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Abstract—Deep learning approaches have recently been widely
applied to the classification of hyperspectral images (HSIs) and
achieve good capability. Deep learning can effectively extract fea-
tures from HSI data compared with other traditional hand-crafted
methods. Most deep learning methods extract image features
through traditional convolution, which has demonstrated impres-
sive ability in HSI classification. However, traditional convolu-
tion can only operate convolutions with fixed size and weight on
regular square image regions. Moreover, it refers to the spectral
features of the adjacent pixels but ignores the spectral features
of long-range data with the training sample. Although a graph
convolution network (GCN) can process irregular image regions,
the pixels’ relationships for graph construction cannot be well
ensured with limited iterations. Hence, the extracted features have
limited performance with the GCN. Aiming to extract more rep-
resentative and discriminative image features, in this article, the
deep feature learning with label consistencies (DFL-LC) method is
developed to realize HSI classification. In the proposed method,
a multiscale convolutional neural network is adopted to obtain
basic HSI features, and the GCN can further capture relationships
between pixels and extract more representative HSI features. For
obtaining discriminative features, we add the label consistency of
single pixels and label consistency of group pixels regularization
in the objective function. It can maintain label consistency for
the general and long-range data and alleviate deficiently labeled
samples. The experimental results on three representative datasets
fully demonstrate that the DFL-LC method is superior to other
methods in both quantitative and qualitative aspects.
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I. INTRODUCTION

T
HERE are several hundred channels in hyperspectral im-

ages (HSIs) that contain high-resolution spectral informa-

tion of land covers. Each pixel in HSIs corresponds to the spectral

reflectance of a particular wavelength, so it can be considered

as a high-dimensional vector. Many spectral signatures have

largely been used in HSI classification of land covers. In the

past few decades, HSI classification has been developed into a

significant part of remote sensing. In general, it is challenging

for traditional machine learning to realize precise classification

for the complex characteristics of HSIs. In addition, the inher-

ent nonlinear relationship between the corresponding class and

the spectral information is processed by HSI recognition [1].

As a powerful tool for extracting features, deep learning is

widely adopted in several image processing tasks, which can

effectively solve nonlinear problems. Therefore, deep learning

has also been used for HSI classification and has shown good

performance.

In the initial stage of HSI classification research, there were

a number of methods focusing on detecting the role of the

spectral characteristics of HSIs. Thus, numerous classification

methods have been proposed in HSI classification, such as

support vector machine (SVM) [2], multinomial logistic regres-

sion [3], and dynamic subspace detection [4]. Although most

HSI classifications based on spectral and spatial information

have obtained excellent performance, they are heavily dependent

upon hand-crafted features. Moreover, traditional hand-crafted

methods are limited. On the one hand, hand-crafted features are

regarded as shallow features, so images can change considerably

where the imaging environment is sharp [5]. On the other hand,

most hand-crafted features rely on expert knowledge, limited by

human factors. Moreover, crafting hand-crafted labels usually

requires considerable time, limiting the applicability of those

methods in different scenarios [1].

In recent years, deep learning has become a development

trend in HSI classification and has achieved good performance.

Deep learning methods can effectively exploit features from

HSI data compared with other traditional hand-crafted methods.

The process of deep learning is automatic, which makes it

more suitable to deal with various situations. Because differ-

ent networks can extract different feature types, deep learning
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is considered to be a significant feature extraction approach

in HSI classification. Thus, we can divide the deep learning

networks to classify HSI into spectral feature networks (e.g.,

DBN [6], 1-D convolutional neural network (CNN) [7], 1-D

GAN [8], [9], and RNN [10]), spatial-feature networks (e.g., 2-D

CNN [11], FCN-8 [12], and spectral–spatial-feature-based clas-

sification (SSFC) [13]), and spectral–spatial-feature networks

(e.g., SAE [14], 3-D CNN [15], and 3-D GAN [8]).

In deep learning approaches, CNNs have become a powerful

tool in HSI classification methods, which can effectively ex-

tract spatial and spectral features. It has achieved impressive

performance to classify HSI. Chen et al. [11] applied PCA to

reduce the dimension of HSI first and then used the 2-D CNN to

extract the spatial features within the pixel neighborhood. The

above method combines PCA and CNN, which extracts spatial

features and greatly reduces the computational cost. Liang and

Li [16] proposed a sparse representation method to improve

the feature representation ability and the classification accuracy.

