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ABSTRACT

The web is a rich resource of structured data. There has been an

increasing interest in using web structured data for many applica-

tions such as data integration, web search and question answering.

In this paper, we present DEXTER, a system to find product sites on

the web, and detect and extract product specifications from them.

Since product specifications exist in multiple product sites, our fo-

cused crawler relies on search queries and backlinks to discover

product sites. To perform the detection, and handle the high di-

versity of specifications in terms of content, size and format, our

system uses supervised learning to classify HTML fragments (e.g.,

tables and lists) present in web pages as specifications or not. To

perform large-scale extraction of the attribute-value pairs from the

HTML fragments identified by the specification detector, DEXTER

adopts two lightweight strategies: a domain-independent and unsu-

pervised wrapper method, which relies on the observation that these

HTML fragments have very similar structure; and a combination of

this strategy with a previous approach, which infers extraction pat-

terns by annotations generated by automatic but noisy annotators.

The results show that our crawler strategy to locate product speci-

fication pages is effective: (1) it discovered 1.46M product speci-

fication pages from 3, 005 sites and 9 different categories; (2) the

specification detector obtains high values of F-measure (close to

0.9) over a heterogeneous set of product specifications; and (3) our

efficient wrapper methods for attribute-value extraction get very

high values of precision (0.92) and recall (0.95) and obtain better

results than a state-of-the-art, supervised rule-based wrapper.

1. INTRODUCTION
The big data era is the consequence of two emerging trends: first,

our ability to create, collect and integrate digital data at an unprece-

dented scale, and second, our desire to extract value from this data

to make data-driven decisions. A significant source of this data

is the web, where the amount of useful structured information has

been growing at a dramatic pace in recent years.
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A recent study [10] showed that specifications (set of attribute-

value pairs for a single entity) are among the most common forms

of structured data available on the web, e.g., infoboxes in wikipedia

pages. Specifications are widely available for people (e.g., enter-

tainers, politicians), products (e.g., cameras, computers), organi-

zations (e.g., restaurants, hospitals), etc. Figure 1 shows example

product specifications from different websites. Specifications are

typically represented as HTML tables or lists, though only a small

fraction of these tables and lists are specifications. There has been

considerable interest in using specifications that can be collected

from web data sources for a variety of applications, such as data

integration, faceted search and question answering [4].

In this paper, we present a scalable focused-crawling technique

to obtain specifications in a domain of interest. Domains are rep-

resented by categories of products (e.g., cameras, computers). We

focus this study on product specifications for three reasons. First,

there is much interest in using product specifications for compari-

son shopping, faceted search, etc. [21, 25]. Second, product speci-

fications are available from a large variety of web data sources (e.g.,

e-commerce retailers, local stores). Third, despite their availability,

efficiently obtaining a large set of high-quality product specifica-

tions in a given category comes with many challenges.

Efficiency: The number of data sources (websites) for any given

product category can be in the thousands, but these sources are

spread out on the web. Further, only a small fraction of pages in a

relevant website have product specifications. This problem of spar-

sity makes it challenging to efficiently obtain a large set of product

specifications without exploring, unproductive regions of the web.

Quality: There is considerable variety among product specifica-

tions in terms of their attributes, sizes, format and content. Further,

even though product specifications are usually represented using

HTML tables and lists, only a small fraction of tables and lists are

specifications. This problem of identifiability makes it challenging

to obtain a large set of high-quality product specifications.

A possible strategy to collect product specifications from the web

is to run a general crawler, and then extract the data from the gath-

ered pages. This approach has been investigated in the literature

(see, e.g., [13]), and has its limitations: very few groups have access

to up-to-date web crawls, and initiating such crawls is extremely

resource intensive. An alternative is to use a publicly-accessible

snapshot of the web, e.g., Common Crawl. We examined this pos-

sibility and verified that on Common Crawl many pages are out-

of-date, some large sites are crawled only to a shallow depth (thus

missing many product specifications present deep in the site), and

some small websites are not even indexed.

A second strategy to obtain many product specifications is to
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(a) Ring specification (overstock.com)

(b) Camera specification (bhphotovideo.com)

Figure 1: Examples of specifications of different products.

use existing product aggregator sites, such as Google Products.1

While Google Products does contain many product specifications,

it has its own limitations. First, Google Products adopts a pay-to-

play model, where merchants have to pay a subscription fee to have

their products be listed. This limits the overall coverage in terms of

available products, as we will show empirically. Second, Google

Products can be used to obtain specifications for (many, but not all)

known products ids, but cannot be used to discover new products

since their catalog is not crawlable.

To effectively address the challenges of efficiency and quality,

we propose an end-to-end system, DEXTER, that consistently uses

the principles of vote-filter-iterate. From a small set of seed web

pages from large, popular web sites and product specifications in a

given category, DEXTER iteratively obtains a large set of product

specifications. Specifically, in each iteration, DEXTER uses voting

and filtering to prune potentially irrelevant websites and web pages

in a site, reduce the noise introduced in the pipeline, and efficiently

obtain a large number of high-quality product specifications.

In this paper, we make the following contributions: (i) an orig-

inal approach to efficiently discover websites that contain prod-

uct specifications; (ii) an adaptation of an existing in-site crawl-

ing approach [20] designed for forums to work for product web-

sites; (iii) an effective technique to find and extract attribute-value

pairs from product specifications; (iv) an end-to-end system to ef-

ficiently and accurately build a big collection of product specifica-

tions. This collection consists of specifications from instances of a

given product from each visited website. It is important to point out

that DEXTER does not perform any semantic integration of product

specifications across websites. However, the product specifications

collected by DEXTER can certainly be used as input to data integra-

tion studies. For this purpose, we make the product specifications

collected by DEXTER publicly available.2

We have performed an extensive experimental evaluation with

nine different product categories on the web. Our results show

that (1) our website discovery and in-site crawling strategies ef-

ficiently identified 3,005 websites and 1.46M HTML pages that

contain product specification pages in the nine product categories;

(2) our specification detector obtains a high value of F-measure

(close to 0.9) over a large variety of product specifications; and

1http://www.google.com/shopping
2http://github.com/disheng/dexter

(3) our wrapper (attribute-value extractor) gets very high values of

precision (0.92) and recall (0.95).

Our solution discovered an order of magnitude more sources

than the website discovery techniques of [2, 16]. We also com-

pared our extracted dataset with Common Crawl and two product

aggregator sites: Google Products and Semantics3.3 The results

show that: (1) Common Crawl only covers 32% of the product

sites discovered by DEXTER and (2) Google Products only covers

61% of DEXTER’s products and Semantics3 only 41%.

The rest of this paper is organized as follows. Section 2 defines

our problem and presents an overview of DEXTER. In Section 3, we

introduce our strategies for website discovery and in-site crawling

to locate product specification pages. Section 4 describes the ap-

proach we used in generic specification detection, and presents our

approach to extract attribute-value pairs. In Section 5, we present

our extensive experimental evaluation results. Related work is dis-

cussed in Section 6, and we summarize in Section 7.

2. PROBLEM AND SOLUTION OVERVIEW
We define a product specification as follows.

Definition 1: [Product Specification] A product specification SP

is a set of attribute-value pairs < ai, vi >.

