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Abstract

We present an open-source platform for wireless body

sensor networks called DexterNet. The system supports

real-time, persistent human monitoring in both indoor and

outdoor environments. The platform utilizes a three-layer

architecture to control heterogeneous body sensors. The

first layer called the body sensor layer (BSL) deals with de-

sign of heterogeneous body sensors and their instrumenta-

tion on the body. At the second layer called the personal

network layer (PNL), the body sensors on a single sub-

ject communicate with a mobile base station, which sup-

ports Linux OS and the IEEE 802.15.4 protocol. The BSL

and PNL functions are abstracted and implemented as an

open-source software library, called Signal Processing In

Node Environment (SPINE). A DexterNet network is scal-

able, and can be reconfigured on-the-fly via SPINE. At the

third layer called the global network layer (GNL), multiple

PNLs communicate with a remote Internet server to per-

manently log the sensor data and support higher-level ap-

plications. We demonstrate the versatility of the DexterNet

platform via several real-world applications.

1 Introduction

Wireless body sensor networks (BSNs) have been an

emerging research area in the past five years. The develop-
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ment is mainly due to two reasons: 1. Continuing integra-

tion and miniaturization of sensors, processors, and radio

devices. 2. Rising demands for advanced body sensor sys-

tems ranging from pivotal areas of elderly protection and

clinical patient monitoring to much broader applications

in military, preventive healthcare, and consumer electron-

ics. Traditional BSNs mainly involve single wearable sen-

sors, such as fall detection [4, 14, 16], walk and gait-phase

detection [1, 12], and pulse-oximetry monitoring [10, 11].

More sophisticated systems consist of multiple heteroge-

neous sensors, adopt certain hierarchical architectures for

real-time sensor management, and may integrate body sen-

sors with other environmental sensors. Existing systems in-

clude CodeBlue [8], HealthGear [11], MobiCare [3], WW-

BAN [9], ALARM-NET [17], Participatory Sensing [2],

and Intel MSP [6], to name a few. These systems instrument

the human body as an active mobile platform, and have the

necessary mobility to support persistent monitoring in peo-

ple’s normal living environments.

In this paper, we present a novel platform for heteroge-

neous body sensor networks called DexterNet. The design

principles of DexterNet are manifold:

1. DexterNet supports an open-source on-node signal

processing library, namely, SPINE (Signal Processing

In Node Environment) [15]. To our best knowledge,

SPINE is the only open-source library that is versatile

enough to support heterogeneous body sensors. As a

result, higher-level applications through DexterNet can

seamlessly control different types of body sensors.

2. Harnessing the rich functionalities in SPINE, Dex-

terNet supports real-time signal collection and sensor

management. The system can be dynamically config-

ured over the air. It provides a set of on-node services

that can be tuned and activated by the user depending



on different application needs.

3. To support long-term monitoring of multiple subjects

in both indoor and outdoor environments, DexterNet

adopts a flexible three-layer BSN architecture, namely,

a body sensor layer (BSL), a personal network layer

(PNL), and a global network layer (GNL).

Figure 1 shows the three-layer hierarchy of DexterNet.

At the BSL, the system supports a list of commercial and

custom-built body sensors. A sensor board then connects

with a sensor network mote to form a wearable sensor mote.

At the PNL, the body sensors communicate with a wireless

mobile station. The SPINE library installed on the body

sensors and the mobile station manages the data collection,

processing, and transmission of the data, and can be con-

trolled via commands issued from the station.

Figure 1. The three-layer hierarchy of the DexterNet sys-

tem: 1. Body sensor layer (BSL). 2. Personal network layer

(PNL). 3. Global network layer (GNL).

DexterNet provides a rich, complete pathway for sens-

ing, distributed processing, wireless communication, and

data fusion, which serves as a foundation for higher-level

applications at the GNL. We hope that in providing an

open platform with DexterNet, variations in functionality

can be built using a common base. This will avoid redun-

dant development efforts in different sensor network sys-

tems. In addition, the diverse nature of our team has driven

the design requirement for DexterNet to provide maximum

flexibility and extensibility, with maximum potential for

reusability of its components.