Deep spatial features extracted by the CNN are encoded into

low-dimensional sparse features. The SSFC framework [13] is

proposed to classify HSI, in which balanced local discriminant

embedding and CNN are used to extract spectral and spatial

features, respectively. However, the traditional CNN can only

perform convolutions with fixed size and weight on regular

square image regions. It only refers to the spectral features of the

adjacent pixels but ignores the spectral features of long-range

data with the sample. For example, some pixels are usually in the

same class in different positions in HSI. These pixels should have

similar features. Therefore, their classification performances

need to be further improved.

Moreover, with the rapid development of graph theories,

graph convolutional networks (GCNs) have been widely used

in various applications, such as text classification [17]–[20]

and semantic segmentation [21]–[24]. In addition, the GCN

has made great progress in image classification [25]–[27]. The

GCN can process irregular image regions. The learned hidden

layers in the GCN can encode both features of node and local

graph structure. Therefore, the GCN can flexibly retain class

boundaries while adequately exploiting image features. How-

ever, it is not appropriate when the GCN is directly applied in

HSI classification. The GCN can assemble and transform fea-

tures from a defined graph containing the neighbor information

of each graph node. In the GCN, the neighborhood structure

of the graph adaptively governs the graph convolution oper-

ation. Although the GCN can capture relationships based on

the predefined graph that contains global information, pixels’

relationships for graph construction cannot be well ensured.

The main reason lies in that accurate image features can-

not be obtained only with the limited iterations of the deep

learning framework. Thus, this deep learning framework still

cannot ensure the quality of HSI features with the predefined

graph.

Inspired by the above discussions, aiming to learn more

representative and discriminative image features of HSI, label

consistency (LC) is embedded into the deep learning framework

in this article. LC includes not only the label consistency of

single pixels (LCSP) but also the label consistency of group

pixels (LCGP). LCSP means that LC is maintained by calculat-

ing the error between the predicted label and the real label of the

sample. Moreover, LCGP refers to considering long-range data

by introducing a group label matrix to solve problems such as

different ground objects in the same spectrum. LCGP can also

realize label reuse on the basis of limited labeled data so that the

model has better learning ability.

In this article, deep feature learning with label consistencies

(DFL-LC) is proposed, which considers both LCSP and LCGP,

and its framework is show in Fig. 1. In this approach, we

adopt the multiscale convolutional neural network (MSCNN)

to extract basic HSI features. The features obtained from the

MSCNN are further fed into the GCN, which considers pixels’

relationships by constructing an adjacency matrix. The output

layer of the GCN is activated by the ReLU function. In order to

enhance the performance of HSI classification, LC should also

be applied to the deep learning framework. LC includes not only

LCSP but also LCGP. With LC, the cross-entropy loss is used to

calculate the difference between the outputs and the real labels

to keep LCSP. Moreover, to keep LC for the long-range data

and alleviate deficiently labeled samples, LCGP regularization is

added in the objective function. Finally, an iterative optimization

algorithm is used to optimize the objective function.

The main contributions of this article are summarized as

follows.

1) DFL-LC is developed to extract HSI features and ensure

LC, whose structure contains the MSCNN and the GCN. The LC

constraint is embedded in the objective function, and end-to-end

optimization is implemented.

2) In DFL-LC, we formulate two kinds of constraints to boost

the classification accuracy: LCSP and LCGP constraints. LCSP

ensures LC between the outputs and the real labels of the sample.

LCGP refers to considering the long-range data and alleviating

deficiently labeled sample problem.

3) DFL-LC is optimized through an iterative algorithm. The

test results on three representative datasets demonstrate that the

DFL-LC method is superior to the relevant latest HSI classifi-

cation methods.

II. RELATED WORKS

A. Feature Extraction

There is abundant spatial and spectral information in the HSI,

which is important to efficiently and accurately exploit spatial

and spectral features to classify HSIs. According to the label

of data, classification methods can be divided into supervised,

semisupervised, and unsupervised methods.

We need a large amount of labeled data in supervised methods.

Liu et al. [6] proposed an effective classification model based on

active learning and DBN, in which the active learning algorithm

is used to repeatedly select high-quality labeled samples for

training, and DBN is used to deeply extract spectral features. In

[28], a diversified DBN model was proposed, in which the clas-

sification performance of the model is significantly improved

by normalizing the DBN pretraining and fine-tuning progress.

