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We show that Bessel-function acoustic pressure fields can be used to trap and controllably position

microparticles. A circular, 16-element ultrasound array generates and manipulates an acoustic field

within a chamber, trapping microparticles and agglomerates. Changes in the phase of the

sinusoidal signals applied to the array elements result in the movement of the Bessel-function

pressure field and hence the microparticles. This demonstrates ultrasonic manipulation analogous

to holographic optical tweezers. The manipulation limits of the device are explained by the

existence of unwanted resonances within the manipulation chamber. VC 2013 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4798584]

The acoustic radiation force is a nonlinear wave phenom-

enon best known for levitation experiments developed to

create micro-gravity environments1 and containerless proc-

essing of centimetre scale objects.2 Insects and small swim-

ming organisms have also been levitated acoustically.3,4 The

application of standing acoustic waves for filtering or

concentrating5–7 and patterning8,9 of microscale particles,

including cells and bacteria in the size range 0.1�100 lm,

has been described. Typically such devices operate in the

1�10MHz frequency range, corresponding to wavelengths

of approximately 1500-150lm in water. A 10:1 ratio of

wavelength to particle size results in excellent particle local-

isation at the pressure nodes, and ratios of up to 150:1 have

demonstrated localisation.9 This makes acoustic tweezers

complimentary to optical tweezers10 as they are able to

manipulate larger objects and cell agglomerates.11

Under Rayleigh-scattering conditions, the wavelength is

larger than the particle size, and the acoustic radiation force

due to a standing wave is governed by the spatial gradient

of the acoustic pressure in the vicinity of the particle, i.e.,

F ¼ �rU, where U is a function of the wave energy, often

called the potential energy landscape.12 To date, standing

waves have been used in all applications of acoustic radia-

tion forces for particle manipulation as they result in orders

of magnitude higher forces than progressive waves.12 In

plane standing waves, particles with densities and stiffnesses

greater than the medium experience forces towards pressure

nodes, with amplitudes dependent on their size; this is the

basis for particle filtering and sorting devices.13 The distribu-

tion of particles into various simple geometric patterns,

including lines as well as square and hexagonal grids, has

been demonstrated in the production of nanostructured mate-

rials9,14 and engineered tissue.15,16 The trapping patterns can

be manipulated (i.e., nodal pattern stretched) by using

changes in frequency17,18 and amplitude.19 Recently, it has

been shown that such patterns can be translated if the sources

are acoustically matched to the fluid, by varying the relative

phases of the counter propagating waves.20,21

Various attempts have been made to increase dexterity,

by allowing individual microparticles or agglomerates to be

trapped and manipulated independently. Wu and Du22 sug-

gested then realised23 focused beams to create spatial gra-

dients of acoustic pressure and hence trap particles. Particles

were translated relative to a chamber by physically moving

the focusing sources. Similarly, particles have been trapped

in the high spatial gradients within the near field of a planar

source.24 More closely following optical tweezing, acoustic

trapping has also been demonstrated in the high frequency,

Mie scattering, regime in which the wavelength is smaller

than the particle using focused25–27 and zeroth-order Bessel

beams.28,29 Particles have also been trapped using a resonant

field between an element of a linear array and a reflector and

then translated by switching elements.30

Acoustic vortices are characterized by a phase depend-

ence around an axis given by exp(imh), where h is the azi-

muthal angle and the topological charge, m, is an integer that

determines the number of 2p phase changes around the

axis.31 Helicoidal beams having the additional property of

propagation along the central axis have attracted significant

theoretical and experimental interest. In particular, it has

been demonstrated that helicoidal beams can impart angular

momentum to objects.32–34

Helicoidal beams with m¼ 1 have been generated at rela-

tively low frequencies (100 kHz) using four piezoelectric

plates driven sinusoidally with p/2 phase delay between adja-

cent plates.35 Models indicate that a similar device, designed

to operate at megahertz frequencies, could be used to trap

microparticles.36 However this approach, using propagating

helicoidal beams, leads to radial pressure distributions with a

nodal spacing of several wavelengths, resulting in relatively

small gradients in the potential energy landscape hence neces-

sitating large (MPa) acoustic pressures to produce moderate

(pN) forces. The approach proposed in this letter generates a
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stationary Bessel function field without axial propagation,

with a nodal spacing of less than a wavelength, greatly

increasing the potential gradients.

This letter demonstrates experimentally the generation

of acoustic vortices, without axial propagation, and their

application to microparticle manipulation. Our approach is to

use a circular array of transducers, with appropriate drive sig-

nals, to generate and control the acoustic field and therefore

create and move traps. The array-based device operates anal-

ogously to a holographic optical tweezer37,38 and can thus, in

principle, create complex acoustic fields to realise dexterous

trapping and manipulation. Here trapping and manipulation

is demonstrated with first order Bessel-function acoustic pres-

sure fields.

