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Abstract

Background: Dynamic Flux Balance Analysis (DFBA) is a dynamic simulation framework for biochemical processes.
DFBA can be performed using different approaches such as static optimization (SOA), dynamic optimization (DOA),
and direct approaches (DA). Few existing simulators address the theoretical and practical challenges of nonunique
exchange fluxes or infeasible linear programs (LPs). Both are common sources of failure and inefficiencies for these
simulators.

Results: DFBAlab, a MATLAB-based simulator that uses the LP feasibility problem to obtain an extended system and
lexicographic optimization to yield unique exchange fluxes, is presented. DFBAlab is able to simulate complex
dynamic cultures with multiple species rapidly and reliably, including differential-algebraic equation (DAE) systems. In
addition, DFBAlab’s running time scales linearly with the number of species models. Three examples are presented
where the performance of COBRA, DyMMM and DFBAlab are compared.

Conclusions: Lexicographic optimization is used to determine unique exchange fluxes which are necessary for a
well-defined dynamic system. DFBAlab does not fail during numerical integration due to infeasible LPs. The extended
system obtained through the LP feasibility problem in DFBAlab provides a penalty function that can be used in
optimization algorithms.

Keywords: Dynamic flux balance analysis, Nonsmooth dynamic systems, Linear programming, Lexicographic
optimization

Background
The acceleration in the process of genome sequencing
in recent years has increased the availability of genome-
scale metabolic network reconstructions for a variety
of species. These genome-based networks can be used
within the framework of flux balance analysis (FBA)
to predict steady-state growth and uptake rates accu-
rately [1]. Dynamic flux balance analysis (DFBA) enables
the simulation of dynamic biological systems by assum-
ing organisms reach steady state rapidly in response to
changes in the extracellular environment. Then, the rates
predicted by FBA are used to update the extracellular
environment. There exist three approaches to simulate
DFBAmodels: the static optimization approach (SOA) [2],
the dynamic optimization approach [2] (DOA), and the
direct approach (DA). The static optimization approach
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uses the Euler forward method, solving the embedded
LPs at each time step. Since most DFBA models are
stiff, small time steps are required for stability, making
this approach computationally expensive. Meanwhile, the
DOA approach discretizes the time horizon and optimizes
simultaneously over the entire time period of interest by
solving a nonlinear programming problem (NLP). The
dimension of this NLP increases with time discretization,
therefore it is limited to small-scale metabolic models
[3]. Finally, a DA has been proposed recently by includ-
ing the LP solver in the right-hand side evaluator for
the ordinary differential equations (ODEs) and taking
advantage of reliable implicit ODE integrators with adap-
tive step size for error control. At present, the DOA is
rarely used due to the intractability of the resulting NLP.
DFBA can be easily performed on MATLAB using the
constraint-based reconstruction and analysis (COBRA)
toolbox [1,4], which implements the SOA. Recently, the
DA has been implemented by Hanly and Henson [5],
Mao and Verwoerd in the ORCA toolbox [6], Zhuang
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et al. in the dynamic multispecies metabolic modeling
(DyMMM) framework [7,8], and others. A comprehensive
list of DFBA implementations can be found in Table I of
[3]. COBRA, DyMMM and ORCA codes are available on
the Web. Of these, only DyMMM allows community sim-
ulations. Since ORCA andDyMMMare extremely similar,
only COBRA and DyMMMwere implemented in the case
studies presented.
These implementations present several shortcomings.

