
DF-PN IN GO: AN APPLICATION TO THE ONE

EYEPROBLEM

A. Kishimoto, M. Miiller
Department of Computing Science University of Alberta

Edmonton, Canada, T6G 2E8

{kishi,mmueller}@cs.ualberta.ca, http://www.cs.ualberta.carkishi/

Abstract Search algorithms based on the notion of proof and disproof numbers have been

shown tobe effective in many games. In this paper, we modify the depth-first

proof-number search algorithm df-pn, in order to apply it to the game of Go. We

develop a solver for one-eye problems, a special case of enclosed tsume-Go [life

and death] problems. Our results show that this approach is very promising.

Keywords: Go, proof-number search, df-pn, one-eye problem

1. Introduction

Computer Go is one of the ultimate challenges for games researchers. Despite

a lot of efforts, the best programs can stiU be easily beaten even by human players

of moderate skil1.

One weakness of current Go programs is recognizing whether groups are

alive or dead. Such tsume-Go (life and death) problems play a critica! role in

deciding the outcome of many games. Currently most Go-playing programs

rely on a combination of exact and heuristic rules to evaluate tsume-Go (Chen

and Chen, 1999; Kraszek, 1988). However, this approach does not always

guarantee the correctness of the results.

In general, search is the only way to assess correctly the life-and-death status

of stones. However, the large branching factor of Go makes it hard to apply a

purely search-based approach. For enclosed.tsume-Go problems with a sma11 to

moderate branching factor, the state ofthe artis already very good. GoTOOLS,

the currently best tsume-Go solver, achieves high dan amateur level (Wolf,

2000). Search-based approaches have been very successful in other games such

as chess, Othe11o, and shogi. In particular, in tsume-shogi (shogi checkmating

problems), algorithms using proof and disproof numbers such as Seo's PN*

and Nagai's df-pn (Seo, 1995; Nagai, 2002) have solved ali difficult problems,

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

126 A. Kishimoto, M. Muller

including those with solution sequences ofhundreds of plies. Their perfonnance

far surpasses that of human players.

In this paper, we adapt the df-pn algorithm to the game of Go, and apply it to

a restricted version of tsume-Go: the problem of making one eye in an enclosed

position. This special case can be solved with a simpler evaluation function,

but retains ali the search-related difficulties of tsume-Go. To our knowledge,

this is the first attempt to apply df-pn to computer Go. Our results are very

promising. Even with very modest game-specific enhancements, our df-pn

based solver can quickly solve enclosed positions up to about 18 empty points.

This compares favourably to state of the art tsume-Go sol vers, which can sol ve

general tsume-Go problems of up to about 14 empty points in reasonable time.

The structure of this paper is as follows. Section 2 describes the one-eye

problem in Go and related work on tsume-Go. Section 3 reviews the df-pn

algorithm. Section 4 explains a problem of df-pn in domains with position

repetition, and develops a solution. Section 5 describes the basic one-eye solver

and a few problem-specific enhancements. Section 6 deals with our current

implementation of ko threats. Section 7 discusses the experimental results.

Section 8 concludes and outlines further research directions.

2. The One-Eye Problem in Tsume-Go

The one-eye problem in Go is the question whether a player can create an

eye connected to the player's stones in a given region. Although the problem

is simpler than full tsume-Go, it has many issues in common. For example,

every tsume-Go problem in which the group under attack already has one eye

in some region reduces to the one-eye problem on the rest of the board.

A specialized one-eye solver also promises tobe useful to enhance the knowl

edge in a heuristic Go program. Typical current programs use elaborate heuristic

rules to assign statically a number of eyes to a region of the board (Chen and

Chen, 1999; Fotland, 2002). Replacing some of these heuristics py exact results

can improve group strength estimation and thereby overall position evaluation.

A one-eye problem in a given Go position is defined by the following inputs.

• The two players, called the defender and the attacker. The defender tries

to make an eye and the attacker tries to prevent it.

• The region, a subset of the board. At each turn, a player must either make

a legal move within the region or pass. ·

• One or more blocks of crucial stones of the defender. The defender wins

a one-eye problem by creating an eye connected to ali the crucial stones

inside the region. The attacker can win by either capturing at least one

crucial stone, or by preventing the defender from creating an eye in the

region.

• Safe attacker stones which surround the region together with crucial de

fender stones.