The goal of this work is to build a big collection of product spec-

ifications. More formally, we state our problem as follows:

Definition 2: [Problem Definition] Given seed products P and

product websites S in a specific category C, we aim to efficiently

crawl a comprehensive set of product specifications in C.

To deal with this problem, we propose DEXTER. Initially, from

seed products chosen from large, popular product websites, DEX-

TER locates new product websites, which contain specifications,

such as shopping and company websites (Website Discovery). Sec-

ond, DEXTER crawls those websites to collect product specification

pages (In-site Crawling). From those pages, DEXTER detects the

HTML portion of the pages that contains the specification (Spec-

ification Detection) and, finally extracts the attribute-value pairs

from the specification (Specification Extraction). At the end of this

pipeline, DEXTER produces for each visited site a set of product in-

stances with their respective attributes and associated values. Fig-

ure 2 shows the architecture of DEXTER. In the rest of this section

we provide an overview of each step and the main challenges.

Website Discovery: The goal of Website Discovery is to locate

candidate product websites. Since these are sparsely distributed

on the web, DEXTER uses two strategies to deal with that: (i) it

queries a search engine with known product ids, and (ii) it identi-

fies hubs with links to known product websites. Voting is used to

generate a ranking of the candidate websites to select websites for

further exploration. Since some of the selected websites might not

be relevant, we built a product website classifier to quickly filter

out irrelevant websites. Iteration is subsequently used to obtain a

large number of relevant websites. (Section 3.1)

In-site Crawling: Within a potentially relevant product website,

we aim to efficiently locate the product specification pages. For

that, we use a number of classifiers to discover product category

entry pages and index pages, filtering out web pages on the website

that are unlikely to lead to product specification pages. Voting is

used to score the links from product specification pages in a web-

site, discovered using a search engine, to aggregate the classifier

scores for identifying promising category entry pages. (Section 3.2)

Specification Detection: Once product specification pages are

identified, the goal is to detect the HTML fragments on those pages

that correspond to specifications. For that, we develop a product

3http://www.semantics3.com
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Figure 2: Architecture of DEXTER, with Sites Discovery, In-site Crawling, Specification Detection, and Specification Extraction.

category detector, to avoid labeling data for each considered cat-

egory. The specification detection classifier looks at HTML frag-

ments (e.g., tables and lists) in these pages, and makes use of var-

ious structural features such as the number of links, number of

items, text size, etc., that distinguish high-quality specifications

from non-specifications. (Section 4.1)

Specification Extraction: The final step in the DEXTER pipeline

is to extract attribute-value pairs in the detected specifications. Since

a large number of specifications can be detected, it is important for

attribute-value pairs to be extracted efficiently. For that, we im-

plemented two strategies: (1) a heuristic lightweight approach that

takes into consideration HTML structural commonalities between

specifications across sites, and (2) a hybrid method that combines

the approach of [12] of inferring extraction patterns based on noisy

annotations with our heuristic approach. (Section 4.2)

3. DISCOVERY AND CRAWLING
In this section, we describe the first part of our pipeline in more

detail: the discovery of product websites and the crawling of the

product specification pages within the discovered sites.

3.1 Website Discovery
The first task of DEXTER is to find websites with product pages.

Since these websites are sparsely distributed on the web, the main

challenges are: to efficiently find such websites while avoiding vis-

iting unproductive regions on the web, and to discover a compre-

hensive catalog of them with a high quality. To achieve these goals,

we implemented four different strategies: (1) Search: the crawler

issues queries based on known products to a search engine in or-

der to discover other websites that publish information about these

products; (2) Backlink: from known relevant sites, the crawler ex-

plores their backlinks to find other relevant sites; (3-4) Merge: the

system defines two ranking strategies based on a combination of

the discovered websites adopting Union and Intersection. We give

further details about these strategies in the rest of this section.

3.1.1 Search

In our domain, we expect that multiple websites publish spec-

ifications of the same product. Taking advantage of this high re-

dundancy, searching for known products on a search engine would

return pages of these products in different sites. Note that the search

engine can return non-product-specification websites, e.g., a forum

with a discussion of a product. To efficiently discover relevant web-

sites without penalizing the overall recall, DEXTER searches for

multiple products and provides an ordered ranking of the returned

websites from the search engine considering the number of times a

website is present in the results, i.e., a forum or other non specifi-

cation websites are less likely to have pages in the results for many

products. Based on the ranking, in each iteration, DEXTER selects

the top K websites.

Figure 3: A product detail page with the product id.

The idea of using search engines to help collect pages has been

previously explored [2, 16, 13]. For instance, [13] analyzed the

distribution of entities for a set of domains by searching for entities

on the web using some unique identifiers, e.g., restaurant phone

numbers. Similarly, we extract ids of given products to discover

new product sites that contain the products. In Figure 3 we show

an example extracted product id used for the search step.

Our method works as follows. Given a set of product ids K ob-

tained from seed websites S, the crawler uses a search engine API

to discover new websites S′ that publish information for products

in K. More specifically, S′ is built considering all the websites re-

turned by the search engine over all queries in K. S′ is then ranked

considering the score according to the following equation:

sSearch(K, sj) =

∑

ki∈K

search(ki, sj)

|K|
(1)

search(ki, sj) =

{

1 if sj returned searching for ki
0 otherwise

(2)

Using the function sSearch for all the websites sj ∈ S′, we gen-

erate an ordered ranking R′. Based on the ranked list of websites

we can adopt a threshold to select the top websites and consider

them for further steps in the pipeline.

The main limitations of the search approach are the restrictions

usually imposed by search engine APIs such as number of results

per query, number of results per user and total number of queries in

an interval of time. This is a significant issue if the goal is to collect

an unbounded number of product websites. Our next approach tries

to deal with this problem of scalability since it is less dependent on

search engine restrictions.

3.1.2 Backlink

A useful source for finding relevant websites are pages that point

to multiple sites, so-called hub pages. As an example, previous

work [1] uses backlinks of multilingual websites to find hub pages

that point to other multilingual sites, and then restricts the crawler

to the web region defined by the bipartite graph composed of the

pages pointed by the backlinks of relevant sites and the outlinks of

these hub pages. A backlink is just a reverse link so that from the

initial website we can discover hubs that point to it.
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Efficiency, recall and quality are challenging goals. In fact, back-

links can lead to non-relevant hubs, subsequently leading to non-

relevant websites. Common examples are generic hubs that point

to multiple websites like popular websites in a country, websites

where the name of the domain starts with an ‘A’ and so on.

We adopted a vote-filter-iterate strategy to locate product web-

sites and to address our challenges. Non-relevant hubs are less

likely to point to many relevant websites, while relevant websites

are more likely to be pointed by many relevant hubs. Based on this

intuition using backlinks, we score hubs that point to many relevant

websites, and we compute an ordered ranking of the new websites

pointed by the hubs. As with search, we generate an ordered rank-

ing and for each iteration we select the top K websites.

