DATE 2006 Special Session: DFM/DFY Design for Manufacturability and Yield - Influence of Process Variations in Digital, Analog and Mixed-Signal Circuit Design

DATE'06

Munich, March 8th, 2006

Dr. Ralf Sommer
COM BTS DAT DF AMF

Outline

- Trouble in Chipmaker's Paradise
- Mismatch Impact on Circuit Design for Advanced Technologies
- Circuit Simulation and Yield Optimization Methods
- History of Requirements from Circuit Designers
- Sizing and Yield-Optimization Flow Inway 5.x/Powerflow
- Summary and Outlook

The Major Drivers of Chip Design

Performance Yield Power Chip Design Time-to-Market Area

Trouble in Chipmaker's Paradise

- Data from 4 logic companies show initial yield has not improved from the 0.5 µm to 180 nm generation
- Yield learning rates also have not improved and mature yields have declined

Trouble in Chipmaker's Paradise: Yield Ramp and Final Yields

Where We Have To Go

On-Chip Variation

Technology Node	On-Chip- Variation (*)
180 nm	8 – 13 %
130 nm	22 %
90 nm (to be validated)	30 – 40 %
65 nm (estimated)	45 – 55 %

Dr. Ralf Sommer COM BTS DAT DF AMF 4/6/2006 Page 7

(*) 3- σ limits of V_{th}

Limits: Mismatch Impact on Circuit Design for Advanced Technologies

- Reduction of available voltage range
- Reduction (scaling) of transistor area
- → Increasing transistor mismatch
- → High effort to maintain circuit accuracy

Circuit Simulation and Yield Optimization Methods

EDA Method Tools Complexity SPICE Models expenses & influence expenses & on design process; completeness of statistical background device models; know how needed Special **Design Centering** statistical high high Tools **Monte-Carlo Simulation Sensitivity / Tolerance Analysis Worst- / Best-Corner Analysis** Analog low low **Nominal Simulation Simulator**

Dr. Ralf Sommer COM BTS DAT DF AMF 4/6/2006 Page 9

Thanks to B. Lemaitre

Circuit Simulation and Yield Optimization Methods

EDA Method Tools Complexity **SPICE Models** expenses & influence expenses & on design process; completeness of device models: statistical background know how needed **Design Centering** all Special (parametric yield optimization) parametric vield Statistical high high optimization Tools **Monte-Carlo Simulation** process & circuit MC models (simulation of parameter distributions distributions local & global variations) **Sensitivity / Tolerance Analysis** process & circuit physical (automatic or by discrete differences) sensitivities: meaningful robust design device models process & circuit **Worst-/Best-Corner Analysis** margins; worst case (distribution outside simulator) under- overestimation Analog **Nominal Simulation Simulator** nominal point nominal low low

Developments of Compact Models

- Number of DC model parameters vs. year of introduction of the model
- Significant growth of parameter number that includes geometry (W/L) scaling
- How can we handle the complexity (without tools)?

Dr. Ralf Sommer COM BTS DAT DF AMF 4/6/2006 Page 11

Thanks to W. Grabinski

History of Requirements from Circuit Designers (cont.)

- Corner analysis
 - not suited for analog behavior and mismatch-dominated effects
- Monte-Carlo analysis (without & with operating conditions)
 - no information on how to tune design parameters to improve yield
- Contributor identification
 - Note: Contributor identification does not necessarily describe the impact on yield!
 - Restricted to statistical parameters (and not designables, operating parameters, bias-currents,...)

Monte Carlo: Effort of Yield Estimation

Verification of a yield Y > Y_{min} with 95% confidence:

$$N \blacklozenge c^2 / (1 - Y_{\min})$$

. 10				
- 100	N	β_{w}	1-Y _{min}	Y _{min}
_	150	2σ	2%	98%
mulations	3 000	3σ	0.1%	99.9%
#Sir	100 000	4σ	0.003%	99.997%
_	_			

Rem.: for 99% confidence, about 1.7 · *N* simulations are needed

- → Better methods needed for very robust circuits:
 - Deterministic tolerance analysis and worst-case points
 - Importance sampling / stratified sampling

DfM: Why Non-Monte-Carlo-Methods? Cost Comparison: Yield Analysis with WCDs vs. Monte-Carlo

Dr. Ralf Sommer COM BTS DAT DF AMF 4/6/2006 Page 14 Advantage Worst-Case-Distances (WCDs): More efficient and accurate than MC for yield > 3σ (99,9%)

History of Requirements from Circuit Designers (cont.)