Semisupervised methods need less labeled data compared with

supervised methods. In [29], a semisupervised deep feature
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Fig. 1. Framework of DFL-LC. (a) HSI data. In (b), the features of samples are extracted by the MSCNN. (c) Learning process of the GCN. (d) Result of the HSI
classification. In (c), the samples of different colors represent different classes. The adjacency matrix is constructed according to the relationship between samples
and is combined with the basic features extracted by the MSCNN as the input of graph convolution. Finally, we embed the LCSP and LCGP constraints into the
objective function to ensure LC.

learning method was proposed with feature consistency, where

the CNN is used to extract spectral–spatial features, and fully

connected layers are used to model feature consistency. Sun

et al. [14] proposed a semisupervised method to obtain features

by training SAE using a batch training scheme. Then, a mean

convergence method is used to generate deep characteristics by

further fusing the spectral and local spatial features. HSI data

can often be represented as a 3-D cube. Therefore, it can provide

a more effective method to simultaneously extract spectral and

spatial features of HSIs by performing 3-D convolution in spec-

tral and spatial dimensions. In [30], a subspace learning with

the conditional random field (CRF) method was developed to

obtain the subspace of the HSI pixels using the semisupervised

approach, in which the CRF is embedded in subspace learning

to classify HSI. Different from supervised and semisupervised

methods, unsupervised methods do not use labeled data. Some

traditional methods (PCA [31] and ICA [32]) can effectively

extract spectral features, but these linear models only have

simple linear processing, which makes it difficult to process

complex spectral features in HSIs. Kuo et al. [33] proposed ker-

nel nonparametric weighted feature extraction, which combined

linear and nonlinear transformation.

However, the traditional CNN only refers to the spectral

features of the adjacent pixels but ignores the spectral features of

long-range data with the sample, which only perform convolu-

tions with fixed size and weight on regular square image regions.

Therefore, the GCN is introduced to realize HSI classification,

which encodes the graph structure to consider long-range data.

B. Graph Convolution

The GCN has been extensively explored in the problem areas

of supervised, semisupervised, and unsupervised networks. Gori

et al. first proposed the concept of graph neural network, which

can process graph data [34]. Compared with the CNN and

the RNN, the advantage of the GCN is that it can process

non-Euclidean data with graph structure. The GCN is a mul-

tilayer neural network that operates directly on a graph and

studies the features of the graph through the eigenvalues and

eigenvectors of the Laplace matrix of the graph. The GCN can

correctly transform the graph into a new discriminative space by

integrating the adjacency relationships and features of the nodes

in the graph.

Recently, the GCN has been diffusely used for text classifi-

cation. Hamilton et al. proposed an inductive framework named

Graph SAGE, which efficiently generates node embeddings for

previously unseen data utilizing node features [17]. By sampling

and aggregating features from the local neighborhood of the

node, it learns a function that generates embedding, instead of

training individual embeddings for each node. A fast approxima-

tion localized graph convolution was proposed to avoid numer-

ical instabilities and explosion or vanishing of gradients [18].

It can encode both features of node and graph structure and

lead to more efficient filtering operations, because the GCN was

simplified by the first-order approximation of graph convolution.

Monti et al. proposed a unified framework that generalizes the
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CNN to non-Euclidean domains, such as graphs and manifolds,

and learns stationary and local features [19].

The GCN is also widely used in image classification. Garcia

and Bruna used a reasoning prism to study the problem of

few-shot learning on part of the graph observation model, which

is composed of a set of input images that can be observed or not

observed with labels [35]. Wang et al. proposed a method based

on the GCN, which uses semantic embeddings and categorical

relationships to classify images [36]. In this method, given a

learning knowledge graph, the method inserts each node (repre-

senting a visual category) as input semantics. Some scholars also

use the GCN to realize HSI classification. Qin et al. proposed

a spectral–spatial GCN to approximate convolution by using

adjacency nodes in the graph [37]. Thus, this method takes full

advantage of the current pixel spatial information in the process

of approximate convolution. Wan et al. proposed a multiscale dy-

namic GCN, whose graph is dynamically updated during graph

convolution, and its input graphs have different neighborhood

scales to utilize multiscale information in HSIs [38]. The GCN

can capture relationships based on the predefined graph that

contains global information, but the pixels’ relationships for

graph construction cannot be well ensured. Therefore, LC is

embedded into the deep learning framework in this article to

learn more features of HSIs.

III. PROPOSED METHOD

In this section, a new feature learning method, DFL-LC,

is introduced. First, the motivation of this article is presented

in Section III-A. Next, the DFL-LC framework is given in

Section III-B. Finally, we optimize DFL-LC in Section III-C.