Df-pn in Go: An Application to the One-Eye Problem

Figure 1 shows an exam

ple of a one-eye problem.

Black is the defender and

White is the attacker. Cru

cial stones are marked by

triangles and the region is

marked by crosses. Black

must make an eye inside

the region, while White tries

to prevent that. There are

unsafe stones at C6, E7,

and H6. If these stones

are captured, a player might

play at such a point !ater,

so they are part of the re

gion.

A C D E F G H J

9

8 ~~~~~~·~·~==~~====~'

7

6

5

4

3

127

9

8

7

6

5

4

3

Figure 1. Example of a one-eye problem (Black to Ii ve).

2.1 Related Work on Tsume-Go

Wolf's (1994) GoToOLS is the currently best tsume-Go solver that spe

cializes in solving completely enclosed positions. GoTooLs contains a so

phisticated evaluation function that includes dynamic aspects, powerful rules

for life-and-death recognition, and learning dynamic move ordering from the

search (Wolf, 2000). Most competitive Go programs also contain a tsume-Go

module. The commercial database TSUME-Go GOLIATH uses a proof-number

search engine to check the user's inputs.

3. Df-pn: Depth-First Proof-Number Search

In this section we give an overview of the standard df-pn algorithm. Nagai's

(2002) thesis is available for a detailed explanation.

3.1 Proof and Disproof Numbers

Proof and disproof numbers and Allis' proof-number search (PNS) (Allis,

Van der Meulen, and Van den Herik, 1994) are the basis of this algorithm. The

proof number of a node in an AND/OR tree is defined as the minimum number

of leaf nodes that must be proven to prove the node for the first player, while the

disproof number is the minimal number of leaf nodes that must be disproven

(proven a win for the second player) in order to disprove the node. Proof and

disproof numbers can be viewed as an estimate of how easy it is to prove or

disprove a tree.

128 A. Kishimoto, M. Miiller

Proof-number search (PNS) maintains a proof number and a disproof number

for each node. The leaf node to expand next is chosen in a best-first manner.

Starting from the root, PNS traverses the tree by continuously selecting a child

whose (dis)proof number is minimum at OR (AND) nodes, until it reaches a

leaf node called a most-proving node. PNS expands that node and recomputes

the proof and disproof numbers on the path to the root. This process continues

until the root is either proven or disproven.

3.2 The Df-pn Algorithm

Df-pn (Nagai, 2002) turns PNS into a depth-first search algorithm by gener

alizing ideas behind Seo's (1995) PN* algorithm. As a depth-first search, df-pn

can expand less interior nodes and use a smaller amount of memory than PNS.

Like PNS, it always expands a most-proving node.

Figure 2, adapted from Nagai (2002) , presents pseudocode of the df-pn

algorithm. Df-pn utilizes two thresholds, one for proof numbers and one for

disproof numbers. For the sake of simplicity, the code is written in the negamax

form, because disproof numbers are a dual notion of proof numbers. For each

node n, two variables <P and 8 are defined as follows:

{
pn(n) (nisan OR node)

n.</J - dn(n) (nisan AND node)

{
dn(n) (nisan OR node)

n.8 = () pn n (nisan AND node)

While the iterative deepening method usually has a global threshold, df-pn's

thresholds work as local thresholds at each recursive caii. This approach is

similar to recursive best-first search (Korf, 1993). The main function Df-pn

initializes both thresholds to infinity, and then calls the recursive function MID

that iterates over nodes. When returning from MID, the root node is either

proven or disproven. MID traverses the subtree below node n ,in a depth-first

manner. It explores nodes while proof or disproof numbers do not exceed the

threshold, or until it finds a terminal node that determines a winner. In the code,

IsTerminal checks if nisa terminal node, while WinforCurrentNode checks

whether a terminal node is a win or a loss. When a node n is expanded, the

best child ne in terms of proof and disproof numbers is selected by SelectChild

for a recursive caii to MID with the following new thresholds: nc.8 is set to

the minimum of the current threshold for n and the value when n's child with

the second smallest 8 becomes the most-proving node during the exploration

of nc's subtree. Note that n.</J corresponds to nc.t5 because of the negamax

formulation. nc.</J works like the cost function of the IDA * algorithm (Korf,

1985).