The COBRA Toolbox uses a fixed time step and does not
take advantage of the high quality built-in integrators pro-
vided by MATLAB. Simulation stability and accuracy are
closely linked to a uniformly small step size which can
greatly increase simulation time. It can fail if the extra-
cellular conditions are close to the FBA model becoming
infeasible. In addition, it uses a simple exchange flux
bounding scheme that does not allow the implementa-
tion of Michaelis-Menten kinetics or other more complex
dynamic behaviors such as day/night shifts for photosyn-
thetic organisms or system feed and discharge rates. It
does not allow community simulations.
The ORCA toolbox and the DyMMM framework

use the MATLAB built-in integrators. ORCA simulates
monocultures only, whereas DyMMMcan simulate cocul-
tures. The ORCA toolbox allows the implementation
of Michaelis-Menten and Hill kinetics only, whereas
DyMMMprovides the flexibility to implement more com-
plex dynamics such as day/night shifts for photosyn-
thetic organisms or system feed and discharge rates. Both
attempt to carry on with simulations when the FBAmodel
is infeasible by setting the growth rate and exchange fluxes
equal to zero and displaying a death phase message. This
message may be displayed even though the system is not
infeasible.
None of these implementations (COBRA, ORCA, and

DyMMM) account for the solution of a linear program
(LP) being a nonsingleton set. Therefore, exchange fluxes
are not necessarily unique and the dynamic system is
not well-defined. Nonunique optimal fluxes have been
discussed elsewhere in [9] and [5]. If no effort is made
to obtain unique fluxes, different integrators could yield
different results.
Höffner et al. have designed a fast and reliable com-

munity simulator that has the flexibility of implement-
ing complex dynamics, does not fail, identifies precisely
when a system becomes infeasible, and performs lexico-
graphic optimization to render unique exchange fluxes
[3]. In particular, it avoids numerical failure by refor-
mulating the LP as an algebraic system and integrating
an index-1 differential-algebraic equation (DAE) system.
Despite these advantages, this simulator has not been
widely used due to being coded in FORTRAN. In this
paper, we implement the LP feasibility problem com-
bined with lexicographic optimization in our Dynamic

Flux Balance Analysis laboratory (DFBAlab), a MATLAB
code that performs fast, reliable and flexible community
simulations.

Implementation
DFBAlab provides a solution to two major difficulties in
existing implementations: nonunique exchange fluxes in
the solution vector of an LP and the LP becoming infea-
sible when evaluating the ODE right-hand side close to
the boundary of feasibility. DFBAlab implements lexico-
graphic optimization to obtain unique exchange fluxes
[3] and uses the LP feasibility problem to avoid obtain-
ing infeasible LPs while running the simulation. DFBAlab
runs using the commercial linear program solvers CPLEX
[10], Gurobi [11], andMOSEK [12] and is compatible with
the COBRA toolbox model format.

Lexicographic optimization
Dynamic flux balance analysis is defined in the following
way. Consider a vector x0 containing the initial con-
centrations of metabolites and biomass in a culture and
assume there are ns microbial species in the culture. Given
some uptake and production rates of metabolites for each
species (exchange fluxes), feed and discharge rates from
the culture, mass transfer rates, and other dynamic pro-
cesses, a rate of change function f can be obtained for each
of the components of x0. The function f can then be inte-
grated to find the concentration profiles with respect to
time, x(t). Each species has a metabolic network repre-
sented by a stoichiometry matrix Sk ∈ R

nkq×nkr where nkq
are the number of metabolites and nkr are the number of
reactions in the metabolic network of species k. Consider
that each species k has nkh exchange fluxes. Then,

ẋ(t) = f
(
t,h1(x(t)), . . . ,hns(x(t))

)
, ∀t ∈ (t0, tf ] ,

x(t0) = x0,
(1)

where hk is a vector containing the exchange fluxes of
species k and is obtained by solving a linear program:

max
v∈Rnkr

(ck)Tv,

s.t. Skv = 0,

vkUB(x(t)) ≥ v ≥ vkLB(x(t)),

(2)