A. Motivation

Traditional convolution only refers to the spectral features of

the adjacent pixels but ignores the spectral features of long-range

data with the sample. The GCN cannot ensure the pixels’ rela-

tionships for graph construction because accurate image features

cannot be obtained with only the limited iteration of the deep

learning framework. Therefore, we combine MSCNN and GCN,

and LCSP and LCGP are added to the objective function to keep

LC. LCSP denotes that the LC is maintained by calculating the

error between the predicted output label and the real label of the

sample. Moreover, LCGP refers to considering long-range data

by introducing a group label matrix and realizing label reuse on

the basis of limited labeled data. Finally, the objective function

is optimized by an iterative optimization algorithm.

B. Framework of DFL-LC

1) Multiscale Feature Extraction: In recent years, classifi-

cation, detection, and recognition issues can be addressed by

CNNs, which are effected by the structure of the human visual

system. There are two special aspects in the CNN architecture:

shared weight and local connection, which make CNNs different

from other deep learning methods in architecture. Shared weight

can reduce network parameters. And the CNN can make use of

local connections to exploit the local correlation between the

neurons of near layers.

The objects of HSI usually have different geometric appear-

ances, so multiscale features have been proven to be useful to

solve the HSI problems [39]. The multiscale structure contains

plentiful contextual HSI information [40]. Deep learning can

extract abundant local characteristics of image regions from

different levels by using the contextual information exposed

by different scales. To obtain more detailed features, we em-

bed multiscale information into the CNN. The MSCNN can

exploit both shallow features and deep features, which is better

adapted to classify HSIs, and multiscale features can effectively

improve the results of HSI classification. Using the MSCNN, the

spectral–spatial features are introduced to describe HSIs. The

MSCNN adopts three different convolutional filters to locally

convolve patches X
1, X2, and X

3 with three different sizes.

Then, all the features extracted from these three layers are

stacked together as the input to the fully connected layer. With

the MSCNN process, we can obtain the spectral–spatial features

Z1:

Z1 = f(ReLU(W(0,1) ⊗X
1 + b

(0,1))

⊕ ReLU(W(0,2) ⊗X
2 + b

(0,2))

⊕ ReLU(W(0,3) ⊗X
3 + b

(0,3))) (1)

where f is the fully connected operation. ⊗ represents the tradi-

tional convolution operation, and ⊗ represents the features that

are added together in the third dimension. W(0,i) and b
(0,i) are

the weight and bias for Xi.

2) Graph Convolution Process: There are hundreds of thou-

sands of pixels in the HSI, which makes the computational

complexity for graph convolution and HSI classification difficult

to accept. In order to solve this problem, the GCN is introduced

by treating each sample as a node in graph instead of a pixel

of the HSI. This method can significantly reduce the number of

graph nodes and improve the computational efficiency. Different

from the CNN, which extracts features by convolution, the GCN

studies the features of the graph through the eigenvalues and

eigenvectors of the Laplace matrix of the graph. The GCN can

find the simple and clear neighbor connections between the

nodes from a complex graph and smooth the label information

via neighbor connections over the graph until achieving a global

steady state.

To perform graph convolution, we first construct an undirected

graph, which is defined as G = (V , E). V and E are the sets of

nodes and edges, respectively. A denotes the adjacency matrix

of G, which represents the connection relationship between

nodes in the graph. Here, the adjacency matrix is constructed

according to the spatial relationship among patches, which can

be calculated as follows:

Aij =

{

e−γ‖xi−xj‖
2

, xi ∈ N(xj)orxj ∈ N(xi)
0 otherwise

(2)

where γ is empirically set to 0.01 in the experiments. xi repre-

sents the patch, and N(xi) is the set of neighbors of xi.
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The normalized Laplacian of the graph is L = IN −
D

− 1

2LD
− 1

2 = UΛU
T , where D denotes the degree matrix of

G, U is the matrix composed of the eigenvectors of L, Λ is a

diagonal matrix containing the eigenvalues of L, and I denotes

the identity matrix with the proper size. According to the graph

convolution theorem, the graph convolution can be written as

g ∗ x = U
(

U
T gUT

x
)

. (3)

Then, we can consider that gθ(Λ) = U
T g is a function of the

eigenvalues of L. We can define spectral convolutions on graphs

as the multiplication of a signal x with a filter in the Fourier

domain

gθ ∗ x = Ugθ′ (Λ)UT
x = UgθU

T
x (4)

where gθ = diag(θ) = gθ′(Λ) is the filter.