System Architecture. The architecture of DexterNet is

shown in Figure 2. The open-source SPINE framework pro-

vides the flexibility in constructing physical components of

the system at the BSL and PNL layers. Particularly, SPINE

has been developed such that there is a separation in code of

its sensing, processing, and communication functions. As

a result, SPINE is portable across TinyOS mote platforms,

and easily extends to support new sensors through the use

of sensor drivers.

Figure 2. The architecture of DexterNet. The PNL in-

cludes a portable base station (such as the Nokia N800 wire-

less tablet) and associated sensors. The GNL includes our

applications built with the DexterNet system.

Equipped with the versatile three-layer architecture and

the open-source on-node library SPINE, DexterNet presents

a competitive framework to support a variety of applications

in healthcare, military, and consumer electronics. For ex-

ample, a fall detection function has been implemented at

the BSL level using SPINE on-node functions. In our im-

plementation, each motion sensor is capable of outputting

a binary decision of a falling event. Such functions reduce

the amount of data that has to be transmitted between the

nodes and the base station. More sophisticated applications

such as human activity recognition can be implemented at

the PNL level, which relies on the full-body motion data

measured at different key locations of the body. Each of our

applications, including avatar visualization, action recogni-

tion and asthma studies, is built on top of the SPINE API.

They each configure the appropriate sensors and on-node

signal processing according to their specific goals and re-

quirements. These applications need not depend on any spe-

cific sensor drivers. Furthermore, developers can simultane-

ously work on application-level software as well as SPINE

software without the tight coupling required in traditional

application-specific sensor network systems.

2 Hardware

The heterogenity of DexterNet allows a wide variety of

sensors and motes to be integrated into the system. Dexter-

Net currently supports three types of sensors that measure

physiological parameters, motion of the body, and the loca-

tion of the wearer using Global Positioning System (GPS).

For example, the Intel SHIMMER mote has an onboard ac-

celerometer, MicroSD slot, and ADC converters for attach-



ing external sensors. The MICAz mote has many sensors

available as addons, including sensors such as GPS, humid-

ity, barometric pressure, ambient light, sound, magnetome-

ter, etc.

We have recently designed a custom-built motion sensor

node with a triaxial accelerometer and a biaxial gyroscope

(as shown in Figure 3). The node incorporates a TelosB

mote for wireless network communication and on-node sig-

nal processing. The mote uses 802.15.4 wireless proto-

col and can achieve approximately 64 Hz maximal sam-

pling rates when raw measurement data are desired. Sim-

ple signal processing tasks can be done in real-time with

the on-board MSP430F1611 microcontroller running at 8

MHz clock frequency with 10 kB of internal RAM. The

MSP430 also conducts the conversion of analog measure-

ment signals to digital with 12 bit resolution. The capacity

of the battery is 600 mAh, which supports maximum con-

tinuous measurement and wireless raw data output for ap-

proximately 20 hours. One advantage of our motion sensor

design is its low cost compared to other commercial systems

(e.g., SHIMMER), which often are more expensive and do

not necessarily support open-source development.

Figure 3. Illustration of the motion sensor node. The sen-

sor board on the top is a custom-built motion sensor with a

triaxial accelerometer and a biaxial gyroscope. The middle

layer is a Li-ion battery. The sensor board on the bottom is

a standard TelosB network node.

In addition, a physiological sensor node [13] has been

designed to expand the available functionalities for poten-

tial healthcare applications (as shown in Figure 4). There

have been multiple BSN projects that measure heart ac-

tivity (ECG signal) and/or breathing measurement. Un-

fortunately, the existing systems so far only measure the

rate of breathing and neglect a more essential parameter

of breathing, namely, the volume. In physiology of human

metabolism, the respiration rate is merely an indirect and

unreliable indicator of the minute volume parameter.