where ck ∈ R
nkr is the cost vector that maximizes growth

fluxes, and vkLB, vkUB are lower and upper bounds as func-
tions of the extracellular concentrations. The vector hk
then takes the solution of this linear program to find the
values of the exchange fluxes (e.g. biomass production
rate, O2 consumption rate, ethanol production rate, etc.).
This definition of DFBA has a serious problem: the solu-
tion set of the LP (2) can be nonunique (e.g. different flux
distributions v can attain the maximum growth rate) and
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it is not clear which flux distribution should hk take to
carry-on with the integration.
Höffner and coworkers [3] use lexicographic optimiza-

tion to render unique exchange fluxes. Lexicographic opti-
mization works in the following way. First, it orders a
number of objectives in a priority list. The highest prior-
ity objective is optimized first; then its optimum value is
added as a constraint and the next objective in priority is
optimized, and so on. Lexicographic optimization can be
implemented in DFBA systems: the first objective is max-
imization of biomass; then all other exchange fluxes that
appear in the right-hand side of (1) are added to the pri-
ority list. Note that the choice of the objective functions
and their ordering are part of the model description and
must be provided by the user. Although LPs don’t nec-
essarily have a unique flux distribution that attains the
optimal objective function value, they do have a unique
optimal objective function value. This optimal objec-
tive function value changes continuously with changes in
vkLB, vkUB. By making all the exchange fluxes that appear in
the right-hand side of (1) optimization objectives ordered
by priority, unique exchange fluxes are obtained, these
exchange fluxes change continuously with respect to time
and the integrator is able to carry-on integration reli-
ably. Additional file 1 presents all the mathematical details
pertaining to lexicographic optimization.
Harwood et al. (Harwood, S.M., Höffner, K. and Barton,

P.I.: Solution of ordinary differential equations with a
linear program embedded: the right-hand side case, Sub-
mitted) present an efficient algorithm to compute a basis
that contains optimal bases for all LPs in the priority list.
This algorithm was not implemented in DFBAlab because
of difficulties in extracting the optimal basis information
with no artificial variables from LP solvers in MATLAB,
but will be implemented in future releases.

LP feasibility problem
Amajor problem for DFBA simulators is that the LP in (2)
may become infeasible as time progresses. There are two
situations where the LP may become infeasible:

1. The problem is truly infeasible and the solution
cannot be continued: in this case the integration
should be terminated.

2. The problem is not infeasible but the LP becomes
infeasible while the numerical integrator performs
various operations to take a time step in (1): in this
case the DFBA simulator in COBRA may fail to
continue the simulation and ORCA and DyMMM
will erroneously display death phase messages. In
particular, the MATLAB’s built-in integrators will
have a hard-time obtaining reliable right-hand side
information as the system changes abruptly from
being defined by the solution to (2), to being defined

by an artificial solution that sets growth rates and
exchange fluxes equal to zero.

In this paper we use the LP feasibility problem [13]
combined with lexicographic optimization to generate an
extended dynamic system for which the LP always has a
solution. An LP feasibility problem finds a feasible point or
identifies an LP as infeasible. It has two main characteris-
tics: it is always feasible and its optimal objective function
value is zero if and only if the original LP is feasible. Sev-
eral different versions of the LP feasibility problem can
be constructed by adding some slack variables to the con-
straints. For the LP formulation in (2), the following is an
LP feasibility problem:

min
v∈Rnkr ,

s+,s−∈Rnkq

nkq∑
i=1

s+i + s−i,

s.t. Skv + s+ − s− = 0,

vkUB(x(t)) ≥ v ≥ vkLB(x(t)),
s+ ≥ 0, s− ≥ 0.