Because df-pn is an iterative-deepening method that expands interior nodes

again and again, the heart of the algorithm is the transposition table, a large

Df-pn in Go: An Application to the One-Eye Problem

11 Set up for the root node

înt Df-pn(node r) {

11 Select the most promising child

node SelectChild(node n, int &r/Jc,

129

r.r/J = oo; r.8 = oo;

MID(r);

înt &8c, înt &82) {

}

if(d = oo)

return win_for _root;

else

return loss_for _root;

11 Iterative deepening at each node

void MJD(node n) {

Tflookup(n,rjJ,8);

}

if(n.r/J $ rjJ 11 n.8 $ 8) {
11 Ex.ceed thresholds

n.f/J = 1/J; n.8 = 8;

re turn;

}
/1 Terminal node

îf (lsTerminal(n)) {

}

if (WinforCurrentNode(n)) {

n .f/J = O; n .8 = oo;

return;

} else {

n .I/J = oo; n .8 = O;
return;

}

GenerateMoves(n);
11 Store larger proof and disproof

11 numbers to detect repetitions

TTstore(n,n.tjJ,n.8);

11 lterative deepening

while (n.4> > D.Min(n) &&

}

n.8 > <I>Sum(n)) {

ne = SelectChild(n,4>c.8c,82);

11 Update thresholds

ne .tj; = n .8 + tPc - <I>Sum(n);

nc.8 = min(n.r/J,82 + 1);

MID(nc);

11 Store search results

n.f/J = D.Min(n); n.8 = <I>Sum(n);

Tfstore(n,n. 1/J, n.8);

}

node nbest;

8c = rPc = oo;
for (each child nchitd) {

Tflookup(nchitd.r/J,8);

11 Store the smallest and second

11 smallest 8 in 8c and 82

îf(8 < Oc) {

nbe.t = nchild;

82 = Oc; rPc = r/J; Oc = 8;

}
else if (8 < 82)

82 = 8;

if (I/J = oo)

re turn nbu t;

11 Compute the smallest 8 of

11 n's children '

int D.Min(node n) {

}

intmin= oo;

for (each child nchitd) {

Tflookup(nchitd.4;,8);

min = min(min,O);

}
return min;

/1 Corn pute sum of 4> of n's children

înt <I>Sum(node n) {

}'

int sum =O;
for (each child nchitd) {

Tflookup(nchitd.t/J,o);

sum =sum+tj;;

}
return sum;

Figure 2. Pseudocode of the df-pn algorithm.

130 A. Kishimoto, M. Miiller

cache storing previous search efforts, i.e., proof and disproof numbers for vis

ited nodes. 1Tstore stores proof and disproof numbers of a node in the table.

1Tlookup checks the table for information on proof and disproof numbers of a

node. If no result is found, both numbers are initialized to 1.

4. Computing Proof and Disproof Numbers in Domains
with Repetitions

When we tried to apply df-pn to the one-eye problem in Go, df-pn could not

solve some easy problems. The standard df-pn algorithm has a fundamental

problem when applied to a domain with repetitions. Figure 3 shows an example.

Assume Fis unknown, then the df-pn algorithm computes pn{E) = pn(A) +
pn(F). Hence, pn(E) is larger than pn{A). Df-pn's termination condition is

(see Figure 2):

n.if; :::; ..:lMin(n) 11 n.6 :::; ~Sum(n)

Usually the threshold of the proof

number is only a little bit larger than

pn(A) when exploring A's subtree

in df-pn. Therefore, assuming that

df-pn reaches E, df-pn exceeds the

proof number threshold, stops ex

panding and updates A's proof num

ber to pn(E) = pn(A) + pn(F).

Even if E is chosen in a later iteration,

this phenomenon continues and F is

never explored. These repetitions of
ten happen in Go, because passes are o OR node o AND node

allowed. Two consecutive passes lead
back the same position in a short loop. Figure 3. A problem with repetitions in df-pn.