The communication, signal processing, and battery com-

ponents of the sensor are interchangeable with the respec-

tive components of the previous motion mote. The sen-

sor board uses four electrodes connected to the surface of

the ribcage. The same electrodes are used for both heart

and breathing measurement. Breathing is measured us-

ing electrical impedance pneumography (EIP), which in-

volves feeding a very small constant high frequency cur-

Figure 4. Illustration of the physiological sensor board

(top) connected to the TelosB network node (bottom). The

middle layer is a Li-ion battery.

rent through the thorax and measuring the voltage created

by the current. Changes in the voltage are proportional to

changes in the conductivity of the thorax caused by breath-

ing. Inspiration increases the impedance due to increased

low-conductivity air content in the measurement region and

anatomical changes in the thorax. Expiration lowers the

impedance due to the opposite behavior. The raw measure-

ment signals are interpreted to derive physiological parame-

ters: inspiration-expiration times, tidal volume, minute vol-

ume and their associated variabilities.

The EIP breathing measurement is challenging to ana-

lyze and prone to distortion, partly because the shape of the

waveform is important. On the other hand, the ECG signal

acquisition is rather trivial, because in heart rate analysis

one is mainly interested in detecting the time moments of

heart contractions occurring as so-called R-peaks. From the

raw measurement, the heart rate and heart rate variability

can then be derived. With multivariate analysis, the EIP and

ECG parameters can be used for a variety of higher level

long-term derivations, such as the energy expenditure esti-

mate. Some representative physiological output from the

sensor is demonstrated in Figure 6.

3 The SPINE Framework

SPINE (Signal Processing In Node Environment) 1 is

an open-source framework for distributed signal process-

ing algorithms in wireless sensor networks (WSNs). The

functional architecture of SPINE is shown in Figure 5. It

provides a set of on-node services that can be tuned and

activated by the user over the air depending on different

application needs. The open-source framework speeds up

the design of WSN applications through high-level abstrac-

tions and provides support to quickly explore implementa-

tion tradeoffs through fast prototyping. SPINE also pro-

vides an efficient wireless communication protocol for dy-

namic network configuration and management.

The SPINE framework has two main modules, one on

the sensor node side, and the other on the base station side.

The node module is developed in TinyOS. It provides the

1The SPINE software is available for download at http://spine.

tilab.com/.



Figure 5. The SPINE functional architecture.

following three on-node service components: 1. Communi-

cation. 2. Sensing. 3. Signal processing.

The communication component serves to arbitrate the ra-

dio and to fragment long payloads into multiple outgoing

messages as necessary. SPINE has been recently updated

to make use of the MAC Layer Architecture (MLA) por-

tion of the Unified Radio Power Management Architecture

(UPMA) described in [7]. UPMA provides a set of TinyOS

components for developing MAC and power management

protocols, and provides the flexibility to choose from sev-

eral MAC protocols when compiling a TinyOS application.

Of those provided by UPMA at this time, which include B-

MAC, X-MAC, SCP and 2 TDMA variants, X-MAC and

SCP provide the best performance in terms of throughput

and duty cycle. While TinyOS 2’s radio low power mode for

cc2420 radio equipped motes is an X-MAC variant, UPMA

in SPINE allows the flexibility to develop and swap in op-

timized TDMA or other MAC protocols as necessary based

on energy, throughput, or latency concerns.

The sensing module encapsulates active sensors in in-

stances of a common interface, allowing them to be ac-

cessed in generic fashion by signal processing components.

The interface identifies each sensor, which may have from

one to four associated data streams or channels. This, for

instance, encapsulates a triaxial accelerometer as a single

sensor with three channels. When a new sensor is intro-

duced, a wrapper is built for its driver, at which point it is

immediately made available to all existing signal processing

features on that node. Since this wrapper does not contain

communication or other logic, it can be written rapidly and

easily debugged.