(3)

Let Si be the ith row of S. When an LP is constructed in
this form, a feasible solution is obtained by finding a v such
that vkUB(x(t)) ≥ v ≥ vkLB(x(t)) and then letting s+i =
−Ski v and s−i = 0 if Ski v < 0, or s−i = Ski v and s+i = 0
otherwise. DFBAlab transforms LP (2) to standard form
and then obtains the LP feasibility problem for an LP in
standard form [13]; however, the principles are the same.
A detailed explanation can be seen in the Additional file 1.
DFBAlab uses the LP feasibility problem (3) instead of

(2) to find the growth rates and exchange fluxes for each
species in the culture. It sets the feasibility cost vector as
the top priority objective in the lexicographic optimiza-
tion scheme. Then, the second-priority linear program
maximizes biomass and the subsequent lower-priority LPs
obtain unique exchange fluxes. The order of the exchange
fluxes in the priority list is user-defined. The priority list
order is fixed throughout the simulation. This order has to
be defined carefully or unrealistic simulation results may
be obtained (as illustrated in Example 2). This approach
has the following advantages:

1. The dynamic system in (1) is defined for all
simulation time.

2. The integrator does not encounter infeasible LPs
while taking a step and is able to obtain reliable
right-hand side information speeding up the
integration process.

3. The objective function value of (3) provides a
distance from feasibility and can be integrated
providing a penalty function that can be useful for
optimization purposes. Only trajectories with penalty
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function value equal to zero (within some tolerance
ε) are feasible.

Results and discussion
The following examples demonstrate the reliability and
speed of DFBAlab compared to existing implementations
of the SOA and DA. SOA is represented by the COBRA
dFBA implementation and DA by the DyMMM imple-
mentation. In the first example, a monoculture of E. coli is
simulated with all three methods. In the second example,
a coculture of algae and yeast is simulated using DFBAlab
and DyMMM. In the third example, this same cocul-
ture is simulated considering the pH balance. Finally, the
last example shows how DFBAlab running time increases
linearly with the number of FBA models in the system.
All running times are for a 3.20 GHz Intel® Xeon® CPU
in MATLAB 7.12 (R2011a), Windows 7 64-bit operating
system using LP solver CPLEX. All running times are
for the integration process only (preprocessing times are
not reported). DFBA models are usually stiff; therefore,
ode15s, MATLAB’s integrator for stiff systems, was used
for all simulations.

Example 1
This is Example 6.2 in (Harwood, S.M., Höffner, K. and
Barton, P.I.: Solution of ordinary differential equations
with a linear program embedded: the right-hand side

case, Submitted) which is based on [5]. Here we com-
pare the performance of COBRA, DyMMM and DFBAlab
simulating an E. coli monoculture. The metabolic net-
work reconstruction used was iJR904 published in [14].
This metabolic model contains 2191 reactions and 1706
metabolites. Initial conditions were 0.03 g/L of inocu-
lum, 15.5 g/L of glucose and 8 g/L of xylose. Oxy-
gen concentration was kept constant at 0.24 mmol/L.
Michaelis-Menten expressions with inhibition terms were
implemented to bound the uptake of glucose, xylose and
oxygen using the parameters presented in Table I and
Equations (3), (4) and (5) in [5]. DFBAlab obtained unique
fluxes by minimizing ethanol production, and then glu-
cose and xylose consumption, after maximizing biomass,
using lexicographic optimization. The COBRA simula-
tor performed poorly. Since COBRA does not have the
flexibility to implement Michaelis-Menten expressions,
the simulation results were incorrect. In addition, the
fixed step size slowed down the integration process. Non-
negativity constraints for all states variables were enforced
in both DyMMM and DFBAlab, by using the ‘Nonneg-
ative’ option. DyMMM and DFBAlab obtained the same
concentration profiles presented in Figure 1. DyMMM
has a good performance recovering from a frequent fail-
ure point occurring when growth switches from glucose-
based to xylose-based. DFBAlab performs a little bit
slower than DyMMMdue to the four additional LPs being

Figure 1 Concentration profiles (left) and DFBAlab penalty function (right) of Example 1. The penalty function shows how the simulation
becomes infeasible after approximately 8.1 hours. Simulation times: DyMMM = 6.6 seconds, DFBAlab = 7.7 seconds.
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solved to perform lexicographic optimization, obtaining
at least the same level of accuracy. Finally, the penalty
function indicates that the system becomes infeasible after
approximately 8.1 hours (Figure 1).

