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DFT‑aided machine learning‑based 
discovery of magnetism 
in Fe‑based bimetallic 
chalcogenides
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With the technological advancement in recent years and the widespread use of magnetism in 
every sector of the current technology, a search for a low-cost magnetic material has been more 
important than ever. The discovery of magnetism in alternate materials such as metal chalcogenides 
with abundant atomic constituents would be a milestone in such a scenario. However, considering 
the multitude of possible chalcogenide configurations, predictive computational modeling or 
experimental synthesis is an open challenge. Here, we recourse to a stacked generalization machine 
learning model to predict magnetic moment (µB) in hexagonal Fe-based bimetallic chalcogenides, 
FexAyB; A represents Ni, Co, Cr, or Mn, and B represents S, Se, or Te, and x and y represent the 
concentration of respective atoms. The stacked generalization model is trained on the dataset 
obtained using first-principles density functional theory. The model achieves MSE, MAE, and R2 
values of 1.655 (µB)2, 0.546 (µB), and 0.922 respectively on an independent test set, indicating that 
our model predicts the compositional dependent magnetism in bimetallic chalcogenides with a high 
degree of accuracy. A generalized algorithm is also developed to test the universality of our proposed 
model for any concentration of Ni, Co, Cr, or Mn up to 62.5% in bimetallic chalcogenides.

Abbreviations
DFT	� Density function theory
MSE	� Mean squared error
MAE	� Mean absolute error
ML	� Machine learning
DT	� Decision tree
RF	� Random forest
SVM	� Support vector machine
SVR	� Support vector regressor
ANN	� Artificial neural network
KNN	� K-nearest neighbour
XGB	� Extreme gradient boosting
LR	� Linear regression
SD	� Standard deviation
API	� Application program interface
PBE	� Perdew–Burke–Ernzerhof
PAW	� Projector augmented wave
VASP	� Vienna ab initio simulation package

Permanent magnets have been playing a great role in the development of science since their discovery1. They are 
used almost in every sector of current technology2. The growing awareness of green earth and renewable energy 
sources has also boosted the use of permanent magnets in energy sectors such as hydro-energy, wind, and wave 
energy as well as in electric vehicles. With the increased demand for permanent magnets, the rare-earth elements 
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used in manufacturing strong permanent magnets are in a critical state of running out. Numerous experimental 
and theoretical research works have been done to develop new magnetic materials3–12.

For example, iron-based chalcogenides have been extensively studied, both theoretically and experimen-
tally for their intriguing magnetic behavior13–20; ferromagnetism, ferrimagnetism, and antiferromagnetism are 
reported for different chalcogens14,15,18. Varying the elemental composition of the transition metal chalcogenides 
by changing both the metal elements as well as the chalcogens may reveal a new form of magnetic material. 
However, investigating all possible compositions of chalcogenides is an open challenge. The experimental inves-
tigation involves the synthesis and characterization of these materials, which are prohibitively expensive and 
time-consuming. Predictive calculation based on the first-principles density functional theory (DFT)21–23 that 
explicitly includes electron–electron interactions within an effective single-particle picture is also numerically 
challenging considering a multitude of compositional configurations of chalcogenides. In a situation like this, a 
well-established data-driven approach could offer a faster and computationally cost-effective alternative to those 
expensive and time-consuming experimental or computational methods. In recent years, much data-driven 
research has been performed to study magnetic properties24–29, band gaps30,31, as well as chemical properties32,33 
of materials using machine learning models trained on DFT and experimental data. The catalytic activity of 
the complicated chemical system has been investigated using machine learning methods32. Also, the accurate 
predictions of band gaps in functionalized MXene exhibit the credibility of the machine learning approach30. 
Additionally, complex phenomena such as magnetic ordering, and magnetic moment have been successfully 
studied in 2d materials using a data-driven approach24. DFT-aided autonomous material search system has 
been designed to identify magnetic alloys25. Furthermore, the properties of rare-earth lean magnets are studied 
using DFT-aided machine learning34. In particular, the growing interest in studying the magnetic properties 
of materials using DFT-based machine learning models has highlighted the importance of DFT in the field of 
data-driven material science22,25,29–32.