The approach works as follows. Given the initial set of websites

S, we want to discover a new set of websites S′′ and an ordered

ranking R′′ of S′′ so that S′′ are all pointed by hubs discovered

from S. To provide a ranking and prune the enormous number of

websites and hubs discovered by backlinks we first search for the

hubs H using backlinks for each website si ∈ S. Each hub hj ∈ H

is scored considering the following formulation:

sHub(S, hj) =

∑

si∈S

hub(si, hj)

|S|
(3)

hub(si, hj) =

{

1 if hj in backlink for si
0 otherwise

(4)

To improve the performance, we prune those hubs that are pointed

only by a single website. We expect that if S is big enough, hubs

discovered only by one website are not likely to lead to interesting

websites. From the hubs H , we follow the forward links to discover

new websites S′′; for each new website sj we score the website as

the weighted average of all the hubs that point to sj :

sForward(H, sj) =

∑

hi∈H

forward(hi, sj) ∗ sHub(S, hi)

∑

h∈H

sHub(S, hj)

(5)

forward(hi, sj) =

{

1 if sj in forward links of hi

0 otherwise
(6)

Using the function sForward for all the websites sj ∈ S′′ we

generate a second ordered ranking R′′. We adopt the same thresh-

old of the search approach to select the top K websites for further

processing in the pipeline.

3.1.3 Merge

An interesting observation is that the backlink and the search are

two independent approaches and they can be combined in many

ways to define a new ranking algorithm.

In this work, we consider two merging algorithms: the first one

based on the union and the second based on the intersection of the

two generated rankings. The intuition behind the union is that if the

two rankings generate two disjoint but good ordered sets, consider-

ing the union of the top results from each ranking can provide bet-

ter results. For the intersection we expect that if there is an overlap

among the results from the two distinct rankings, a good website is

likely to be in the overlap and ranked better by the new ordering.

Given two rankings R′ and R′′, each value in Rx is made of a

pair (si, p
x
i ) where si ∈ S′ ∪S′′ and pxi is the position assigned to

si by the ranking Rx. We score a site si for a ranking Rx consid-

ering the following formulation:

rScore(si, R
x) =

1

|Rx|
||Rx|+ 1− p

x
i |

i.e, we score a source si for a ranking Rx considering the position

of the source inside the ranking.

We define the score of the union as follow:

sUnion(si) = max(rScore(si, R
′), rScore(si, R

′′))

From this function, we generate a new ranking Runion so that the

score of the website si is defined by sUnion.

We define the score of the intersection as the harmonic mean

among the rankings as follow:

sIntersection(si) = 2 ∗
rScore(si, R

′) ∗ rScore(si, R
′′)

rScore(si, R′) + rScore(si, R′′)

From sIntersection we generate ranking Rintersection.

Note that we do not merge the rankings considering the scores

provided by the source discovery strategies. An issue that we ob-

served is that often the scores are not comparable because one rank-

ing often leads to scores close to 1 while the other has lower scores.

A score-based merging could penalize one of the rankings.

Since there can still be many non-relevant sites returned by the

voting and iteration steps, the final step in the Website Discovery

is to efficiently detect product websites. It is based on a classifier

trained to recognize if a website is a product website considering

the features in the root home page (Home Page Classifier). More

specifically, we trained the classifier to recognize websites that pub-

lish product specifications. We trained the classifier with the anchor

text of the links in the home page.4 The words inside the anchor

text are good features because the home page provides links to mul-

tiple categories, and links that lead to the same category are likely

to be the same, e.g., for TV common anchor texts are TV, Tele-

vision, Home, etc. While we expect to find many specifications

from shopping websites, in our evaluation we discovered several

company websites as well including asus.com, dell.com, lg.com,

samsung.com, usa.canon.com.

3.2 In­site Crawling
Having discovered a new product website, the next step in the

pipeline is to crawl the website and discover product specification

pages. To avoid visiting unproductive regions of a website, it is

important to have a strategy that collects as many product pages as

possible, visiting as few non-product-pages as possible.

DEXTER’s In-site Crawling is inspired by [20], which focused

on forum crawling. We use a similar approach to crawl generic

product websites. The main assumption is that, similar to forum

sites, product-based sites have a well-defined structure consisting

of an entry page to the product content in a given category, index

pages that point to product pages and, finally, the product pages

themselves. Based on that, we implemented the following strategy,

depicted in Figure 4. First, the In-site Crawling discovers the en-

try page related to a category (Entry Page Discovery). Normally,

product websites organize their catalogs in categories and subcat-

egories. This is expected because the website administrator wants

the customer to have a good navigation experience inside the web-

site. Next, the crawler performs the Index Page Detection. The

category entry page leads to index pages or nested index pages. An

index page is a structured page inside the website that lets the cus-

tomer search, filter and select the product that she wants to pur-

chase. The Index Navigation Detector discovers the pagination

structure inside an index or a nested index and finally, a classifier is

trained to detect pages of a given product. The category that we as-

sign to the crawled pages is inferred considering multiple steps: the

4We use 50 relevant product websites and 50 non-relevant websites
as training data for all the categories.

2197



Figure 4: The pipeline to crawl a new website for target pages.

keywords used to find the website are category specific, the entry

page is category specific and the features that we adopt to recognize

the target pages are category specific. The category is automatically

assigned to the target pages based on the category of the crawling

step. We next provide details of the Entry Page Discovery and the

Index Page Detection.

3.2.1 Entry Page Discovery

To discover the entry page of a given category, we defined three

distinct strategies:

• From the home page: the first approach starts from the site’s

home page and uses the Entry Page Classifier to detect links

to the entry page of a given category. For that, it uses as

features words in the anchor texts. In this strategy we crawl

the website from the home page and we score candidate entry

pages as the product of the score returned by the Entry Page

Classifier on the anchor text of each crawled link.

• From the target pages: The second approach follows the in-

tuition that the product page often has references to the prod-

uct’s category. We use the confidence score from the Entry

Page Classifier to score the links on the given page. This is

repeated for every candidate target page and the final score is

the average score obtained from each page.

• By search: The last approach uses a search engine to directly

find the entry page. We search within the website using the

category name as query terms. We score the candidate results

by considering the ranking of the search engine.

The three strategies return independent scores, and DEXTER con-

siders the webpage that gets the best score from all three scores

using a harmonic mean formulation.

3.2.2 Index Page Detection

To recognize generic index pages, we make the assumption that

the anchor text that points to product pages has some regularity.

Under this assumption, we trained several classifiers, one for each

category, using as features the words in the anchor text of the link

avg text size #items

0
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1
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1
5

2
0

avg #links avg #images0
.0

0
.1

0
.2

0
.3

0
.4
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Non−specifications

Figure 5: Avg. text length, avg. number of items, links, images

for specifications and non-specification.

that points to the target pages. Since index pages usually contain

groups of links to product pages, to improve classification accuracy,

we group links and then score the groups as the average score of

the links that compose the group. To group links, we make the

observation that regions in the index pages that point to target pages

have the same layout and presentation properties. This motivates

the usage of link collections [9], a group of links grouped by an

extraction rule (XPath), like lists. The same technique is applied

to recognize a nested index structure. We recognize a nested index

that points to multiple index pages by scoring each page as an index

page. We empirically observed that a complex nested structure is

rare and that most of the cases are managed by a two level structure.

We say that a page is an index page if the average score is greater

than a given threshold that we set empirically.