Example 2
This is an example from [15] of a coculture of the microal-
gae Chlamydomonas reinhardtii and Saccharomyces cere-
visiae (yeast) in a continuous stirred-tank reactor (CSTR)
reactor. The genome-scale metabolic network reconstruc-
tions used were iRC1080, comprising 2191 reactions and
1706metabolites from [16], and iND750, comprising 1266
reactions and 1061 metabolites from [17], for algae and
yeast, respectively. In this simulation, yeast consumes glu-
cose to produce CO2 while algae consumes mainly CO2 to
produce O2 during the day, and acetate to produce CO2
during the night. The dynamic mass balance equations of
the extracellular environment for this system are:

ẏi(t) = μi (x(t)) yi(t) − Foutyi(t)
V

, (4)

ṡ(t) = Fins0 − Fouts(t)
V

+ MTs(x(t))

+
∑
i

(
visp (x(t)) − visc (x(t))

)
yi(t), (5)

for i = Y ,A, and for s = g, o, c, e, a,

where yi, g, o, c, e, and a correspond to the concentrations
of biomass of species i, glucose, oxygen, carbon dioxide,
ethanol and acetate, respectively. The superscripts Y ,A
refer to yeast and algae, x = [ yY yA g o c e a], μi

is the growth rate of species i, visc and visp are the con-
sumption and production rates of substrate s for species i
determined through lexicographic optimization, s0 is the
concentration of s in the feed, Fin and Fout are the inlet and
outlet flows, V is the volume of the system, andMTs is the
mass transfer rate of s given by the following expression:

MTs(x(t)) =
{

(ksLθ)
(
s(g)
KHs

− s(t)
)

for s = o, c,
0 for s = g, e, a,

(6)

where KHs refers to Henry’s constant of component s at
25°C, ksLθ is the mass transfer coefficient for component
s obtained from [18], and s(g) is the concentration of s in
the atmosphere. The maximum concentration of oxygen
and carbon dioxide in the culture is bounded by Henry’s
constant:

s((t)) ≤ KHs, ∀t ∈ [
t0, tf

]
for s = o, c. (7)

Initial concentrations and other parameters are presented
in Table 1. The uptake kinetics are bounded above by the
Michaelis-Menten expression:

Table 1 Initial concentrations andparameters of example 2

Variable Simulation 1 Simulation 2 Parameters

yY0 1.10 0.71 gDW/L V0 140 L

yA0 1.86 1.80 gDW/L Fin 1 L/h

g0 1.40 E−2 2.28 E−2 mmol/L Fout 1 L/h

o0 6.53 E−4 5.57 E−4 mmol/L

c0 1.06 1.03 mmol/L

e0 8.21 17.32 mmol/L

a0 2.39 E−2 2.48 E−2 mmol/L

Simulation 1 used the priority list presented in Table 2, while for Simulation 2
objective 4 for algae was inverted.

vi,UBs (s(t)) = vis,max
s(t)

Ki
s + s(t)

, (8)

for i = Y ,A and s = a, o, c with vis,max and Ki
s obtained

from [19], [20] and [21] for acetate, carbon dioxide and
oxygen. Production of oxygen by algae, ethanol by yeast,
and carbon dioxide by algae and yeast were not bounded.
In addition to the extracellular concentrations, algae

growth is affected by light availability because it is a pho-
tosynthetic organism. Day and night shifts were simulated
using the following surface light function:

I0(t) = 28
max

(
sin2

( 2π t
48

)
, sin2

( 10π
48

)) − sin2
( 10π

48
)

1 − sin2
( 10π

48
)

(=)
mmol photons

gDW × h
.