Adding proof numbers from an ancestor to a node seems intuitively bad,

since it leads to double-counting of the leaf nodes below. In our solution to this

problem, we classify the children of a node into two types. A field minimal

distance (md) of a node n is initially set to the length of the shortest path from

the root to n, the depth of n in the search tree. We caii a child ni normal if

ni.md > n.md, and old if ni.md :::; n.md. Among the children n1 · · ·, nk of

n, let n1 · · ·, nz {1 :::; l :::; k) be the normal and nz+I, · · ·, nk the old children.
We modify the computation of proof and disproof numbers in the following

way:

n.if;

Df-pn in Go: An Application to the One-Eye Problem

n.8 -

max n·."'
l+l::;i::;k ~ '1'

Figure 4 illustrates an example of

computing proof numbers. If Fis nei

ther proven nor disproven, then F's

proof number cannot be O. Therefore

we ignore A to compute E's proof

number, since A is an old child.

When a node has only old children,

since ali normal (and possibly some

old) children have been solved, that

node itself must be considered old,

since now there is no way to prove

l

(if L:ni.</J =f O)
i=l

l

(if L:ni.</J = O)
i=l

131

or disprove it without exploring old D ORnode o ANDnode md Minimaldistance

nodes. Therefore, the md of that node
must be updated. We set it to the min- Figure 4. Df-pn with minimal distance md.

imum of the md fields of the currently unsolved old children.

Figures 5 and 6 depict an example of updating md. In this figure, assuming

that G is proven, E now has only an old child to explore, because F is also

proven. In that case E's minimal distance is updated to A 's distance, and pn (E)

becomes pn(A). Further, C.md is set to E.md (see Figure 6). As a result,

pn(C) is now ignored in the computation of pn(B), since C has become an

old child.

Dealing with overcounting proof numbers caused by repetitions was essential

to make df-pn work in Go. We note that Nagai (2002) achieves impressive

D OR node O AND node md Minimal distance D OR nnde O ANO nnde md Minimal distance

Figure 5. Updating E's minimal distance. Figure 6. Computing C's minimal distance.

132 A. Kishimoto, M. Miiller

results with his tsume-shogi solver, and described the GHI problem, which

returns incorrect results involving cycles . However, this problem was not

described in his papers. One possibility is that although the same problem

could happen in shogi, it might happen much less often than in Go. Search

in Go can easily return to identica! states, for example by consecutive pass

moves. Another possibility is that this problem tends to happen less frequently

with additional search enhancements. Because Nagai's tsume-shogi solver is

enhanced with a great deal of domain-dependent knowledge, it might not occur

in his case in practice. However, in a personal communication the existence

of this problem in shogi was confirmed by Tsuruoka and Maruyama of team

G EKISASHI. As well, Sakuta found that df-pn did not work better than PDS

(Nagai, 1999) in his tsume-shogi solver, and gave as possible explanation the

occurrence of DCGs (Sakuta, 2001).

5. Application of Df-pn to the One-eye Problem

Below we apply the df-pn algorithm to the one-eye problem. We start with the

basic one-eye algorithm (5.1). Then we provide severa! game-specific search

enhancements (5.2). The section is concluded by a simulation (5.3).

5.1 The Basic One-eye Algorithm

The basic algorithm, due to Anders Kierulf, is quite simple, and has been

used as part of the tsume-Go search in the program EXPLORER for many years.

It detects single-point eyes and false eyes.

The algorithm checks for all points in the region whether they are a potential

eye point for the defender. Eyes are created by either surrounding empty points

or by capturing attacker stones. If a safe eye connected to the crucial stolies can

be created in the region, the defender wins. If there is no potential eye space in

the region, the attacker wins.

Whether a point E is a potential eye point is computed as follows:

• E occupied by unsafe attacker stone: yes.

• E occupied by safe attacker stone: no.

• E occupied by defender stone: no.

• E is empty: check the neighbours and the diagonal neighbours of E.

- Some direct neighbour is occupied by the attacker: no.
- E is at the edge of the board and at 1east one diagonal neighbour

contains a safe attacker: no.
- At least two diagonal neighbours contain a safe attacker: no.
- Otherwise: yes.

A potential eye point is a safe eye if ali direct neighbours and ali but one di

agonal neighbour are occupied by defender stones. All diagonal neighbours are

needed at the edge of the board. A safe eye is a defender win if the surrounding

9

8

7

6

5

4

3

2

Df-pn in Go: An Application to the One-Eye Problem 133

block is connected to crucial stones, and ali crucial stones are connected. The

search generates ali moves in the region, unless there are forced moves (see

below).