However, the amount of computation required to eigende-

compose the L of large graphs is prohibitively expensive. To

address this problem, Hammond et al. approximated gθ(Λ) up to

the Kth order by a truncated expansion according to Chebyshev

polynomials Tk(x) [41]

gθ′ (Λ) ≈

K
∑

k=0

θ
′
kTk

(

Λ̃

)

(5)

with a rescaled Λ̃ = 2
λmax

Λ− IN . λmax is the maximum eigen-

values of L and θ
′ is a vector of Chebyshev coefficients. There-

fore, the convolution can be written as

gθ′ ∗ x ≈
K
∑

k=0

θ
′
kTk

(

L̃

)

x (6)

where L̃ = 2
λmax

L− IN is the scaled Laplacian matrix.

(UΛU
T )k = UΛ

k
U

T can easily verify (6). Since this formula

is a Kth-order polynomial for the Laplacian, the nodes away from

the central node at most K steps determine the filtering.

Therefore, in the form of (6), stacking graph convolutional

layers can build a graph convolution network model, in which

pointwise nonlinearity is after each layer. Therefore, (6) be-

comes a linear function on the Laplacian spectrum of the graph

considering the first-order neighborhood (K = 1). We further

approximate λmax ≈ 2 in this linear formulation of a GCN.

Therefore, (6) can be simplified to

gθ′ ∗ x ≈ θ′0x+ θ′1 (L− IN )x = θ′0x+ θ′1D
− 1

2AD
− 1

2x

(7)

where θ′0 and θ′1 are two free parameters. To avoid overfitting

caused by many parameters, (7) is converted to

gθ ∗ x ≈ θ
(

IN +D
− 1

2AD
− 1

2

)

x (8)

with a single parameter θ = θ′0 = −θ′1. Since the eigenval-

ues of IN +D− 1

2AD− 1

2 are in the range [0, 2], numerical

instabilities and explosion or vanishing of gradients will be

resulted by repeatedly using this operator. To alleviate this

problem, Kipf and Welling performed the renormalization

trick IN +D
− 1

2AD
− 1

2 → IN + D̃
− 1

2 ÃD̃
− 1

2 with Ã = A+
IN and D̃ii =

∑

j Ãij [18].

Fig. 2. Overview of the output layer. LCSP and LCGP are proposed to keep
LC.

Since the spectral–spatial features Z1 have been obtained,

based on the graph convolution, we build a GCN, which contains

two-layer graph convolution for node classification on a graph

as an example. Therefore, the forward model can be simplified

to

Z = ψ (X,A) = softmax
(

ÂReLU
(

ÂZ1W
(0)

)

W
(1)

)

(9)

where Â = D̃
− 1

2 ÃD̃
− 1

2 and W
(0) ∈ R

C×H and W
(1) ∈

R
H×M are the weight matrixes of the input-to-hidden layer

and the hidden-to-output layer, which can be updated via the

backpropagation algorithm.

3) Output Layer: In the output layer, we formulate two kinds of

constraints to boost the classification accuracy: LCSP and LCGP

constraints, which are shown in Fig. 2. LCSP is maintained by

calculating the error between the label prediction and the real

label of the sample. LCGP refers to considering the long-range

data by introducing a group label matrix and realizing label reuse

on the basis of limited labeled data. Let s be the number of labeled

patches, q be that of unlabeled patches, and n = s + q be the

number of patches. The cross-entropy loss and LC constraint

train the features extracted from the MSCNN and the GCN with

the labeled data.

LCSP Loss: In the GCN, the output layer is activated by

the ReLU activation function to transmit the features into the

probability of all class labels Z. The LCSP loss is used to

calculate the difference between the output of the network Z

and the real label Y

ΘLCSP = −
1

s

s
∑

i=1

L
∑

j=1

I(j) logZij (10)

where L is the number of classes and Zi is the label prediction

for the ith patch. The value of I(j) is 1 when j equals the desired

label Yi of the ith patch (1 ≤ i ≤ s); otherwise, the value is 0.

In (10), the probability of all class labels is predicted and

optimized using the cross-entropy loss.

LCGP Loss: The LCGP is achieved by introducing the group

label matrixG, which considers the long-range data and realizes

label reuse. For example, assume that patches X1 are from class

1; X2 and X3 are from class 2; and X4 is from class 3. Then, G
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is defined as

G ≡

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

. (11)

The objective function of the LC is then described as

ΘLCGP = ‖G−TZ‖2F + α ‖T‖2F (12)

where T ∈ R
s×L is a transformation matrix for transforming

the predicted label Z ∈ R
L×s into the matrix of the same size

as G ∈ R
s×s, and α is the balance term.