(9)

This light function simulates daylight from 5:00 to 19:00.
The prefactor was obtained from [22]. The Beer-Lambert
law was used to average the light available to algae cells
considering that higher biomass densities block light and
deeper sections of the pond receive less sunlight:

Ia(t, x(t)) = I0(t)
1 − exp (−LKe(x(t)))

LKe(x(t))
,

(=)
mmol photons

gDW × h
,

(10)

where Ke(x(t)) is a linear function of the concentration of
biomass in the culture and L is the pond depth [21]. Con-
centration variations of biomass for different pond depths
were neglected.
This complex community simulation cannot be car-

ried out using the DFBA simulator in COBRA. Non-
negativity constraints were enforced for all state variables
in both, DyMMM and DFBAlab, by using the ‘Nonnega-
tive’ option. After more than 10,000 seconds of running
time usingMATLAB implicit integrator ode15s, the simu-
lation on DyMMM was stopped. Using explicit integrator
ode45 instead, DyMMM took more than 3900 seconds
to simulate one hour of the cyclic steady-state of this
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coculture and the results are inaccurate. This is expected
because explicit integrators can calculate new steps as
long as they are able to evaluate the right-hand side of the
ODE. The results obtained by DyMMM using ode45 are
inaccurate because explicit integrators should not be used
for stiff systems, and the right-hand side is nonunique. In
Figure 2, it can be seen that the acetate curve presents
several points of nonsmoothness which are expected in
systems with nonunique fluxes. Numerical integrators are
unable to handle these systems as they encounter dis-
continuous exchange fluxes when decreasing step-size.
Therefore, computation time is excessive and the results
are incorrect. This shortcoming is addressed by DFBAlab
using six lexicographic optimizations for yeast and five for
algae. It took only 82 seconds to simulate accurately 24
hours of this coculture using the lexicographic objectives
shown in Table 2, and 74 seconds to simulate this same
system with Objective 4 for algae inverted. Simulation
results can be seen in Figure 3.
Lexicographic optimization is very important in this

example; if the negative of Objective 4 for algae is used,
oxygen, acetate and yeast concentration profiles vary sig-
nificantly. In particular, notice the large difference in the
O2 concentration profile between the two simulations.
Since the O2 flux is nonunique, selecting different fluxes
will lead to different trajectories. Without a rule on how

to choose a flux from the optimal solution set, DyMMM
can choose different elements of this set while cutting
its time step, obtaining unreliable right-hand side infor-
mation. Therefore, it is not surprising that the DyMMM
simulator was unable to simulate this system.
It must be noted that in reality, this difference is not

observed in nature. When Objective 4 for algae is inverted
(maximizing O2 consumption and minimizing O2 pro-
duction), the model is able to uptake unlimited H+ ions
from the environment and produce water until the O2
uptake bound is reached. This behavior will change the
pH of the system and the overconsumption of O2 would
be unsustainable. Increased modeling efforts can bound
the uptake of other substrates such as nitrogen, phos-
phorus and iron and use pH dependent uptakes. In this
context, a pH balance will be necessary. This balance is
implemented in Example 3. Finally, biologically relevant
lexicographic objectives must be selected because some
objectives may lead to unrealistic systems as the one just
presented.

Example 3
This example illustrates the modeling flexibility DFBAlab
provides. The growth rate of autotrophic microalgae such
as C. reinhardtii is dependent on CO2 concentration.
This concentration is affected by pH, as the following

Figure 2 DyMMM simulation results of example 2. DyMMM is unable to simulate Example 2. Computation time for one hour of simulation was
of more than 3900 seconds using MATLAB integrator ode45. In addition, the acetate curve has several points of nonsmoothness that can be
explained by the presence of nonunique fluxes. Numerical integrators are unable to integrate these kinds of systems.
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Table 2 Priority list order for the lexicographic linear
programs in example 2

Yeast Algae

1 Minimize slacks of Minimize slacks of
feasibility LP feasibility LP

2 Maximize biomass Maximize biomass
production production

3 Minimize glucose Maximize acetate
consumption consumption

4 Minimize O2 Minimize O2

consumption consumption and maximize
O2 production

5 Maximize CO2 production Maximize CO2 consumption

6 Maximize ethanol production

equilibrium reactions are present in the extracellular envi-
ronment:

NH3 + H2O � NH+
4 + OH−

CO2 + H2O � H+ + HCO−
3 � 2H+ + CO2−

3
H2O � H+ + OH−

(11)

Using the equilibrium constants presented in Table one
in [21] and the equilibrium model in Equations (14a) and

(14b) in [21], a pH balance was introduced to Exam-
ple 2. The pH balance introduces algebraic equations
that have to be satisfied at all times. This kind of sys-
tem is called a Differential-Algebraic Equation system
(DAE) where some variables are algebraic variables (their
time derivative is not calculated explicitly) and others
are differential variables. To our knowledge, no one has
introduced the pH equilibrium equations in a DFBA sim-
ulation before. To add the pH balance to the system, total
carbon and total nitrogen were added to the differen-
tial variables, CO2 concentration was transformed into an
algebraic variable, and new algebraic variables for NH+

4 ,
NH3, HCO−

3 , CO
2−
3 , and H+ concentrations were intro-

duced. Total nitrogen in the system was assumed to be
constant at 0.1643 mmol/L, which is the concentration
present in the Charles River in Cambridge [23], the effect
of H+ exchange by algae on pH was considered negligible,
and ionic valency of the solution was assumed to be equal
to zero.
If the Jacobian of the algebraic equations with respect to

the algebraic variables is nonsingular, the DAE is index-
1 and can be solved with MATLAB ode15s. Table 3
shows the initial conditions and parameters used. No non-
negativity constraints were enforced; however, the uptake
kinetics were specified so that negative concentrations

Figure 3 DFBAlab simulation results of example 2. Two cyclic steady states are presented. Simulation 1 (solid line) was performed with
lexicographic objectives presented in Table 2, whereas simulation 2 (dashed line) used the negative of Objective 4 for algae. Significant differences
can be observed in the predicted concentrations of yeast, glucose, and oxygen. Computation times for simulations 1 and 2 where 82 and 74
seconds, respectively.
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Table 3 Initial concentrations andparameters of example 3

Variable No pH balance pH balance Parameters

yY0 1.10 1.10 gDW/L V0 140 L

yA0 1.86 1.87 gDW/L Fin 1 L/h

g0 1.40 E−2 1.40 E−2 mmol/L Fout 1 L/h

o0 6.53 E−4 6.52 E−4 mmol/L

c0 1.06 1.06 mmol/L

e0 8.21 8.21 mmol/L

a0 2.39 E−2 2.37 E−2 mmol/L

NT - 1.64 E−1 mmol/L

CT - 1.22 mmol/L

NH3 - 2.45 E−5 mmol/L

NH+
4 - 1.64 E−1 mmol/L

HCO−
3 - 1.64 E−1 E−2 mmol/L

CO2−
3 - 2.58 E−6 mmol/L

H+ - 2.67 E−6 mmol/L

could not occur. Concentration profiles are presented in
Figures 4 and 5. Simulation results with a pH balance are
close to those without a pH balance. However, the infor-
mation obtained from this simulation enables using pH
dependent uptake kinetics and ionic species uptake kinet-
ics leading to more accurate simulations. It took only 162

seconds to simulate accurately 24 hours of this coculture
with a pH balance.

Example 4
In this example a monoculture of Chlamydomonas rein-
hardtiiwas simulated to illustrate how DFBAlab performs
for simulations with a large number of species models.
The parameters implemented in Example 2 were used
with different initial conditions. No non-negativity con-
straints were enforced, but the uptake kinetics were spec-
ified so that negative concentrations could not happen.
Algae biomass was split among several LPs and running
times were compared. Table 4 shows the running times for
24 hours of simulation for different numbers of models in
the system.