5.2 Game-specific Search Enhancements

Safety by Connections to Safe Stones. Connectivity is a fundamental as

pect of the game of Go. Most Go programs recognize connected blocks. We

use connections to promote unsafe attacker stones to safe, and to prove that a

defender eye is connected to crucial stones. Both types of connections help to

reduce the search depth.

Our current implementation recognizes simple miai strategies (Miilier, 1997)

and some protected liberties for connections. Figure 7 gives examples of the

strategy. In the left diagram, White has two ways (A and B)to connect. Even

if Black plays first, the white block marked with squares can connect to safe

stones. The stone at F6 is also safe now, because it has a connection either at C

or at D . Since there is no eye space, this position can be staticaliy evaluated as

a loss for Black. Similarly, in the right diagram in Figure 7, the connection at E

or F guarantees a win for Black. The algorithm to compute these connections

is straightforward. It checks if safe blocks S have two liberties to connect to a

block b. If this is the case, b is included in S and the two liberties are marked

to not be used for other connections. The process continues until no further

blocks can be added to S .

A B c D E F G H J A B c D E F G H J

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A B c D E F G H J A B c D E F G H J
Connection for attacker Connection for defender

Figure 7. Connections to safe stones.

9

8

7

6

5

4

3

2

9

8

7

6

5

4

3

2

134 A. Kishimoto, M. Miiller

We tind more safe stones by recog- A

nizing some forms of protected liber- 9
ties. Figure 8 shows an example. The

stone marked with a square has only 8
one connection point at B to a safe 7
white block. However, this connec

tion is safe since the stone has another 6

liberty and the opponent cannot play 5
atB.

4
Forced Moves. Forced moves are a 3
safe form of pruning when one player

threatens to win immediately. We 2

defined two kinds of forced moves,

forced attacker moves, andforced de

fender moves, which correspond to ip 1

1

A B C D E F G H J

9

8

7

6

5

4

3

2

1

or git threats in Abstract Proof Search

(APS) (Cazenave, 2002).

Figure 8. Connection to safe stones on pro-

tected liberty.

A B C D E F G H J A B C D E F G H J

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

A B c D E F G H J A B c D E F G H J

Figure 9. Forced Moves.

The first type of forced move is on a point where the defender could complete

an eye that is connected to the crucial stones. The left position in Figure 9

presents an example. Black can make an eye atA. White must play atA to stop

an immediate win for Black.

The second type of forced move is defined as follows:

1 There is no empty eye space for the defender in the region.

9

8

7

6

5

4

3

2

Df-pn in Go: An Application to the One-Eye Problem 135

2 There is exactly one unsafe attacker's block b.

3 b bas a single-move connection to safe stones. If the defender plays any

other move, the attacker can connect b to safety, leaving the defender

with no potential eye points.

For instance, in the right position of Figure 9 the move at B is forced.

Forced moves give a large reduction of the search space by decreasing the

branching factor.

5.3 Simulation

Simulation was invented by Kawano (1996) to sol ve effectively positions with

useless interposing piece drops in tsume-shogi problems . Later, Tanase (2000)

extensively applied this idea to his o:,B-search engine to reduce the overhead of

calling the tsume-shogi solver inside the normal search . Assume that P is a

proven position and Q is a "similar" one we want to prove. Simulation borrows

moves from P's proof tree to try to tind a quick proof of Q. A dual notion

called dual simulation can be used to disprove a position.

In our solver, we apply simulation and dual simulation as follows:

• At an AND node n, if one of n's children, ne, is prown at some point in

the search, apply simulation to ali unsolved children of n.

• Similarly, at an OR node n, apply dual simulation if one of n's children

is disproven.

This use of simulation is much more extensive than in tsume-shogi. See the

experimental section for a discussion.

6. Ko and Ko Threats

Sometimes the outcome of a one-eye problem depends on ko. It is therefore

important to model ko threats and ko recaptures in the search algorithm.

The approach taken in GoTOOLS canrequire severa! searches (Wolf, 1994).

The parameter to each search is how many ko recaptures are allowed for a

specified kowinner.

Our current implementation allows only two options: one is to disallow any

immediate ko recaptures; the other is to always allow ko recaptures for the

designated kowinner. We search in one or· two phases. The first search of a

position, phase 1, disallows immediate ko recaptures, but marks nodes where

such moves exist. lf the search result depends on marked nodes, in phase 2

a re-search is performed. The loser of the phase 1 search is the designated

kowinner for phase 2.