In order to generate acoustic vortices in a fluid filled

chamber, a 16-element circular array was fabricated from a

piezoceramic ring (Fig. 1). An acoustic vortex with topologi-

cal charge, m, will be generated if the sinusoidal drive

signals are phased such that there is a ramp of 2mp phase

delay around the array: i.e., if the relative phase, /n, of the

signal applied to each of the N elements, n¼ 1, 2, 3,…, N is

given by

/n ¼
2mpðn� 1Þ

N

� �

: (1)

The resulting pressure field in the chamber approximates a

Bessel function given by

pðr; hÞ ¼ P0JmðkrÞe
imh

; (2)

where (r, h) are polar coordinates with an origin at the center

of the Bessel function, coincident with the center of the array

for the phases given in Eq. (1), and P0 defines the peak pres-

sure amplitude and Jm(x) is an mth order Bessel function of

the first kind. Note that the forces on a particle in a pressure

field given by Eq. (2) can readily be computed using

Gor’kov’s equations.12 for m¼ 1, the central (r¼ 0) pressure

node coincides with a velocity anti-node, ensuring that par-

ticles that are denser and stiffer than the fluid medium will

experience a force acting to trap them at r¼ 0. Further pres-

sure nodes form concentric circles around the center and are

not coincident with velocity anti-nodes. The location of trap-

ping in these regions depends on both the pressure and veloc-

ity contributions to the potential energy landscape, U. For

the particles used in this work, the pressure contribution

dominates and trapping of particles in concentric rings corre-

sponding to the pressure nodes is expected. The origin of the

generated Bessel function can be translated, to a target

position (rT,hT), by applying further phase delays propor-

tional to the distance rn between the target position and each

element n. An mth-order Bessel-function pressure field cen-

tered on (rT,hT) is generated by using a sinusoidal drive sig-

nal with relative phase, /n
0, applied to each element

/n
0 ¼

2mpðn� 1Þ

N
� krn

� �

: (3)

However, where a finite number of elements are used alias-

ing effects restrict the distance which the target position can

be moved from the array center while maintaining a pressure

field of the form given by Eq. (2). A previous work by the

current authors39 showed analytically that the distance of the

center of the pressure field from the center of the array was

limited by aliasing to

rT <
1

2

ðN � mÞ

pe
k; (4)

where k is the acoustic wavelength in the fluid medium fill-

ing the chamber. For a 16-element array and a 1st order

Bessel function (m¼ 1), rT < 0.88 k.

Figure 1 shows the configuration of a 16-element array

with a water-filled chamber used to demonstrate the manipu-

lation of particles using first order Bessel functions. The de-

vice was fabricated from a piezoceramic ring (material:

PZ27, Meggitt Ferroperm, Denmark) of internal radius,

R¼ 5.49mm, wall thickness t¼ 0.87mm, and height

h¼ 1.60mm. The ring was backed with an absorbing back-

ing layer (epoxy with 60% by weight alumina added) and

diced into 16 elements of internal circumferential width

2.16mm. The array was operated at fe¼ 2.35MHz, the first

thickness extensional resonant frequency of the elements.

This corresponds to a wavelength in water, k¼ 622 lm, and

a central region of control of radius rT¼ 560 lm (Eq. (4)).

The pressure field generated by the array causes no force per-

pendicular to the plane of the ring, i.e., in the vertical direc-

tion when the ring is horizontal. Therefore, to prevent

settling due to gravity, a resonant levitation stage was added,

consisting of a piezoelectric plate below the chamber and a

glass-coverslip reflector above. Operating at 2.45MHz and

14 Vpp, this acted to trap the particles in horizontal planes

one above the other, on which the circular array could act for

manipulation.

Figure 2(a) shows trapping of 10-lm-diameter polysty-

rene spheres by the zeroth-order Bessel function pressure

field generated by applying the same 12 Vpp sinusoidal sig-

nals to all 16 elements (i.e., driven in-phase). As expected,

FIG. 1. Diagrams of the experimental

apparatus showing (a) the 16-element

circular array device and the expected

Bessel-function acoustic pressure field,

(b) construction detail of one piezoelec-

tric element of the array, and (c) a sche-

matic of the device showing the

coordinate system.
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the particles migrate towards the pressure nodes, which

occur in a series of concentric rings. Figure 2(b) shows trap-

ping of the particles at the center of a first-order Bessel func-

tion. Here, 12 Vpp sinusoidal signals were applied to the

array elements with phases determined from Eq. (3) with

m¼ 1 and rn¼R. A further circular trap at 0.61 k (0.39mm)

corresponding to the second zero of the first-order Bessel

function can also be seen.

The central trap in Fig. 2(b) can now be used to manipulate

agglomerates. 10-lm-diameter polystyrene microspheres were

added to the chamber and trapped vertically with the levitation

transducer. First, the array was used to trap an agglomerate of

20 particles in the center of the chamber (12 Vpp, m¼ 1 and

rn¼R). Second, using Eq. (3), the trap position was moved in a

series of concentric circles of increasing radius (12 Vpp,m¼ 1).