4. DETECTION AND EXTRACTION
In this section, we describe the second part of our pipeline. Given

the product specification pages discovered by the previous steps,

our goal is to automatically extract the attribute-value pairs and the

product keys required by the search. For the specifications, we split

the problem in two separate problems: the detection of the speci-

fications inside product pages and the extraction of the attribute-

value pairs given the specification.

4.1 Specification Detection
The process of automatically extracting specifications in many

websites for different categories is a challenging task. For each

website, the template based HTML pages are characterized by some

local variability. This variability is related to the script used to gen-

erate them. The script is site specific, thus to accurately extract the

data, we have to generate a specific wrapper for each website. A

possible way to address this issue is to recognize the variability in

a website by using domain knowledge to recognize a specific cate-

gory, like in [18]. DEXTER adopts a different approach, which does

not require any domain knowledge and is not specific to few cat-

egories. The detection addresses the local variety inside the web-

sites, recognizing product specifications with a machine learning

based solution. The extraction is then applied to a regular portion

of the HTML page, thus simplifying the extraction task.

Previous approaches have been proposed to detect tables/lists

that consist of structured data [19, 28]. More specifically, Wang

and Hu [28] use machine learning algorithms to detect tables with

relational information, and Gupta and Sarawagi [19] proposed

some heuristics to remove useless and navigational lists. Similar

to [28], we also use machine learning techniques but our task is not

to detect relational tables on the web, but to detect specifications.
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Figure 6: Example of non-specifications.

Specifications can be contained in different HTML structures.

But they are primarily found within tables and lists (ul tag). We

empirically verified that by manually inspecting 301 specifications

from a great variety of products. Among them, 62% were inside

tables whereas 31% were inside lists. The remaining 7% were in

miscellaneous structures (e.g., HTML div tag). By also annotat-

ing tables and lists that are not specifications (304 instances), we

observed that some structural characteristics of specifications can

be useful as a good indicator of whether a table or list is a spec-

ification or not, independent of product or site. To illustrate that,

we present numbers in Figure 5 from our sample set containing

both specifications and non-specifications. As one can see from

these numbers, specifications contain far fewer links and images

than non-specifications, and more items and smaller texts. Figure 6

presents a concrete example of a table that does not contain prod-

uct specifications. As one can see, it has many links and larger

text size compared with the specifications presented in Figure 1.

Other features that we use to differentiate specifications from non-

specifications include average node depth of the items and its stan-

dard deviation, standard deviation of the text size, overall frequency

of the word “specification”, HTML type and average number of

the pattern of two upper cases followed by a number (e.g., “Weight

Max 40 pounds”).

As we present in Section 5, DEXTER not only can effectively

detect specifications, but it is also able to pinpoint them on the

page because it classifies not the entire page but the tables or lists

which contain specifications. As we show in Section 4.2, this is

very helpful for the extraction of the specification’s set of attribute-

value pairs from these HTML fragments.

4.2 Specification Extraction
The final tasks of DEXTER are: the extraction of the attribute-

value pairs from the HTML fragments provided by the generic

specification detector (see Figure 2) and the extraction of the prod-

uct ids K to feed as keywords to the search engine.

According to [17], designing an automated procedure to extract

web data remains challenging due to its large volume and variety.

To achieve very accurate performance, existing tools [22, 26, 27]

always ask human experts to design the extraction pattern or pre-

pare labeled data for training, which are labor-intensive. Other plat-

forms such as RoadRunner [8] avoid human engagement by learn-

ing patterns from unlabeled examples automatically. However, they

suffer in poor resilience by trading off performance against the

power of automation. In our context, we can do better because

the data to extract is no longer the raw data on the web, but some

“clean” HTML fragments supplied by our generic specification de-

tector. We adopted other techniques [8] for our task but we obtained

poor performance. Therefore, instead of using an existing auto-

matic wrapper generation system, we implemented two different

wrapper strategies: the first completely unsupervised that exploits

the regularity of the specification structure and the second that uses

automatic annotations to generate the wrapper.

The first strategy is based on the observation that the structure

of these fragments containing the specifications are very homoge-

neous. By inspecting these tables and lists, we came up with the

following heuristic for the extraction. For HTML tables, we first

assume each attribute-value pair of the specification is contained

in a table row tag (tr). Subsequently, we parse the DOM subtree,

in which tr is the parent node, and extract the text nodes in this

subtree. The first text node is considered as attribute and the re-

maining ones as concatenated values. With respect to HTML lists

(ul), we consider that each item in the list (li) contains an attribute-

value pair, and the token that separates the attribute from the value

is the colon character. In addition to its simplicity, this wrapper is

domain-independent and does not require any training. We show

in Section 5 that it obtains very high values of recall and precision

over a set of heterogeneous sites with specifications.

The second strategy is based on the technique proposed in [12].

Dalvi et al. defined an approach for inferring extraction patterns by

annotations generated by automatic but noisy annotators. For our

purpose, we train two simple annotators considering the attribute-

values pairs from the extracted websites. The first annotator anno-

tates nodes in an HTML fragment if there is a perfect match be-

tween the string contained in the fragment with one of the values in

the training, the second annotator is similar to the previous one but

it is trained to annotate only attribute names. Notice that our im-

plementation infers two extraction rules, one for all the values and

the other for all the attribute names published in the specifications.

A straightforward implementation would be to infer an extraction

rule for each attribute in the specifications. As observed by [23],

the attributes published by multiple websites of the same domain

are skewed, in fact 86% of the attributes are published only by a

small percentage of the sources. Adopting a per attribute inference

would lead to successfully extracting only overlapping attributes

that are just a fraction of the total number of published attributes.

Notice that while the previous heuristic is completely domain in-

dependent, the technique based on annotators is domain dependent.

[12] requires training related to a specific category and an a-priori

distribution to improve the generation of the extraction rule.

4.2.1 Extraction of Product ids

A similar technique to the previous specification extraction by

annotators is adopted to incrementally extract product ids. From

an initial seed set of large, popular websites S, we manually de-

fine the precise extraction rules to extract product ids K. From

K we define an annotator that annotates nodes that publish in-

formation that match any keyword kj in K. For each new web-

site the system infers a new extraction rule and extracts new prod-

uct ids that are added to the initial seed set K. Extraction rules

are generated by generalizing XPath expressions over annotated

values. The generation process follows the technique proposed

by [12]. For the robustness of our wrapper, our extraction rules

are defined following principles described in [11] such as rules that

exploit invariants close to the target values. In Figure 3 the ex-

pression //*[text()=”Model:”]/following-sibling::*[1]/text() is a possible

extraction rule that exploits the label Model: as invariant inside the

page to extract the product id. These products ids are then used for

querying the search engine and discovering new product websites.

We observe that even with an accurate wrapper generation sys-

tem, the noise, iteration after iteration, can affect the quality of the

generated K. To address this issue we follow the intuition of voting

that ids extracted by multiple websites are more likely to be rele-

vant ids. We provide a ranking of the ids and we set a threshold τ
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cat. # sites # pages

camera 1,107 278k

cutlery 339 103k

headphone 475 142k

monitor 941 184k

notebook 589 272k

software 419 129k

sunglass 471 182k

toilets 82 36k

tv 841 132k

all 3,005 1.46M

Table 1: Number of sites and

pages per category.