Phase 2 reuses the contents of the transposition table from phase 1. The

following implementation of the transposition table aims to reduce the amount

of re-search:

136 A. Kishimoto, M. Miiller

1 The Zobrist (1970) hash function is modified to account for a stone cap

tured in the previous ko capture, to differentiate identica! positions with

different histories.

2 Two flags, one for each colour, in each transposition table entry keep

track of any possible ko captures in the subtree below that node. lf there

is a ko capture for a player, the flag for the other player is set to indicate

that we will allow a ko recapture after that node in a re-search. When a

node n is proven (similarly for disproven), flags are set as follows:

• If nisan OR node and ne is n's proven child, n's flags are set the

same as nc's flags.

• lf nisan AND node and the flag of one of the children is set, n's

flag is set. Otherwise, n's flag is cleared.

In the phase 2 re-search, many phase 1 (dis)proofs can be reused. For ex

ample, assume that a node is proven and the flag for the kowinner is not set.

Then we can use the proof from the transposition table. Similarly, we can also

reuse disproofs. Even for nodes that are not proven or disproven, the proof

and disproof numbers from phase 1 are valuable information for directing the

re-search.

Re-searches usually have a low overhead, since we keep the previous results

in the transposition table and reuse the table entries in most cases. However, if

the solution changes dramatically by ko compared to the solution from the first

search, a higher overhead results.

7. Empirical Results

This section consists of: test data (7.1), setup of experiments (7.2), test runs

(7.3), and further comments on the experiments (7.4).

7.1 Test Data

In contrast to full tsume-Go, for which many large collections of test problems

are available, we could not find any specialized collection of one-eye problems.

Our current set of 70 test positions was created mainly by the authors. The

problems can be played for both colours going first, resulting in a total of 140

problems. All problems are of the following· form: a black group already has

one safe eye, and is completely surrounded at a distance by safe white stones.

The area in between forms the region, and the fate of the black group depends

on whether it can form a second eye in the region. Problems of this kind are

also suitable for solution by a general tsume-Go solver, since making one eye

is equivalent to solving the tsume-Go problem.

The test set is available at http://www.cs.ualberta.cargames/go/
oneeye. The problems include a mix of easy and hard problems. Some prob-

Df-pn in Go: An Application to the One-Eye Problem

9

8

7

6

5

4

3

2

1

A B C D E F G H J

A B C D E F G H J

9

8

7

6

5

4

3

2

1

Figure 10. Example of a hard problem (Black to live).

137

lems are challenging only for one colour playing first, and are very easy if the

other colour plays first. Some of the positions are hard to solve for current

tsume-Go programs. For an example, see Figure 10.

7.2 Setup of Experiments

AII experiments were performed on a Pentium III/700 Mhz with a 100 MB

transposition table. The time limit was 5 minutes per problem.

The following abbreviations are used for the methods and enhancements

described above.

• Df-pn: The basic df-pn algorithm.

• MIN: Minimal distance modification for computing proof and disproof

numbers.

• AC: Connections to safe stones for attacker

• DC: Connections to crucial stones for defender

• FAM: Forced attacker's moves

• FDM: Forced defender's moves

• SIM: Simulation and dual simulation

7.3 Test Runs

Adding Enhancements. Table 1 shows the results on the test set, starting

with basic df-pn and switching on enhancements one by one. The total execution

time and number of nodes expanded were computed using the subset of 126

problems that are ali solved by methods (2) - (7) in the table.

138 A. Kishimoto, M. Miiller

Number of Total Total Nodes

Enhancements problems time (sec) nodesexpanded expanded

used solved 126 Problems 126 Problems per second

(1): Df-pn 20 - - -
(2): (1) +MIN 126 806 11,933,976 14,806

(3): (2) +AC 132 424 5,431,557 12,810

(4): (3) +DC 132 444 5,377,408 12,116

(5): (4)+FDM 132 436 5,142,100 11,802

(6): (5)+FAM 133 113 1,354,506 11,970

(7): (6) + SIM 134 81 1,168,683 14,347

Table 1. Performance for successively switching on enhancements.

The table shows the importance of the MIN modification .. The only prob

lems solved by basic df-pn were very easy ones that needed at most 400 nodes.