The signal processing component provides two differ-

ent modules, and has been designed to be expandable to

include new modules. The first, called the FeatureEngine,

periodically performs feature extraction on a sliding win-

dow of sensor data and reports it. The length of that win-

dow, as well as the number of new samples buffered at a

shift, is specified during over-the-air setup. The second

module, the AlarmEngine, reports chosen features (speci-

fied in same manner as those in the FeatureEngine) condi-

tionally based on some thresholds. Both the FeatureEngine

and AlarmEngine make use of a library of feature extrac-

tion functions. Those currently available in the library in-

clude Min, Mean, Max, Amplitude, Median, Mode, Range,

Standard Deviation, Variance, and Energy.

The server module is implemented in Java SE and acts as

the coordinator of a sensor network. It provides an API to

control on-node services depending on the application re-

quirements. This has allowed us to deploy the server mod-

ule on the Nokia N800 tablet, as well as on Mac, Windows,

and Linux desktop and laptop PCs. The module can be

ported to other portable platforms that support embedded

Linux OS and the Java environment (e.g., Motorola E680i).

The N800 we choose to demonstrate in this paper provides

a platform for Bluetooth and Wi-Fi connectivities to allow

forwarding of data to the GNL. It allows the realization of a

body sensor network that can operate both inside the home

and outdoor, a key feature for supporting a wide variety of

human monitoring applications.

4 Applications

4.1 Body Action Monitoring

Utilizing the motion data from a distribution of body sen-

sors, DexterNet can be engaged in a variety of applications

to monitor human actions/activities. We have designed an

application called Avatar, which uses a network of motion

sensors to reconstruct and visualize the wearer’s full-body

motion in real time. The application can be used to remotely

monitor and assess the well being of elderly people living

alone. It can also be used in tele-healthcare for physicians

to remotely record and visualize the movements of patients.

For the purpose of visualizing motion, a configuration of

five nodes (one on each leg, one on each arm, and one on the

torso) are the minimum number of sensors required. To pro-

vide finer measurement of the full-body movement, more

sensor nodes can be worn by a person. Through SPINE,

each node estimates the pitch and roll of its orientation in

space and reports this pair of values to the base station. The

orientation in space of a single sensor node is computed

based on the apparent direction of gravity as seen by the

sensor board’s accelerometer. When considered as a vec-

tor, the accelerometer will read the vector sum of gravity

and acceleration resulting in movement of the sensor board.

Under relaxed motions, the motion component of the vector

is less than 10% of the magnitude of the gravity vector. As

a result, this motion component is neglected and we contin-

uously interpret the direction of the accelerometer vector as

the direction of gravity.

In addition to using graphical avatars to visualize and

analyze human poses and movements, another application

is human action/activity recognition [18]. First, we have

constructed an open-source benchmark database for human

action recognition using DexterNet called Wearable Action



Recognition Database (WARD)2. The database was con-

structed over the course of two weeks in an indoor environ-

ment. The data were sampled from 7 female and 13 male

subjects (in total 20 subjects) with ages ranging from 19 to

75. The current version, version 1.0, includes the following

13 action categories: 1. Stand. 2. Sit. 3. Lie down. 4. Walk

forward. 5. Walk left-circle. 6. Walk right-circle. 7. Turn

left. 8. Turn right. 9. Go upstairs. 10. Go downstairs. 11.

Jog. 12. Jump. 13. Push wheelchair.

We have studied a distributed recognition algorithm to

classify human actions using the low-bandwidth motion

sensors, called distributed sparsity classifier (DSC) [18].

DSC classifies human actions using a set of training motion

sequences as prior examples. It is also capable of rejecting

outlying actions that are not in the training categories. The

classification is operated in a distributed fashion on individ-

ual sensor nodes and a base station computer. More impor-

tantly, the algorithm is robust and adaptive to the change

of active sensors in a body network on-the-fly due to either

sensor failure or network congestion. The recognition pre-

cision only decreases gracefully using smaller subsets of ac-

tive sensors. Table 1 shows the recognition accuracy w.r.t.

different configurations of the body sensor network. The

numbering of the sensors is: 1. Left wrist. 2. Right wrist.