In this work, considering the recent advances of artificial intelligence in the multidisciplinary field of sci-
ence and technology35–38, we attempt to apply machine learning methods to develop a predictive tool that learns 
meaningful patterns from data and predicts the compositional dependent magnetism in Fe-based bimetallic 
chalcogenides FexAyB; A represents Ni, Co, Cr, or Mn, and B represents S, Se, or Te, and x and y are the concen-
tration of respective elements. In order to develop a machine learning-based approach for identifying magnet-
ism in Fe-based bimetallic chalcogenides, we generate a dataset of structures representing 4348 compositional 
configurations of Fe-based bimetallic chalcogenides FexAyB using density functional theory (DFT) calculations. 
We obtain magnetization of each compositional configuration using spin-polarized DFT calculation. This dataset 
is subsequently used to train the various ML algorithms such as Linear Regression, Support Vector Regressor39,40, 
Random Forest41, Decision Trees42, K-nearest neighbors43, Extreme Gradient Boosting44,45, and Artificial Neural 
Network46,47. Based on a tenfold cross-validation48 score, we selected the six best machine learning algorithms 
to develop an ensemble model based on stacked generalization for predicting magnetism in bimetallic chalco-
genides. We obtained MSE, MAE, and R2 values of 1.655 (µB)2, 0.546 (µB), and 0.922 when we tested the final 
stacked model on an independent DFT test data.

Materials and methods
Our approach to discovering magnetism in Fe-based bimetallic chalcogenides is based on a supervised machine-
learning approach. Initially, we generated a dataset of 4348 structures representing various compositional con-
figurations and then performed DFT21 calculations and obtained magnetization in the unit cell. Then, we per-
formed feature engineering where we employed a set of descriptors (features) that are suitable for describing 
magnetization in the chalcogenides. We divided the dataset into training and test sets. Subsequently, we trained 
the model using cross-validation and grid search methods to determine the best-performing model. Finally, we 
tested the performance of our proposed model on the (independent) test set. Each of these four stages is briefly 
discussed in the following subsections.

Dataset.  To create the dataset, we employed the first principles DFT21 calculations. We started with con-
structing a primitive cell of hexagonal (space group p63/mmc) Iron-Sulfide (FeS) consisting of two Fe atoms 
and two S atoms. It has been reported that the chalcogenide can be easily synthesized in the hexagonal form 
as compared to the tetragonal structure49. Vienna ab initio simulation package (VASP)50,51 is used for the DFT 
calculations; a plane wave basis with a cutoff energy of 720 eV is used. The atomic structure in the unit cell is 
optimized without symmetry constraint until the residual force on each atom is smaller than 0.001 eV/ Å. The 
convergence criterion for the total energy is set at 10−10 eV. The exchange and correlation are approximated using 
a gradient-corrected Perdew–Burke–Ernzerhof (PBE)52 exchange–correlation functional and the electron–ion 
interactions are treated with the Projector Augmented Wave (PAW)53 potential. A Monkhrost-Pack scheme with 
a 3 × 3 × 3 K-point grid is used to sample the first Brillouin zone in the reciprocal lattice. Using the optimized 
lattice parameters, we expanded the primitive cell of hexagonal FeS to a bigger unit cell which consists of 16 Fe-
atoms and 16 S-atoms as shown in Fig. 1.

Subsequently, we used a substitution technique to create bimetallic chalcogenides (FexAyB) of different atomic 
compositions; x and y represent the respective concentration of elements. Substitution technique24,54 is a com-
mon practice in material science to create a defect as well as new material. The Fe atoms in the structures were 
substituted by A (Ni, Co, Cr, or Mn) and S atoms by B (Se or Te). To describe the local geometry of the structure, 
we designated four atomic sites by S1, S2, S3, and S4 as shown in Fig. 1. A number was assigned to these sites 
S1, S2, S3, and S4 depending upon how many Fe-atoms are replaced at those atomic sites keeping the chalcogen 
concentration unchanged. For example, when we substitute two Fe-atoms at site S1, one Fe atom at site S2, and 
no substitution at S3 and S4, then S1 = 2, S2 = 1, and S3 = S4 = 0. This leads to x = (16–3)/16 and y = 3/16. Based 
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on the number and site of substitutions, we generated 4348 bimetallic chalcogenide structures of different com-
positions. Subsequently, spin-polarized DFT calculations were performed to calculate magnetization for each 
of these compositions to obtain the data set to develop the machine learning models.