Search speed decreases a little with more enhancements, but improves again

with simulation. Simulation provides a fast way to generate moves, faster than

our current normal move generator, which has some overhead such as checking

connections.

Leave-One-Out Experiments. The results for switching off a single en-

hancement at a time are shown in Table 2. '

Numberof Total Total Nodes

Enhancement Problems Time (s) Nodes Expanded Expanded

TurnedOff Solved (129 Problems) (129 Problems) per Second

MIN 74 - - -
AC 129 393 7,096,603 18,058

DC 134 138 2,081,344 15,070

FDM 134 264 3,705,778 14,052

FAM 133 402 5,590,511 13,907

SIM 133 175 2,123,969 12,137

Table 2. Performance for turning off single enhancements.

Performance of Simulation. Table 3 shows the performance data for sim

ulation in phase 1 searches. Since the method is applied in a very basic way,

45.2 % success seems tobe a good initial reslilt, with plenty of room for further

refinements.

1 Total Nodes 1 Nodes by SIM 1 SIM calls 1 successful calls 1

1 6,265,984 1 1,116,386 (17.8 %) 1 262,628 1 118,706 (45.2 %) 1

Table 3. Performance data on simulation for all134 solved problems. AU enhancements on.

Phase 1 searches only.

Df-pn in Go: An Application to the One-Eye Problem 139

Re-searches for Ko. Table 4 shows a summary of the overhead incurred by
re-searches for ko. In phase 1, immediate ko recaptures are not allowed. Phase
2 are the researches with a designated kowinner. The results in this table are
also with ali enhancements.

Total Nodes (134 Problems)

Phase 1 J Phase 2

6,265,984 (95.4 %) 1 304,107 (4.6 %)

Table 4. Overheads for ko re-searches

The overhead is quite small, but of course this is mainly a property of the
test set used, which contains only a few cases with complex ko fights. In the
worst case encountered, problem oneeyeb.10.sgf with Black to play, phase 1
took 7,340 nodes and phase 2 took 11,728 nodes.

7.4 Further Comments on the Experiments

Reexpansion of Interior Nodes. One concern in df-pn is the overhead of
reexpansion of interior nodes. In our experiments, the ratia of interior nodes
expanded to total nodes is about 30 %. In Seo's experiments in shogi, this
ratia was about 20 %. Since information achieved dynamicapy is usually more
reliable than static evaluations, we think that our 30 % is still a very small price
to pay to achieve more cut-offs.

A B C D E F G H J

Currently Unsolved Problems. 9 9
Our solver currently cannot salve

8 6 problems in our test suite. Fig- 8

ure 11 shows an example. Ali un- 7 7
solved problems feature large re-

6 6 gions with many possible moves.

Besides, some problems such as in 5 5
Figure 10 and 11 stretch the Iim-

4 4 its of the one-eye problem, such as

semeai, and tsume-Go. Figure 11, 3 3
for example, can be seen as a prob-

2 2 lem whether white stones adjacent

to black crucial stones can make 1 1

two-eyes or not, having no split be- A B C D E F G H J
tween the one-eye and tsume-Go
problems. As well, the practica! Figure 11. Black to play and live: A currently

unsolved problem.
limit of our current solver seems to

beat around 18 empty points, which compares favourably with about 14 empty
reported for GoTooLs. However, we need further investigations to assess this
limit and improve the ability of our solver for difficult problems.

140 A. Kishimoto, M. Miiller

8. Conclusions and Future Work

The early results of our work on applying df-pn to Go and specifically to

the one-eye problem are very encouraging. There are numerous possible en

hancements, both for improving the search algorithm and for adding Go-specific

knowledge. Examples are recognizing largereyes, refining the knowledge about

connections, generalizing forced moves similar to Cazenave's APS, heuristic

initialization of proof and disproof numbers, and search in open-ended areas.

To apply these ideas to other problems in Go is also an interesting research

topic. Examples include full tsume-Go (two-eye problems), tactica! capture

search and connection search.

8.1 Comparison with related Programs

We would like to compare our program with general tsume-Go solvers to

assess its performance. However, it is hard to make a fair comparison since

our algorithm solves only a restricted problem. Evaluation for two eyes is

much harder than for one eye, and many years of hard work have gone into the

development of the Go knowledge in programs such as GoTOOLS. However,

we believe that as a search algorithm our modified df-pn works very well for Go.