# cat. % websites

1 69.9%

2 15.7%

3 6.8%

4 3.4%

5 2.1%

6 1.3%

7 0.4%

8 0.2%

9 0.3%

Table 2: Percentage of

websites with multiple

categories.

to select only the ids that are extracted from multiple websites.

Each id ki ∈ K is scored following this formulation:

sKey(ki, S) =
∑

sj∈S

key(ki, sj) (7)

The key function is a binary function that scores an id ki with 1 if

and only if ki is extracted from sj . Ids are considered for search

only if sKey(ki, S) > τ .

5. EXPERIMENTAL EVALUATION
In this section, we initially assess the site discovery and crawling,

then the specification detection and extraction, and we conclude the

section with a summary of the evaluation.

5.1 Product Sites Discovery and Crawling
Data Collection and Description. We discovered and collected

1.46M pages from 3, 005 online product websites related to 9 cat-

egories (camera, cutlery, headphone, monitor, notebook, software,

sunglass, toilet, tv). We considered 5 electronics catgories and 4

non-electronics categories. The corpus was collected running our

pipeline with different configurations from an initial set of 12 large,

popular product websites (abt, adorama, amazon, bestbuy, bhpho-

tovideo, cdw, newegg, overstock, pcrichard, staples, target, tigerdi-

rect). We manually wrote the wrappers to extract the product ids

K and the set of attribute-value pairs from the specifications for

the initial seed set. We ran the pipeline several times with differ-

ent configurations: we considered all ranking strategies (backlinks

only, search only, union and intersection) and different setup of I ,

K and S. We used the Bing Search API to search new product web-

sites with a limit of 250 results for each query and a public API5 to

find backlinks from known relevant websites, here also with a limit

of 250 backlinks per website.

Overall, we discovered 193, 169 websites. Over those sites, we

ran our home page classifier to detect product sites, resulting in

23, 877 detected sites. We then crawled these sites and manually

checked the candidate target pages of 3, 005 sites, which were used

as a golden set G for evaluating the site discovery strategies.

For each website on average we have collected 484 product pages

for a total of 1.46M pages. The biggest websites contain more than

40k pages while the smallest websites have 5 product pages. We

show in Table 1 the number of sites per category and in Table 2 the

percentage of sites with the number of categories. Only 0.3% of

the websites cover all the categories, while the majority of 69.9%
are related to a single category. Camera is the most frequent cate-

gory with 1, 107 websites while toilet is the least frequent with 82
websites. The number of pages is very uneven across sites, in fact,

5Link Metrics from apiwiki.moz.com

popular websites provide a huge catalog with many products. The

3, 005 websites are collected from 5, 264 websites/categories.

Manual Effort and Tuning. The manual effort required to trigger

the complete pipeline is limited to: the seed set and the classifiers

(Home Page, Entry Page, Index Page and Specification Detection).

For the initial seed set of 12 websites, we manually wrote wrappers

and crawlers to collect the pages and extract specifications for a

given category. For each category in those websites we also found

manually the Entry Page related to the category and the Index Pages

that point to target pages. For the Discovery of new websites we set

the minimal redundancy of K to 4 and we trained the Home Page

classifier with a manually labeled list of 50 relevant and 50 non-

relevant websites. For the In-site Crawling we trained two Classi-

fiers for the discovering of the Index Pages (IP) and Entry Pages

(EP). We trained IP considering the anchor text that pointed to the

target pages, and EP using the anchor text that pointed to the entry

pages from the root of the website. The training of IP and EP were

limited to the initial seed set. For the specification extraction we

trained a classifier based on the features from 37 websites in G.

Strategies. To assess the discovery of new product websites, we

evaluated the ranking strategies considering different parameters:

the top websites returned from the ranking K, the size of the initial

seed set |S|, the quality control filters and the number of iterations

I for which the pipeline is executed. The quality control filters are

based on the home page classifier, Home Page Filter (HPF), which

discards evaluation websites that are not recognize by the classifier

trained on the home pages of online product websites, and on the

In-site Crawling Filter (ICF), which discards websites where the

crawling returned no product specification pages.

For this evaluation, we take an initial seed set of websites S

from our golden set G, from which our system extracts K and com-

putes different rankings of new websites based on different ranking

strategies. It then retrieves the top K sites in the ranking and passes

them to the filters. The websites that successfully pass the filters are

then considered relevant sites and are added to the initial seed set

S. We score the precision considering the intersection between the

updated S with our golden set G.

Ranking Results. In Figures 7(a) and 7(d), we evaluate the rank-

ing strategies when we increase the top K (with a fixed S = 50)

and the size of the seed set S (with a fixed K = 20). For this ex-

periment, I = 1 (number of iterations) and no filter is applied to

increase the precision. Overall, increasing K reduces the precision

of all the ranking strategies: the Search Only strategy is slightly

more resilient. Intersection achieves the best quality obtaining al-

most a 0.68 in precision when K = 10; the precision drops to 0.40
when K = 100. Increasing the seed set improves the quality of the

ranking strategies: also in this case intersection achieves the best

scores, precision goes from 0.41 to 0.61. The quality of the search-

only strategy is not affected by the size of seed set. Explanations

are (1) we have to consider also the number of product ids we used

to search new sites (the average number of pages per site is 484)

(2) we expect that the top product websites (amazon, bestbuy etc)

are easily ranked even with few product ids. From Figure 7(a), we

can also observe that the quality of the combined ranking strate-

gies is affected by the quality of the single ranking strategies: the

quality of Intersection drops because the quality of the Backlinks

Only drops, the quality of Union is lower than the quality of Search

Only because generally Backlinks Only is lower than the Search

Only. The loss in precision for the Backlinks Only ranking when

the initial seed set is 10 is due to non-popular websites.

Filter Results. The previous ranking results were obtained without

any filter. But before discussing how our filters affect the ranking

results, we present an evaluation of the quality of our filters. The
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Figure 7: Precision of the ranking algorithms, I = 1: (a,b,c) fixed |S| = 50 and variable K (d,e,f) fixed K = 20 and a variable |S|.

biggest challenge in this evaluation is to feasibly make an estima-

tion of the overall recall. To craft a golden set a manual effort is

required but the number of relevant websites is just a small frac-

tion of all the non-relevant websites (not conditioned by a rank-

ing strategy), making the manual evaluation difficult. To design

an evaluation to estimate the recall, we randomly collected 1, 000
websites from the list of all the websites that are discovered from

all the combinations of our techniques. We then applied our HPF

to discover 145 candidate websites, and our ICF, selecting 40 rel-

evant websites among this smaller filtered set. On these 40 can-

didate results, we manually checked the quality and estimated the

precision for HPF.ICF. To estimate the recall, we further execute

the ICF for a random set of 145 websites chosen from the initial

1, 000 websites that are discarded by the HPF. For these websites

the ICF returns only 20 websites and manually checking the qual-

ity only 5 were relevant. To complete the evaluation, we manually

checked the quality of 50 websites from the ones discarded by HPF

and ICF, and for those accepted by HPC and discarded by ICF (Ta-

ble 3). From Table 3 we can estimate the overall P and R of the

filter algorithms over a random set of 1000 websites in Table 4.

