lie on the ConvexHuZl(P) 

need, on average, a constant number of cell tests. The 
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increase in the mean number of cells visited is therefore 

justified by the increase in the faces on the ConvexIMl(P). 

Finally, the maximum number of sites per cell is reported in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tables I and 2. 

CONCLUSIONS 

The DeWall algorithm was presented as an original solution 

to Delaunay triangulation, based on a particular interpreta- 

tion of the D&C paradigm. This new approach has greatly 

simplified the merging phase and makes it possible to define 

a general D&C solution for point sets defined in any 

dimension. 

Optimization techniques were designed to speed up the 

proposed algorithm. Our results show how common com- 

puter graphics techniques (e.g. data indexing and optimized 

point selection) can dramatically increase the efficiency of a 

typical computational geometry task. The optimality of the 

DeWall algorithm from the viewpoint of asymptotic com- 

plexity is hard to prove. However, the experimental results 

are interesting and show an empirical1 estimated complex- 

ity which is clearly subquadratic in E 
Y 
. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

Aurenhammer, F., Voronoi diagrams-a survey of a fundamental 

geometric data structure. ACM Computing Survey, 1991, 2(3), 345 

405. 

Su, P. and Drysdale, S. R. L., A comparison of sequential delaunay 

triangulation algorithms. In Ilzh ACM Computational Geometry 

Co@ Proc. (Vancouver Canada), ACM Press, 199561-70. 

Delaunay, B., Sur la sphere vide. Bull. Acad. Science USSR VII: Class. 

Sci. Mat. Nat., 1934,793-X00. 

Preparata, F. P. and Shamos, M. I., Computational Geometry: an 

Introduction. Springer-Verlag, 1985. 

Edelsbnmner, H. and Miicke, E. P., Simulation of simpicity: a tech- 

nique to cope with degenerate cases in geometric algorithms. ACM 

Transaction on Graphics, 1990,9(l), 66-104. 

Avis, D. and Bremner, D., How good are convex hull algorithms? In 

Proceedings I1 th A. C.M. Symposium on Computational Geometry, 

Vancouver, Canada, 1995. ACM Press, pp. 20-28. 

Edelsbnmner, H. and Shah, N. R., Incremental topological flipping 

works for regula triangulaions. In Proceedings of the 8th Annual ACM 

Symposium on Computational Geometry, June 1992, pp. 43-52. 

Guibas, L. J., Knuth, D. E. and Sharir, M., Randomized incremental 

construction of Delaunay and voronoy diagrams. In Automata, Lan- 

guages and Programming, LNCS N.443. Springer-Verlag, 1990, pp. 

414-431. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

Lee, D. T. and Schachter, B. J., Two algorithms for constructing a 

Delaunay triangulation. Int. J. of Computer end Information Science, 

1980,9(3), 219-242. 

McLain, D. H., Two dimensional interpolation from random data The 

Computer J., 1976, 19(2), 178-181. 

Dwyer, R. A., A faster divide and conquer algorithm for constructing 

Delaunay triangulations. Algotithmica, 1987,2, 137- 15 1. 

Dobkin, D. P. and Laszlo, M. J., Primitives for the manipulation of 

three-dimensional sub-divisions. Algorithmica, 1989, 4, 3-32. 

Akman, V., Franklin, W. R., Kankanhalli, M. and Narayanaswami, C., 

Geometric computing and uniform grid technique. Computer-Aided 

Design, 1989, 21(7), 410-420. 

Narayanaswami, C., Parallel Processing for Geometric Applications. 

PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, December 

1990. 

Fang, T. P. and Piegl, L. A., Delaunay triangulation using a uniform 

grid IEEE Computer Graphics and Applications, 1993,13(3), 36-47. 

Fang, T. P. and Piegl, L. A., Delaunay triangulation in three dimen- 

sions. IEEE Computer Graphics and Applications, 1995, 15(5), 62-  

69. 

Maus, A., Delanuay triangulation and the convex hull of n points in 

expected linear time. Bit., 1984, 24, 151-163. 

Edelsbrunner, H., Algorithms in Combinatorial Geometry. Springer- 

Verlag, Berlin, 1987. 

Bradord Barber, C., Dobkin, D. P. and Huhdanpaa, H. The quickhull 

algorithm for convex hull. Tech. Rep. GCG53-93, Geometry Center, 

University of Minnesota, July 1993. 

Paolo CIGNONI is research scientist at the Istituto di Elaborazione 

della lnformazione of the National Research Council in Piss, Italy. His 

research interests include computational geometry and its interaction :._I_-- wtth computer graphtcs, sctenttjic vtsualtzatton and volume rendermg. 

Cignoni received in 1998 Q PhD degree in Computer Science from the 

I I 

Claudio MONTANI is a research director with the Istituto di Elabor- 

azione della Inform&one of the National Research Council in Pisa, 

Italy. His research interests include data structures and algorithms for 

volume visualization and rendering of regular or scattered datasets. 

Montani received an advanced degree (Laurea) in Computer Science 

from the University of Piss in 1977. He is a member of IEEE. 

I I 

Roberto SCOPIGNO is senior scientist at the Istituto CNUCE of the 

National Research Council in Piss, Italy; since 1990 he has had a joint 

appointment at the Department of Computer Engineering of the Uni- 

versity of Piss. His research interests include interactive graphics, 

scientific visualization, volume rendering and parallel processing. Sco- 

pigno received an advanced degree (Laurea) in Computer Science zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom 

the University of Pisa in 1984. He is a member of IEEE and Euro- 

graphics. 

341 