4) Overall Objective Function of DFL-LC: Considering the

constraints of (10) and (12), we formulate the joint objective

function of DFL-LC as follows:

Θ = ΘLCSP + λΘLCGP

= −
1

s

s
∑

i=1

L
∑

j=1

I(j) logZij + λ

[

‖G−TZ‖2F + α ‖T‖2F

]

(13)

where λ is the balance term.

C. Optimization of DFL-LC

In this section, we propose an iterative algorithm to optimize

the parameters in the DFL-LC, and Algorithm 1 summarizes

the optimization procedure. Let ϕ1 be the collection of weights

and bias of the CNN, and ϕ2 be the collection of weights of the

GCN. In each iteration of the algorithm, the parameters ϕ1, ϕ2,

and T are optimized.

The parameters ϕ1 and ϕ2 are solved when T is fixed, so the

optimization problem defined in (13) can be rewritten as

min
ϕ1,ϕ2

Θ = min
ϕ1,ϕ2

−
1

s

s
∑

i=1

L
∑

j=1

I(j) logZij

+ λ

[

‖G−TZ‖2F

]

. (14)

Then, we update the parameters on each iteration

ϕ1 ← ϕ1 − β∇ϕ1

[

min
ϕ1,ϕ2

Θ

]

ϕ2 ← ϕ2 − β∇ϕ2

[

min
ϕ1,ϕ2

Θ

] (15)

where β is the learning rate of the DFL-LC.

T is resolved when ϕ1 and ϕ2 are fixed. Therefore, the

optimization problem defined in (13) is rewritten as

min
G

Θ = λ

[

‖G−TZ‖2F + α ‖T‖2F

]

. (16)

Then, we update the transform matrix T as

T ← T− β∇G

[

min
G

Θ
]

. (17)

Fig. 3. Indian Pines. (a) False color image. (b) Ground-truth map.

Algorithm 1: DFL-LC.

Input: Training samples X, matrix G, parameters λ, α.

Output: Predicted class labels Z.

Initialize: ϕ1, ϕ2, and T.

for the number of iteration do

1: Sample batch size of samples X;

2: Compute the features from the MSCNN using (1);

3: Feed the features extracted from the MSCNN into the

GCN;

4: Compute the features from the GCN using (9);

5: Compute the class probability Z using (9);

6: Compute the LCSP loss using (10);

7: Compute the LCGP loss using (12);

8: Update ϕ1 and ϕ2 using (15);

9: Update T using (17);

IV. EXPERIMENTS

In this section, we experimentally evaluate the performance of

the DFL-LC to classify HSIs. First, the datasets are introduced in

Section IV-A. Next, the experimental settings of DFL-LC and

approaches are given in Sections IV-B and IV-C. Finally, we

give the classification results and the analysis of parameters in

Sections IV-D and IV-E.

A. Dataset

1) Indian Pines: The Indian Pines dataset is over the Indian

Pines test site in north-western Indiana, which collected by the

AVIRIS sensor. In the Indian Pines dataset, there is one-third

of forest or other natural perennial vegetation and two-thirds of

agriculture. The dataset contains 145×145 pixels and 220 bands.

After removing 20 bands that are water absorption and noisy,

200 bands are reserved. The Indian Pines ground truth contains

16 classes. Fig. 3 shows the false color image and ground-truth

map of the dataset, and Table I lists the number of labeled and

unlabeled pixels of various classes.

2) Salinas: The spatial resolution of Salinas dataset was

3.7 m, which was collected by the 224-band AVIRIS sensor over

Salinas Valley, CA, USA. After removing 20 water absorption

bands, the image comprises 204 bands with 512×217 pixels. It

includes vegetables, bare soils, and vineyard fields. The ground

truth of Salinas contains 16 classes. The false color image and

ground-truth map are shown in Fig. 4, and Table II shows the

numbers of samples to train and test in the Salinas dataset,

respectively.
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TABLE I
NUMBERS OF TRAINING AND TEST SAMPLES IN THE INDIAN PINES DATASET

Fig. 4. Salinas. (a) False color image. (b) Ground-truth map.

3) University of Pavia: The University of Pavia dataset is with

a spatial resolution of 1.3 m during a flight over Pavia in northern

Italy, which was obtained by the ROSIS sensor. The scene is 610

× 340 × 103 after removing 12 noisy bands. The University of

Pavia dataset contains nine classes of interest. Fig. 5 shows the

false color image and the ground-truth map of the University of

Pavia dataset, and Table III shows the information of training

and test samples on the number.