3. Waist. 4. Left ankle. 5. Right ankle. The two indices

are false positive rate (FPR) and verification rate (VR). The

high recognition accuracy on the WARD database indicates

that DSC should be able to classify other action categories

such as bicycling, golfing, and possibly hand motions.

Table 1. Accuracy of DSC using up to 5 wearable

motion sensors in WARD.

Sen # 1-5 1,3,4 1,4 1,3 3,4

FPR [%] 7.14 8 11.49 17.97 14.63

VR [%] 94.59 96.84 98.19 95.57 97.28

4.2 Public Health

DexterNet has many applications within the field of pub-

lic health, where the ability to objectively monitor the ac-

tivity patterns of users may improve understanding of ex-

posures to environmental hazards such as air pollution that

are associated with asthma attacks, chronic obstructive pul-

monary disease (COPD), cardiovascular disease, as well

as premature mortality. While others have studied the en-

vironment (e.g., air pollution) using participatory sensing

approaches, our approach focuses on better understanding

when and in what environments personal activities occur

and the corresponding physiologic responses to these ac-

tivities, as measured by a combination of motion, physi-

ological, and GPS sensors. In particular, the addition of

2WARD is available for download at: http://www.eecs.

berkeley.edu/˜yang/software/WAR/.

the physiological sensor provides a mechanism to monitor

physiological responses to such exposures in real time that

may be predictive of severe disease events (e.g., a heart at-

tack or an asthma attack). The inclusion of geographic loca-

tion data from the GPS is also important to understand the

underlying environmental context for such applications.

To evaluate the DexterNet system, we have conducted

a field experiment in which the system was used to collect

and process an integrated set of data related to an individ-

ual’s outdoor experience. The experiment consisted of a se-

ries of prescribed walks. A convenient sample of six adults

(five male and one female) were asked to walk a 2.4 km

route. The walk included sections that were uphill, down-

hill, and flat, as well as sections that were along a busy

roadway, a downtown commercial/retail area, as well as a

calmer path through a university campus. Over the course

of the walk, various sensor data were logged, including tri-

axial accelerometry and biaxial gyroscopy (at the left wrist,

waist, and left ankle positions), and GPS. The motion data

were logged at 40 Hz. GPS was logged at 1 Hz. These data

were combined and processed to ascertain specific informa-

tion on the individual’s experience (e.g., assessing the mag-

nitude of physical activity at certain geographic locations).

Figure 6 illustrates the GPS trace of the walking route. The

application determines the changes in elevation during the

walk from the GPS data. The motion sensor at the waist was

used to derive the energy expenditure using the Generalized

Linear Model [5]. The breathing minute ventilation is de-

rived from the EIP signal [13]. Heart rate is obtained from

the ECG signal using a simple R-peak detection algorithm.

5 Discussion

In this paper, we have discussed DexterNet, a novel plat-

form for heterogeneous body sensor networks. The key at-

tributes of DexterNet are manifold: 1. It promotes an open-

source sensor environment that supports on-node compu-

tation, robust sensor communication, and online reconfig-

urable network management. 2. The platform is versatile

enough to support a variety of existing body sensors and

other future sensors that comply with the SPINE specifi-

cations. 3. Through a hierarchy of three network layers, it

resolves the dependency of higher-level applications toward

the implementation of wireless body sensors and communi-

cation protocols.

There are numerous potential services that may be im-

plemented through DexterNet, especially in the area of pre-

ventive healthcare. For example, it is possible through the

classification algorithms described to identify conditions

that are predictive of asthma attacks and warn users to re-

duce physical activity and/or move indoors. Such systems

can also create maps of microscale air pollution when they

are deployed in sufficiently large numbers.
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Figure 6. GPS trace of campus walk with derived information from GPS, motion sensor, and physiological sensor. Circles on the

map indicate elapsed time in minutes.
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