- Corner analysis
 - not suited for analog behavior and mismatch-dominated effects
- Monte-Carlo analysis (without & with operating conditions)
 - no information on how to tune design parameters to improve yield
- Contributor identification
 - Note: Contributor identification does not necessarily describe the impact on yield!
 - Restricted to statistical parameters (and not designables, operating parameters, bias-currents,...)
- Yield sensitivities → Worst-case points, distances and circuit performance linearization
- Yield optimization
- Nominal sizing

Methodology Development (IFX-DfY & public R&D projects): Sizing and Yield-Optimization Flow – Inway 5.x/Powerflow

Selected References from >200 WiCkeD Optimization Projects within Infineon – RF Design, High-Speed Analog, High-Speed Digital, Automotive Power, Embedded Memory, Enhanced Digital Cell Library Modeling

Application Field	Circuit Design Task
	(IFX-Project)
RF Design	Coilless LNA for GSM
	Power supply for RF circuits
High-Speed Analog	RF input amplifiers (LNA) and comparators for) High-speed serial memory interface
	Bias chain for A/D conversion
High-Speed Digital	4GHz Master-Slave Flip-Flop of Advanced Memory Buffer Interface
	Digital Carry Select Adder
Automotive Power	Comparator in SMART5 Technology
Embedded Memory	6T SRAM - 6sigma design
Enh. Digital Cell Library Modeling	Statistical static timing analysis for L90 logic (SSTA)

Testbench and Schematic of the Comparator Circuit

19 MOSFETs, 2 bipolar transistors:

- Current Mirror
- Level Shifter
- Differential-pair

Dr. Ralf Scom BTS DAT DF AMF

4/6/2006 Page 18

WiCkeD Reference Projects

Design Problem & Consequences

Comparator circuit in SMART5 technology

Initial design:

- **▶** Performances too low (offset, temperature sensitive, matching problem)
- **№** Overall design yield: < 5%

Dr. Ralf Sommer COM BTS DAT DF AMF

4/6/2006 Page 19

Solution & Results using WiCkeD

- **↗** Using WiCkeD's optimization engines: Feasibility, Nominal Sizing and Yield Optimization
- **★ Total setup & optimization time**using 4 hosts: 3 hours
- 7 Yield improvement after Nominal Optimization: <5% → 78%</p>
- 7 Yield optimization with design centering: 78% → 92,6% yield
- Verified with Monte-Carlo

WiCkeD

▶ Significant performance improvements for offset, gain (35dB)
 → 57dB) and others

Yield ramp-up from <5% → 92 % in 3 hours

Overview: Circuit Analysis and Optimization Steps

Design for [X] Umbrella - Df[X]

Source: Semiconductor International, June 2005

DFY_P DFY_S DFY_R DFR DFD DFT

- → Parametric
- → Systematic Examples:
- Performance
- Leakage
- Misalignment

- → Random
- → Reliability
- **Example:**
- Library optimization

- **→ Diagnostics**
- → Test
- **Example:**
- FaultCoverage /Models

Yield as the 4th Design Target

Chip behavior in Face of Environmental and Manufacturing Variations

Functional / Systematic Yield

Yield

Parametric (digital & analog)
Yield

■ Functional Yield Analysis

- Critical Area, Printability
- Layout, design style & litho dependent performance

■ DfM-Aware Physical Design

- Redundant via insertion
- Wire bending / spreading
- OPC (Optical proximity correction) / PSM (Phase Shift Mask) aware routing

■ Layout Restrictions

 Transistor orientation restricted to improve manufacturing control

Address Process and Environmental Variations

Digital

- Statistical timing/power (SSTA)
- Timing aware OPC & PSM
- Statistical Physical Design
- Adaptive Chip design

Analog

 Design Centering by Statistical Analog Simulation, Monte-Carlo & Non-Monte-Carlo (e.g. WiCkeD)

Summary and Outlook

- Monte-Carlo analysis is suited for yield estimation. Computational effort to ensure high yields is considerable → enormous (is the better word)
- Extensions of MC-analysis allow for handling operating conditions as well as to perform a contributor identification
- Worst-Case methods are superior to MC-methods with respect to efficiency, post processing possibilities e.g. for design centering
- Structural constraints help to obtain better results from the optimization, especially e.g. robustness (performances w.r.t. variation of operating parameters) and computational effort for the optimization loop
- No push-button solution available, but we are working towards improvement of user-friendliness

Summary and Outlook

- Design and technology are in equal measure responsible for yield.
 Close collaboration is more and more crucial for business success.
- Systematic yield loss is a big problem. Combined efforts of design and manufacturing groups are necessary for improvements here.
- First time right is essential. Don't "throw a design over the fence" and look if it works. Every carelessness will cost valuable ramp-up time.
- Yield maximization should have higher priority than pure cost optimization. Cost reduction measures are only effective in a mature situation.
- Simulator costs and resources: Methodology training mandatory &
 → use your brain to avoid computational pain!
 (i.e. before you activate thousands of simulations)

Outlook: Design Abstraction Levels – Challenges for DfY