B. Experimental Settings

The proposed method is enforced through PyTorch with the

Adam optimizer, and the backpropagation algorithm is used to

optimize the parameters of the whole network. For learning the

network, we set the learning rate to 0.01 with 9000 epochs and

a hidden layer size of 24 units. We crop each pixel and its

surrounding neighboring pixels as the input of DFL-LC. The

TABLE II
NUMBERS OF TRAINING AND TEST SAMPLES IN THE SALINAS DATASET

Fig. 5. University of Pavia. (a) False color image. (b) Ground-truth map.

TABLE III
NUMBERS OF TRAINING AND TEST SAMPLES IN THE UNIVERSITY OF

PAVIA DATASET

datasets we use in the experiment are Indian Pines, Salinas, and

University of Pavia. Training samples are selected from 10% of

the samples in each class, and other samples are used to test to

evaluate the classification performance.
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TABLE IV
ACCURACY OF EACH CLASS, AND OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT CLASSIFICATION METHODS ON THE INDIAN PINES DATASET

C. Comparison Approaches

To verify an evaluate the classification ability of the pro-

posed DFL-LC, other traditional and state-of-the-art methods

for HSI classification (SVM [2], CNN [11], CNN-MRF [42],

HybridSN [43], SSCNN [44], and SDP [45]) are also used for

comparison. We compare CNN-GCN with DFL-LC to verify

the validity of MSCNN.

1) SVM [2]: Combining SVM with a feature-reduction tech-

nique is sufficient in HSI classification.

2) CNN [11]: It is a 3-D CNN model to effectively extract

spectral and spatial for HSI classification.

3) CNN-MRF [42]: The CNN is used to learn the posterior

class distributions, and then, Markov random field prior is used

to consider the spatial information.

4) HybridSN [43]: It is a spectral–spatial 3-D CNN followed

by spatial 2-D CNN. The 3-D CNN can represent spectral and

spatial features, and the 2-D CNN can further learn more spatial

features.

5) SSCNN [44]: It is a novel semisupervised CNN to classify

HSIs, which can automatically learn features from complex data

structures.

6) SDP [45]: It is a new semisupervised active learning

approach to classify HSIs that improves machine generalization

by using pseudo-labeled samples.

D. Classification Results

In these experiments, three objective metrics (overall accu-

racy (OA), average accuracy (AA), and the Kappa coefficient)

adopted are used to quantitatively evaluate the capability of

DFL-LC and other methods. The OA is obtained by calculating

the ratio of the number of correctly classified test samples to

the total number of test samples. The AA is the average of the

classification accuracies of each class. The Kappa coefficient

represents the robust measure of the degree of consistency, which

is calculated by weighting the classification accuracies. The

experiments are conducted on Indian Pines, Salinas, and Univer-

sity of Pavia datasets. The quantitative classification results are

summarized in Tables IV–VI, and the highest accuracy in each

class is highlighted in bold. And the classification maps obtained

by different methods are shown in Figs. 6–8. Therefore, we can

obtain the following observations.

1) Compared with other methods, the DFL-LC can achieve

a higher classification accuracy and the best performance on

three datasets than other methods. It demonstrates that DFL-LC

can learn more representative features of HSI, which considers

long-range data and keeps LC. Compared with the ground-truth

map and other classification maps, the result of DFL-LC method

shows fewer misclassifications and produces a smoother visual

effect. This indicates that DFL-LC is very useful to classify

HSIs, which can effectively construct the relationships among

the samples.

2) We can observe that the CNN-based methods, including

CNN, CNN-MRF, HybridSN, SSCNN, and SDP, achieve rel-

atively low accuracy combined with DFL-LC. The reason is

that they can only perform convolutions on a regular image

region and cannot extract specific local spatial information. It

also proves that GCN and LCGP can consider spectral fea-

tures of long-range data, which play a significant role in HSI

classification.

3) By contrast, we also observe that the DFL-LC methods

can yield relatively good performance compared with SSCNN

and SDP, which are semisupervised classification methods.

It explains that LC can realize label reuse based on lim-

ited labeled data to improve the feature learning ability of

DFL-LC.