We observe from Table 4 that a combination of the two filters

HPF and ICF leads to a reasonable solution with P = 0.87. The

loss in recall is related to multiple factors: non-english websites,

index pages with a small list of target pages, dynamic navigation in-

side the website, non-representative anchor text for links that lead

to target pages or to the category entry page. Notice that the ob-

tained results are from a randomly selected 1000 websites, thus

HPF

yes no

ICF
yes 35/40 5/20

no 12.6/105 0/125

Table 3: # Relevant web-

sites / # non-relevant web-

sites, for the HPF and ICF.

P R

HPF 0.33 0.62

ICF 0.41 0.84

HPF.ICF 0.87 0.45

Table 4: Estimated P and R

of HPF and ICF.

the ratio of relevant websites to non-relevant websites is not even.

Hence, in the next evaluation we consider the effect of the filters on

the top K websites returned by the ranking strategies.

In Figures 7(b, c, e, f), we show the impact of our filtering tech-

niques on the ranking strategies, when I = 1. In Figures 7(b)

and 7(e) we can observe that all the ranking strategies are positively

affected by the HPF. Overall we have a gain of 0.2 in precision. The

strategy that achieves the best boost is Backlinks Only with a gain

of 0.3 in precision, when we have a seed set between 70− 90 sites.

This result is confirmed in Figures 7(c) and 7(f) where the HPF is

combined with the ICF. The precision of Backlinks Only is higher

than 0.9 with seed set higher than 60 sites, whereas Search Only

achieves only 0.82 in precision. A plausible explanation is that if

we search for new websites using product ids, we are likely to find

websites that provide pages that publish some information about

the products with these ids. But it is not guaranteed that these new

websites also publish specifications, e.g., price comparator and re-

view websites. Overall the HPF+ICF combined with the Intersec-

tion ranking achieves the best scores, obtaining a precision of 0.95
for K ranging from 10 to 90, and for a seed set greater than 20.

Iteration Results.

Figures 8 and 9 show results of our ranking algorithms running

our pipeline for multiple iterations, with initial seed set to |S| = 20
and K = 10. One may expect that when running multiple itera-

tions the quality of the obtained sites will drop, even as the number

of obtained sites increases. However, in our evaluation (Figure 8),

we can observe that after a slight initial drop in the first 15 itera-

tions, the precision of all the algorithms is almost stable, between

iterations 15 and 50. The precision of Intersection is around 0.95
while Search Only has the worst precision, around 0.92. This result

supports our statement that a complete iterative pipeline with mul-

tiple filtering steps can be adopted to harvest product specifications

from the web. If we consider the absolute number of relevant sites

obtained from the ranking algorithms, Figure 9(a) shows that Inter-

section and Search Only are the best approaches, discovering over-

all 160 new websites after 50 iterations. Whereas, in Figure 9(a),
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S = 20 and K = 10.
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Figure 9: Number of relevant websites with an increasing I , S = 20 and K = 10: (a)

average on all domains (b) notebook.

we provide an average value across different categories, we observe

that the growth in number of sites related to the ranking algorithm

is strongly related to the searched category. Figure 9(a) shows also

that on average category Intersection is better than Search Only for

all the 50 iterations, while in Figure 9(b) for notebook category af-

ter 20 iterations Search Only obtains more relevant websites. This

is due to: the quality of the hubs and the presence of a clear id

attribute for the considered category.

To crawl the dataset, we considered as seed set well-known prod-

uct websites. The rationale is that we expect that these websites are

likely to be pointed by more pages on the web (more hubs) and to

contain more product specification pages (more ids to search). This

leads to more websites reachable from the initial seed set. We ex-

pect that our domain is characterized by a highly connected graph,

as described by Dalvi et al. [13], thus almost all of the graph can be

discovered with our iterative approach.

5.2 Specification Detection and Extraction
Data and setup. To evaluate our specification detection (SD) and

specification extraction (SE) steps, we consider a subset of 37 web-

sites from G (30 random websites and 7 well-known shopping web-

sites). For each website, we manually crafted wrappers to extract

the specifications and their attribute name/value pairs. To train the

SD, we take at most 50 pages from each website and from each

category (some websites have fewer pages). The positive exam-

ples are the specifications extracted by the wrapper and the nega-

tive examples are the tables/lists not considered relevant by the site

wrapper. Since in this context, the number of negative examples

is overwhelmingly higher than the positive ones, and this can af-

fect the classification performance [29], we restricted the number

of positive and negative examples to be the same.

We evaluate the SD and SE in two scenarios: 1) across sites and

same category and 2) across sites and across categories. For the

testing we adopt a leave-one-outside approach. More specifically:

(1) we train a classifier for each website considering all the features

from the other websites of the same category; and (2) we train the

classifier considering also features from different categories.

For Specification Extraction, we consider two alternative solu-

tions: one [12] based on wrapper inference from noisy annotations

(WI) and one that follows the table structure heuristic (SE—SD).

Features P R P (table) R (table)

Our 0.84 0.90 0.88 0.92

Wang-Hu [28] 0.66 0.78 0.79 0.94

Combined 0.87 0.91 0.92 0.94

Table 5: Precision and recall for the Specification Detection.

Results. Table 5 compares precision and recall of a classifier trained

with our features and the features defined in [6, 28] for specification

detection. It also shows the average precision and recall obtained

on our dataset. Our features are more robust to non-table specifi-

cations and have a better precision with a small loss in recall for

only table specifications. Combining all the features from both ap-

proaches increases slightly the average precision by 0.03 and recall

by 0.01, the increase is mostly for tables where the combination of

our features achieves a 0.92 in precision and 0.94 in recall.

Table 6 shows the average precision and recall obtained by all

approaches on the 37 sites and, for the sake of space, we present

the individual results of only 10 of them, focusing our discussion

on those cases where our approach (SE—SD) achieves the worst

results. Table 6 compares our wrapper conditioned on a perfect

SD’s output (SE|SD*) i.e., we calculated the performance of the

wrapper in isolation, the baseline WI, the quality of the annotations

(An.), the wrapper inference conditioned on a perfect SD’s output

(WI—SD*) and a hybrid approach (WI+(SE—SD)) that chooses

between WI and SE—SD when a quality check is passed.

Overall, our approach (SE—SD) obtained very high values of re-

call and precision over most of the sites (average precision equals

to 0.80 and recall 0.90) and the results are comparable with WI

with a loss in precision but a higher recall. The only exception was

pcrichard, in which WI obtained a perfect score while our wrap-

per was not able to extract the correct results. We observed that

pcrichard does not provide a table-like structure (it is the only site

with a dl structure) leading to mistakes for SD and SE. For pre-

cision, SE—SD obtained poor results in some websites: newegg,

alibaba and abt. The reason is that these websites provide in their

specification pages other types of information that have similar

structure to specifications or might also be considered as part of

them. For instance, some of the lists misclassified by SD on newegg

contained information of some product features, which were not

presented in the specification of the golden set for this product. Re-

garding recall, the loss occurs in those websites with specifications

consisting of small tables, as in Figure 1(b).