Discussion
In these examples, the reliability and speed of DFBAlab
has been shown compared to current open MATLAB
benchmarks in DFBA simulation. COBRA lacks flexibil-
ity when implementing Michaelis-Menten kinetics and
the use of a fixed time step decreases the accuracy
of these simulations, or increases the integration time
for very small time steps. DyMMM provides a flexi-
ble framework that allows the implementation of com-
munity simulations. However, if any of the exchange
fluxes are nonunique, simulation results will be incorrect.
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Figure 4 DFBAlab simulation results of example 3. This example incorporates the pH balance (solid line). Simulation results were close to the
ones obtained without a pH balance. Slight variations were observed for the CO2 concentration profile. Computation time was 162 seconds.
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Figure 5 Equilibrium species and pH of example 3. The pH balance enables tracking of ionic concentration profiles. This information allows
using pH dependent uptake kinetics and uptake kinetics for ionic species.

DFBAlab uses lexicographic optimization to obtain a
well-defined system, but it requires specification of lower-
priority objective functions. Biologically relevant lower-
priority objectives must be sought to restrict the solution
set of (2) to a more realistic set. For instance, it has
been suggested by a reviewer that maximization of
ATP is a biologically relevant objective that should fol-
low maximization of biomass. In DFBAlab, this objec-
tive can be added right after maximization of biomass.
Then, the unique exchange fluxes obtained are guar-
anteed to maximize biomass first, and then maximize
ATP. If other biologically relevant objectives are found,
they can be added in the same way to the priority list
(after maximization of biomass, but before the exchange
fluxes), such that the exchange fluxes obtained are more
realistic.

Table 4 Running times of example 4 with increasing
number of models

Number of models Time (s)

1 18.3

2 36.9

5 94.2

10 190

25 506

The DFBAlab framework is flexible enough to allow
DAEs, which could result from performing pH balances
in the culture. Furthermore, in community simulations,
the running time of DFBAlab increases linearly with the
number of species. The LP feasibility objective function
in DFBAlab serves two purposes: it helps to distinguish
between feasible and infeasible trajectories and it can
serve as a penalty function in optimization algorithms.
Future work will present the implementation of this
penalty function in the context of DFBA optimization.

Conclusions
The objective of this work is to provide an easy to
use implementation that minimizes troubleshooting of
numerical issues and facilitates focus on the analysis of
simulation results. DFBAlab, a reliable DFBA simulator
in MATLAB, is presented. DFBAlab uses lexicographic
optimization to obtain unique exchange fluxes and a
well-defined dynamic system. DFBAlab uses the LP fea-
sibility problem to generate an extended dynamic system
and a penalty function. DFBAlab performs better than
its counterpart DyMMM in complex community simula-
tions: it is faster and more accurate because the unique
fluxes provided by lexicographic optimization are nec-
essary for numerical integration. In addition, DFBAlab
can integrate the DAEs resulting from implementing pH
balances. Biologically relevant lower-priority objectives



Gomez et al. BMC Bioinformatics  (2014) 15:409 Page 10 of 10

must be sought to perform lexicographic optimization.
The penalty function provided by DFBAlab can be used to
optimize DFBA systems. However, it should be noted that
the FORTRAN code referred in [3] has advantages since it
only takes about 30 seconds for Example 2 [15].

Availability and requirements
The DFBAlab code is available, without charge, for both
education and non-profit research purposes, at http://
yoric.mit.edu/dfbalab.
Project name: DFBAlab
Project homepage: http://yoric.mit.edu/dfbalab
Operating system(s):Any operating system that supports
MATLAB
Programming language: MATLAB’s programming
language
Other requirements: An LP solver among CPLEX,
Gurobi, or MOSEK
License: Terms of use need to be accepted before being
able to download the code.
Any restrictions to use by non-academics:Not available
for non-academics.

Additional file

Additional file 1: Detailed mathematical presentation of
lexicographic optimization and the LP feasibility problem.
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