In informal experiments it seems that our algorithm can already solve harder

problems in our test set than other programs. One possible advantage of the

df-pn algorithm is that it uses the transposition table more extensively. Only

solved positions are saved in the transposition table in GoTOOLS (Wolf, 2000),

while in df-pn proof and disproof numbers of previous iterations are stored in

the transposition table to improve the order of tree expansion (Nagai, 2002).

8.2 The GHI Problem in Df-pn

So far in this paper, we have not addressed the graph history interaction

(GHI) problem (Palay, 1985). This problem occurred in our e~periments, for

example in double or triple ko situations. lf GHI is ignored, incorrect results

are stored in the transposition table. We developed a new approach that differs

from the one described in Breuker et al. (2001) for the case of proof-number

search. The method will be described in a forthcoming publication (Kishimoto

and Miiller, 2003).

Acknowledgments

Financial support was provided by the Natural Sciences and Engineering

Research Council of Canada (NSERC) and the Alberta Informatics Circle of

Research Excellence (iCORE).

Df-pn in Go: An Application to the One-Eye Problem 141

References

Allis, L. V., van der Meulen, M., and van den Herik, H. J. (1994). Proof-number search. Artificial

Intelligence, 66(1):91-124.

Breuker, D. M., van den Herik, H. J., Uiterwijk, J. W. H. M., and Allis, L. V. (2001). A solution

to the GHI problem for best-first search. Theoretical Computer Science, 252(1-2):121-149.

Cazenave, T. (2002). Abstract proof search. In Marsland, T. A. and Frank, 1., editors, Computers

and Games (CG 2000), volume 2063 of Lecture Notes in Computer Science, pages 39-54.

Springer.

Chen, K. and Chen, Z. (1999). Static analysis of life and death in the game of Go. lnformation

Sciences, 121:113-134.

Fotland, D. (2002). Static eye analysis in "The Many Faces of Go". ICGA Journal, 25(4):203-

210.

Kawano, Y. (1996). Using similar positions to search game trees. In Nowakowski, R. J., ed

itor, Games of No Chance, volume 29 of MSRI Publications, pages ,193-202. Cambridge

University Press.

Kishimoto, A. and Miiller, M. (2003). A solution to the GHI problem for depth-first proof-number

search. Manuscript in preparation.

Korf, R. E. (1985). Depth-first iterative deepening: An optimal admissible tree search. Artificial

Intelligence, 27(1):97-109.

Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62(1):41-78.

Kraszek, J. (1988). Heuristics in the life and death algorithm of a Go-playing program. In

Computer Go, volume 9, pages 13-24.

Miiller, M. (1997). Playing it safe: Recognizing secure territories in computer Go by using static

rules and search. In Matsubara, H., editor, Game Programming Workshop in Japan '97, pages

80-86, Tokyo, Japan. Computer Shogi Association.

Nagai, A. (1999). A new depth-first search algorithm for AND/OR trees. Master's thesis, De

partment of Information Science, University of Tokyo.

Nagai, A. (2002). DfpnAlgorithmfor Searching AND/OR Trees and Its Applications. PhD thesis,

Department of Information Science, University of Tokyo.

Palay, A. J. (1985). Searching with Probabilities. PhD thesis, Boston University.

Sakuta, M. (2001). Deterministic Solving of Problems with Uncertainty. PhD thesis, Department

of Science and Engineering, Shizuoka University.

Seo, M. (1995). The C* algorithm for AND/OR tree search and its application to a tsume-shogi

program. Master's thesis, Department of Information Science, University of Tokyo.

Tanase, Y. (2000). Algorithms in ISshogi. In Matsubara, H., editor, Advances in Computer Shogi

3, pages 1-14. Kyouritsu Shuppan Press. In Japanese.

Wolf, T. (1994). The program GoTools and its computer-generated tsume Go database. In Mat

subara, H., editor, Game Programming Workshop in Japan '94, pages 84-96, Tokyo, Japan.

Computer Shogi Association.

Wolf, T. (2000). Forward pruning and other heuristic search techniques in tsume Go. Information

Sciences, 122(1):59-76.

Zobrist, A. L. (1970). A new hashing method with applications for game playing. Technical re

port, Department of Computer Science, University of Wisconsin, Madison, WI. Republished

(1990) in ICCA Journal, 13(2): 69-73.