In addition, when one compares SE—SD vs SE|SD*, it is clear

that SD is the main reason for the limitations of SE—SD. The num-

ber shows that SE performs an almost perfect job: average preci-

sion and recall equals to 0.95. The loss in quality is related to sites

such as pcrichard, where no table structure is present, shop.lenovo

and netplus, where the specifications’ table rows sometimes consist

of three columns, two dedicated to labels and one to the value.

In WI, the extraction performance is determined by the quality

of the set of annotations. The annotator generally performs poorly

with an average precision of 0.38 and an average recall of 0.39.

For some websites WI achieves perfect scores. The loss in preci-
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SE—SD SE|SD* WI An. WI—SD* An.—SD* WI+SE—SD

website Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

shop.lenovo 0.81 0.87 0.87 0.87 1.00 0.87 0.24 0.22 1.00 0.87 0.24 0.22 0.81 0.87

uk.hardware 0.83 0.76 0.83 1.00 0.96 0.82 0.46 0.33 0.95 0.79 0.68 0.23 0.96 0.82

abt 0.46 1.00 1.00 1.00 0.99 1.00 0.30 0.57 1.00 1.00 1.00 0.48 0.99 1.00

alibaba 0.35 0.75 0.90 0.90 0.07 0.07 0.10 0.05 0.99 1.00 0.48 0.05 0.35 0.75

bhphotovideo 0.96 0.78 1.00 1.00 0.97 1.00 0.49 0.43 0.93 1.00 0.99 0.64 0.97 1.00

buzzillions 0.73 1.00 0.95 1.00 0.86 1.00 0.24 0.42 0.92 1.00 0.82 0.32 0.86 1.00

cyberguys 0.66 0.99 1.00 0.99 0.99 0.96 0.49 0.15 0.99 0.96 0.89 0.07 0.99 0.96

netplus 0.60 0.96 0.80 0.96 0.99 1.00 0.44 0.48 0.98 1.00 0.87 0.45 0.99 1.00

newegg 0.92 0.54 1.00 1.00 0.92 1.00 0.29 0.41 0.92 1.00 0.74 0.38 0.92 1.00

pcrichard 0.00 0.00 0.00 0.00 1.00 1.00 0.17 0.14 1.00 1.00 1.00 0.06 1.00 1.00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Average 0.80 0.90 0.95 0.95 0.85 0.85 0.38 0.39 0.92 0.86 0.88 0.32 0.92 0.95

Table 6: Results for our wrapper and the baselines on 10 websites (the most erroneous among the 37 sites).

sion and recall is strongly related to the quality of the annotators

[12]. Another aspect that strongly affects the extraction error rate

is the dependency of the annotations’ mistakes. In fact, in [12] the

authors adopted a random distribution to control and define an an-

notator of desired quality, in our setting we observed that there is a

strong dependency on mistakes made by our annotator.

We observe that inferring the specifications from the right por-

tion of the HTML page boosts both the annotator’s precision and

the extraction quality. WI—SD* obtains a precision of 0.92 and a

recall of 0.86 compared to the previous 0.85 and 0.85 of WI. The

most common mistakes are (1) the presence of short feature lists

that are not specifications but with specification values and (2) the

presence of specification values that are used as attribute names in

other websites.

The first issue is addressed by WI—SD*, so that the annotation

process is applied only on the portion of the HTML document with

a specification. The second issue is addressed by taking into ac-

count both specifications values and attribute names during train-

ing: matches on values are positive annotations while matches on

attribute names are negative annotations.

In WI+(SE—SD), we considered a hybrid approach. We observe

that often WI and SE—SD make mistakes for different reasons and

that it is possible to define a criterion to choose one approach over

another. The intuition is that we can check the quality of the WI

by comparing the attribute names and the values. As for WI, the

system learns an extraction rule to extract the values of the speci-

fications by using an annotator that matches the values in the test

website with the values in the training websites. We adopt the same

technique to learn an extraction rule to extract the attribute names

of the test website, and compare the two extraction rules, the one

for the values and the one for the attribute names. We observe

that rules that extract values and attribute names for the specifica-

tions are likely to extract paired nodes. When it successfully learns

two paired rules, it uses WI, or uses SE—SD if no paired rules

are found. WI+(SE—SD) achieves really high precision and recall.

The loss in quality is related to few websites, where WI fails and

the heuristic for SE—SD is not perfect, e.g., alibaba.

We observe that the diversity across websites is the main issue

that affects the SD quality. This observation is confirmed by Table 7

where we compared the classification quality with a per categories

basis. The SD (websites) has the same configuration as Table 6 but

with the average score for each category. Here we observe the clas-

sification quality is not drastically affected by the variability across

categories. The next question is: if a classifier is trained to recog-

nize a set of categories, can it be used on other categories? The

answer is in Table 7, in SD (categories) for each category, the train-

SD (websites) SD (categories)

Prec Rec Prec Rec

camera 0.88 0.92 0.94 0.96

cutlery 0.87 0.85 0.96 0.97

headphone 0.86 0.89 0.89 0.97

monitor 0.83 0.87 0.89 0.98

notebook 0.81 0.88 0.98 0.98

software 0.92 0.86 0.96 0.97

sunglass 0.67 0.56 0.97 1.00

toilets 0.43 0.80 0.93 0.98

tv 0.83 0.91 0.96 0.98

Table 7: Results for the SD, per site and per category.

ing uses features from other categories and the testing on websites

that contain pages related to the considered category and at least

another category, i.e., the classifier has been trained to recognize

another category for the same website. The quality is much higher:

for notebook and tv, we have almost perfect precision and recall

with a small drop only for headphone and monitor precision. This

motivates our consideration that after discovering the specifications

for some categories of a website, we can use the same classifier to

recognize the specifications for new categories in the website.

5.3 Comparison and Statistics
Comparison with Product Aggregators and Common Crawl.

We compare the dataset collected by DEXTER (D) with product

datasets of two product aggregator sites: Google Products (GP)

and Semantics3 (S3). These websites provide APIs that, given an

id, return a product, and eventually its specification. In Table 8, we

show a comparison: we randomly picked a set of 1000 ids across

several categories and we searched for these ids in Google Product

and Semantics3. We show the number of products of our dataset

available in those sites and the average number of attributes per

product. Google Products only covered 61% of DEXTER’s prod-

ucts and Semantics3 only 41%. With regards to the average num-

ber of attributes per product, Google Products has the highest value

(48), followed by Semantics3 (36) and Dexter (40). It is impor-

tant to point out that DEXTER does not do any linkage across sites,

which could considerably increase this number for DEXTER. Even

without linkage, DEXTER has comparable performance with these

two aggregators. This observation is confirmed in Table 8 where

we compare the aggregators with DEXTER for three different cat-

egories. For Notebook and Headphone the number of attributes

is comparable while DEXTER contains many products not present
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Cat. Sol. % Prod. # Attr.