E. Parameters Analysis

1) Impact of γ in the Adjacency Matrix: In the proposed

method, the calculation method of the adjacency matrix in this

article is shown in (2). It can be seen that different values of

γ affect the classification accuracy in (2). Thus, we vary the
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TABLE V
ACCURACY OF EACH CLASS, AND OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT CLASSIFICATION METHODS ON THE SALINAS DATASET

TABLE VI
ACCURACY OF EACH CLASS, AND OA, AA (%), KAPPA COEFFICIENT ACHIEVED BY DIFFERENT CLASSIFICATION METHODS ON THE UNIVERSITY OF PAVIA

DATASET

Fig. 6. Classification maps obtained by different classification methods on the Indian Pines dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) CNN-MRF.
(e) HybirdSN. (f) SSCNN. (g) SDP. (h) DFL-LC.
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Fig. 7. Classification maps obtained by different classification methods on the Salinas dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) CNN-MRF. (e)
HybirdSN. (f) SSCNN. (g) SDP. (h) DFL-LC.

value of γ from 0.001 to 0.1 and report the OA on the Indian

Pines, Salinas, and University of Pavia datasets. The results

of classification are shown in Fig. 9. We can observe that the

classification accuracy is improved when the maximal value

of the nonzero elements in the adjacency matrix approaches

1. According to the experimental results, we can find that the

classification accuracy is highest when γ is 0.01. Moreover, the

capability of DFL-LC is more stable than that of CNN-GCN

with a changed value of γ.

2) Impact of the Number of Hidden Nodes: The GCN learns

feature by encoding features of node and graph structure in the

hidden layer. There is a hidden layer in the proposed method, and

the number of nodes of hidden layer also has some influence on

the classification result. Therefore, we vary the number of hidden

nodes in 16, 24, and 32. The OA on the Indian Pines, Salinas,

and University of Pavia datasets are shown in Fig. 10. We can

observe that the classification accuracy is improved when the

number of hidden nodes is more than the number of categories

in the dataset. Thus, we choose the number of hidden nodes

according to the best accuracy in the experiment, so 16 hidden

nodes are set in the method.

3) Influence of the Multiscale Filter Bank: To verify the

validity of filter banks with different scales in extracting fea-

ture information, we compare the filter banks with differ-

ent configurations, which are 1 × 1, ∼ 3 × 3, ∼ 5 × 5 and

∼ 7 × 7. The ∼ 7 × 7 denotes that the sizes of the convolu-

tional filters are 1× 1, 3 × 3, 5 × 5 and 7 × 7, and the others

are in the same way. As shown in Table VII, the classifica-

tion accuracy of multiscale filters is better than that of the

method with a 1 × 1 convolutional filter. Multiscale convolu-

tion can exploit the spatial–spectral feature, which is better

adapted for HSI classification. Additionally, since ∼ 7 × 7 con-

tains more noise, the ∼ 5 × 5 multiscale filter shows better

performance.



LIU et al.: DFL-LC: DEEP FEATURE LEARNING WITH LABEL CONSISTENCIES FOR HYPERSPECTRAL IMAGE CLASSIFICATION 3679

Fig. 8. Classification maps obtained by different classification methods on the University of Pavia dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d)
CNN-MRF. (e) HybirdSN. (f) SSCNN. (g) SDP. (h) DFL-LC.

Fig. 9. Overall accuracies of DFL-LC on Indian Pines, Salinas, and University
of Pavia datasets under different value of γ.

Fig. 10. Overall accuracies of DFL-LC on Indian Pines, Salinas, and Univer-
sity of Pavia datasets under different number of hidden nodes.

TABLE VII
OVERALL ACCURACIES (%) OF DFL-LC AND CNN-GCN ON INDIAN PINES,

SALINAS, AND UNIVERSITY OF PAVIA DATASETS

V. CONCLUSION

In order to effectively extract features and keep LC, we

propose a novel DFL-LC to achieve HSI classification, which

is based on traditional convolution and graph convolution. In

DFL-LC, the MSCNN is used to obtain basic features, the

GCN can capture relationships between pixels and realize HSI

classification, and LCSP and LCGP are embedded in the objec-

tive function. LCSP can ensure LC between the predicted label

and the real label of the sample. DFL-LC is a semisupervised

method, and the method considers the truthful neighborhood

information of all samples. LCGP can ensure the quality of

extracted features when a small number of labeled samples

are obtained, so DFL-LC can alleviate the deficiently labeled

sample problem. Compared with the traditional and state-of-the-

art classification methods, the experimental result demonstrates

that the proposed method can yield better HSI classification

performance. In future research, DFL-LC will be applied into
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other recognition tasks, such as high-spatial-resolution remote

sensing image segmentation.
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