Figure 3 shows the achieved positions (rR,hR) of the agglomer-

ate center, with the target positions (rT,hT) shown for compari-

son (see supplemental material40). The agglomerate can be

manipulated up to rT¼ 160lm, but the trap fails and the

agglomerate is lost at greater distances. Figure 3 shows some

discrepancy between the desired position (rT,hT) and the actual

position (rR,hR) of the trap which is caused by the simplifying

approximations used to derive Eq. (3), particularly the assump-

tion of identical sources and negligible reflections within the

chamber and the omission of any effects of the levitation field,

which may not be entirely homogenous. An agglomerate of

7 particles, closely packed in a plane, was trapped and manipu-

lated in a series of discrete steps (see supplementary mate-

rial40). The peak velocity of the agglomerate was 65 lm/s, and

assuming that the motion is limited by the viscous drag and the

agglomerate has an equivalent spherical diameter of approxi-

mately 20lm, this indicates an acoustic radiation force on the

agglomerate of the order of 10 pN.

More accurate manipulation requires either a more exact

model, such as that considered by Grinenko et al.,39 or some

FIG. 3. Manipulation of 10lm polystyrene

microspheres. The particles are manipulated in a

series of five concentric circles. (a) shows the

desired positions (dashed red line and squares)

and the locations achieved experimentally when

the device is controlled using Eq. (3) (blue

circles). The outer set of experimental values is

incomplete due to the trap failing. Insets (b) and

(c) show the desired (dashed red) and experi-

mental (blue solid) locations in the x- and y-

directions, respectively.

FIG. 2. Photographs of particles trapped using

(a) a zeroth-order Bessel function of the first

kind and (b) a first-order Bessel function of the

first kind.

FIG. 4. Manipulation of an agglomerate of 10lm polystyrene microspheres

in a figure of eight. 14 separate photographs were summed to create this

composite view. The contrast was adjusted and a false red colour added to

aid viewing.
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form of feedback and adaption. The most straightforward

feedback method, where trap positions are observed and then

the drive signals adjusted manually, was used to move an ag-

glomerate through a figure of eight, with a maximum dimen-

sion of 170 lm. The results are shown in the composite

photomicrograph in Fig. 4. It is interesting to note that the

agglomerate does not rotate and maintains an approximately

fixed orientation with respect to the pressure field. We postu-

late that this is because a combination of imperfections in

the generated Bessel field and the asymmetry of the agglom-

erate result in stable circumferential gradient forces that

exceed the torque due to the acoustic vortex.

The translation of the origin of the Bessel function to

(rT,hT) is achieved if two conditions are met, one is that rT
obeys Eq. (4), and the second is that there are no reflections

in the chamber. Reflections within the chamber build up into

resonances with fixed nodal positions creating an unwanted

acoustic pressure distribution that competes with the desired

Bessel-shaped distribution. Figures 5(a)–5(e) shows five

images of the central region of the fluid-filled chamber, as rT
is increased from 0 to 200 lm, taken with a schlieren optical

system, which uses changes in refractive index to image the

variation of acoustic pressure amplitude. For these measure-

ments, the levitation transducer was removed and replaced

with a transparent glass coverslip, to allow imaging through

the chamber and the device was mounted vertically on an op-

tical bench in the optical path of the schlieren system. For

comparison, Figs. 5(f)–5(k) shows the normalised pressure

amplitudes calculated using a Huygens’ model. As this

model includes only direct contributions for each element

and excludes boundary effects, it represents the best possible

approximation to a first order Bessel function possible for an

idealised device using 16 elements. The schlieren images

demonstrate that a trap, consisting of a pressure node sur-

rounded by a pressure anti node, can be generated at the cen-

ter of the trap. There is some non-uniformity in the trap and

this grows as the trap is moved from the chamber center.

This distortion is responsible for the loss of manipulation for

rT > 160 lm. Note that the wavelength at this frequency is

622 lm and so a simple planar standing wave across the

chamber would result in unwanted traps at rT¼ 156 lm (k/4)

from the center. This agrees well with the experimental find-

ing that trapping is difficult beyond rT¼ 160 lm from the

center.

In conclusion, it has been demonstrated experimentally

that acoustic vortices can be used to trap agglomerates of

10 lm diameter microparticles in water. The pressure distri-

butions were produced using a circular array of 16 piezoelec-

tric elements. By application of appropriately phase delayed

sinusoidal signals to the elements, the pressure field in the

center of the array could be made to approximate a first-

order Bessel function of the first kind centered at any point

within 160 lm of the center. The position of agglomerates

trapped in the central node of the pressure field was con-

trolled by moving the center of the Bessel function. The

region in which trapping is possible is limited in principle

by the number of elements and in practice by resonance

within the device. This suggests ways to improve the dexter-

ity: increasing the number of elements to increase rT, and

adding acoustic matching and damping layers to reduce the

unwanted geometric resonances.

This work has been funded by the Engineering and

Physical Science Research Council, UK through the

Electronic Sonotweezers programme.
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