S3 41% 35.9

all GP 61% 48.4

D 100% 40.6

S3 44% 48.0

notebook GP 49% 53.4

D 100% 53.2

S3 14% 18.0

headphone GP 43% 30.4

D 100% 24.7

S3 50% 47.2

camera GP 61% 66.2

D 100% 45.0

Table 8: Coverage comparison with aggregators.
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Figure 10: Statistical distribution of attributes.

in Google Products and Semantics3. Semantics3 contains fewer

headphones and the number of attributes is sensibly lower. DEX-

TER extracts fewer attributes for Camera, but it still contains 39%

of products not present in Google Products. DEXTER has a better

coverage because it successfully collects specifications from non-

mainstream products and sites. In fact, we expect aggregators to

have a good coverage of well-known products while their coverage

drops when we consider the long tail.

We also compare our dataset with pages crawled by Common

Crawl: 68% of the sources discovered by DEXTER are not present

in Common Crawl, only in 20% of the websites DEXTER discov-

ered fewer pages, but product specification pages are just a small

fraction of all the discovered pages. In fact, on a sample set of

12 websites where Common Crawl indexed more pages, 99.2% of

their pages were non-specification pages.

Collection Statistics. To provide statistics of the collected attributes,

we applied SD and SE to 700k pages from all the 3, 005 websites.

We do not adopt any integration technique, thus we consider two

attributes to be the same only if they have the same normalized

string. We normalize attributes by converting the string to lower-

case and removing all the non alpha-numeric characters. To reduce

the presence of potential errors generated during the extraction pro-

cess, we only consider attributes that occur in at least two product

specifications from the same website and category, and published

in at least two different websites.

DEXTER discovered on average 2.2k unique attributes per cate-

gory; Camera has the highest number of attributes (5.5k) and Toi-

lets has the smallest one (97). Figure 10 shows the distribution of

the attributes with two histograms, one with the coverage of the at-

tributes over the product specifications inside a website (intra-site

heterogeneity) and the second across multiple websites (inter-site

heterogeneity).

The histogram in Figure 10(a) shows the number of site-category

pairs that has a given average attribute coverage. The coverage

of an attribute is the fraction of the product specifications in the

site-category pair that contain that attribute; the average coverage

is computed over all the attributes discovered in the site-category

pair. These numbers show that many websites are characterized

by a high heterogeneity (coverage ¡ 20%), i.e. most attributes for

a category in a website are present in few product specifications.

However, many site-category pairs tend to have attributes that are

present in many product specifications.

The histogram in Figure 10(b) shows the number of attribute-

category pairs that have a given inter-site coverage. The inter-site

coverage of an attribute for a category is the fraction of websites of

that category that contain that attribute. The numbers (note the log

scale on the Y axis) show that very few attributes are published by

more than 20% of the websites, while the vast majority are specific

to few websites. The highest coverage is only 50%. The reason for

this high degree of heterogeneity is the presence of synonyms, i.e.

different labels are used by different websites to describe the same

attribute name. These results show an interesting starting point for

integration efforts that should match synonymous labels and reduce

the total number of attribute names.

5.4 Summary
Our results show that, with a limited human effort, DEXTER:

• Efficiently discovered and crawled 1.46M product specifi-

cation pages from 3,005 websites for nine different product

categories. Tables 1 and 2 present the collected dataset and

Figures 7, 8 and 9 show that the vote-filter-iterate principles

applied to our setting can accurately discover websites with

product specifications with a high precision.

• Accurately detected product specifications. In Tables 5 and 7

our specification detector achieves on average F = 0.87
for specifications in unknown websites and known categories

and F that goes from 0.94 to 0.98 for known websites and

unknown categories.

• Accurately extracted attribute name/value pairs. Table 6

shows that a hybrid approach that combines a domain inde-

pendent with a domain dependent approach achieves a 0.92
in precision and 0.95 in recall, close to settings where the

detection is given as perfect.

6. RELATED WORK
Webtable. Many previous approaches try to explore the web to ob-

tain structured data [6, 19, 28]. The WebTable project [6] extracts

HTML tables which contain relational data, similar to [28], and

applies techniques to search and explore these tables. Similarly,

Gupta and Sarawagi [19] propose a system that extracts and inte-

grates tuples from HTML lists. Both approaches target at construct-

ing a corpus of high-quality data, where, to recover the semantics

of the data content, a huge amount of post-processing effort such

as entity resolution and schema matching [5, 15] is needed. In con-

trast, our approach automatically categorizes the obtained product

specifications, without doing integration across sites.

Wrappers. Along with these systems, various techniques/tools

have been proposed to extract structured data from web pages. Strate-

gies exploit the opportunity of web page similarity in both HTML

structure and natural language. Usually, a pattern (aka. wrapper)

exploring the underlying similarity is obtained and will later be ap-

plied to other pages for further extraction. Much work [8] studies

how to develop wrappers automatically but the quality of the out-

put, in many cases, is low and not controllable. To control the
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automatic generation of wrappers, several techniques adopt: do-

main knowledge [18], but a knowledge base has to be crafted for

each category; redundancy [3, 7], but products are characterized by

many “rare” attributes that are present only in few sources; annota-

tors [12], but it is hard to define a priori a set of annotators that can

annotate all the present attributes.

Source Discovery. An analysis of structured data on the web has

been described by [13]. The authors adopted a search paradigm to

discover all the websites related to several domains and extracted

some attributes from them. The authors found thousands of web-

sites for several domains, but their evaluation was limited to few

id attributes, making the extraction step simpler. Many other works

adopted the search paradigm [2, 16], but the number of visited web-

sites is one order of magnitude lower than our approach, thus the

task of getting high efficiency and quality was simpler.

Products. Another topic related to our work is product integration

and categorization. Existing work follows a supervised approach,

which starts from an already well-established product database, and

accomplishes integration for new product instances. Nguyen et

al. [25] propose a scalable approach to synthesize product offers

from thousand of merchants into their centralized schema. Kannan

et al. [21] build a system to perform matching from unstructured

product offers to structured specifications. Das et al. [14] describe

a technique to infer tags of known products based on the attributes

published in the specifications. However, none of them has focused

on collecting high-quality product specifications aforehand.

Crawling. Techniques to automatically crawl target pages have

been studied [20, 24, 30]. All these techniques guide the crawler

by adopting some kind of knowledge: in [24] authors guide the fo-

cused crawler considering the semantic annotations on target pages;

in [20], authors exploit the expected structure of a forum to effi-

ciently crawl generic forums; in [30], the system infers relation-

ships among instances present in a database from parallel naviga-

tion paths. In our approach the concept of target pages and the

domain differ from previous approaches making these previous ap-

proaches not directly applicable.

7. CONCLUSIONS
This paper presents DEXTER, an end-to-end solution for the task

of building big collections of product specifications from web pages.

For that, we propose techniques to discover, crawl, detect and ex-

tract product specifications. To efficiently discover product web-

sites DEXTER explores different techniques that rely on existing

search APIs, for keywords search and navigating backlinks. To

collect product pages DEXTER crawls product websites. To de-

tect specifications, the Specification Detector identifies the tables

and lists that contain product specifications. Finally, to extract

the attribute-value pairs from the detected specification fragments,

DEXTER adopts two wrapper generation techniques, a domain in-

dependent and a domain dependent approach.

A future direction is to use the collection of specifications ob-

tained using our technique to perform entity linkage and schema

alignment in order to build a universal product database. Another

interesting direction is the automatic discovery of new categories

based on the navigation structure of the product websites.
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