Once the dataset is created, the next step is to identify/define the descriptors or features for the problem as 
the choice of descriptors is one of the most important aspects of any machine learning-based approach. We 
choose 12 descriptors for our problem where the 8 descriptors describe the concentration of metal elements 
such as metal Fe, Ni, Co, Cr, Mn, and chalcogens elements S, Se, and Te. For example, in Fe0.6875Ni0.3125Se, the 
eight descriptors are 0.6875, 0.3125, 0, 0, 0, 1, 0, 0 representing the concentration of each element for possible 
bimetallic chalcogenide configurations (please see the data table in the provided GitHub link). Four descriptors 
describe the location of substitutional sites S1, S2, S3, and S4. The choice of these descriptors was motivated by 
the fact that magnetic ordering in the substituted chalcogenides is dependent upon the substitutional sites too. 
The calculated magnetic moment of the unit cell obtained from the DFT is taken as the target variable and these 
12 descriptors are the input for the supervised machine learning framework. To understand the correlations 
between the features, a correlation matrix is generated (see Fig. S2 in Supplementary Information). We observed 
a low level of correlation between the features.

The data were randomly split into a training set and a test set in the proportion of 85:15. Subsequently, both 
the training and test data set are normalized separately to avoid information leakage from the test set to the 
training set. The size of the training and test dataset is given in Table 1.

Algorithm training and model selection.  We trained seven different machine learning algorithms: 
Linear Regression (LR)55, Support Vector Regressor (SVR)39,40, Random Forests (RF)41, Decision Trees (DT)43, 
K-Nearest Neighbours (KNN)43, Extreme Gradient Boosting (XGBoost)56, and Artificial Neural Network 
(ANN). We used scikit-learn57 and TensorFlow Keras API58 to implement these models. To find the optimal 
hyperparameters for our model, we extensively performed tenfold cross-validation on the training set and grid 
search on different combinations of hyperparameters (See Table S1 in Supplementary Material). The description 
of algorithms and cross-validation techniques are briefly described in the following subsections.

We started with LR55, a popular machine-learning model that provides the best linear fit to the data points by 
finding a linear relationship between features and target output by minimizing the distance between the target 
value and the predicted value that lies on the best-fit line. The basic LR model takes the form: y = WTX , where, 
y is the target, X = (1, x1, x2, …, xn) is the input feature vector, W = (w0, w1, w2, …, wn) is the weight vector.

For nonlinear relationships between features and the target, other algorithms such as DT, RF, KNN, SVR, 
XGBoost, and ANN offer better performance. DT42 splits the training examples into a tree-like structure based 
on the significant splitter in the input features. The splitting results in various leaf nodes, each of which repre-
sents a different prediction. RF41,59, which is also known for its capability in solving nonlinear problems, uses 
an ensemble learning approach that relies on the output of multiple decision trees. Thus, RF is a more powerful 
estimator as compared to DT and is less prone to overfitting and bias. The K-Nearest Neighbor (KNN)43 is a 
supervised algorithm that estimates the association between features and target variables based on the average 
output of the other nearest K data points. In our experiment, we set the number of nearest neighbors to K = 5. 

Figure 1.   Unit cell of hexagonal FeS. S1, S2, S3, and S4 represent the substitutional sites for the transition metal 
elements.

Table 1.   Number of DFT-data points used for training and testing the machine learning models.

Dataset Number of samples

Training data 3695

Independent testing data 653

Total data 4348
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SVM39 uses the kernel functions that transform the low dimensional data into a higher dimensional feature 
space such that it can find a separation hyperplane that maximizes the margin between different classes. For 
regression problems, SVR40 fits the best hyperplane on training data to predict the discrete values. We have used 
the XGBoost56 which is a gradient-boosting-based decision tree algorithm. It uses a gradient descent approach 
to minimize the loss and combines different models using an ensemble approach. XGBoost and RF have nearly 
similar model representations with different training algorithms. XGBoost is based on serialized base learners, 
whereas RF is based on parallelized base learners. We have also implemented an artificial neural network (ANN) 
with two hidden layers using a simple feed-forward neural network architecture that learns by comparing initial 
outputs with the provided target by adjusting weights and biases through backpropagation. The architecture of 
the ANN-based model is shown in Fig. 2. After hyperparameter tuning, we found the best-performing neural 
network consists of two hidden layers having 256 and 64 neurons respectively. The details of hyperparameters 
are given in Table S1 (Supplementary Material). We have also analyzed how the features are contributing to a 
model prediction. Based on these calculations, which are performed using the random forest model, the con-
centrations of elements such as Mn, Cr, Te, and S are found to be the most dominant features as shown in Fig. S3 
(Supplementary Information).

K‑fold cross validation.  To search for the best hyperparameters and to compare the performance of different 
models, we implemented a K-fold cross-validation algorithm on the training data. The K-fold cross-validation 
relies on a data partitioning scheme to ensure that the model can generalize the pattern on a diverse dataset. 
In this method, the dataset is randomly divided into K different sets. Following this, the model is trained using 
K-1 sets of the dataset and tested against the remaining set. The process is repeated K times and the results are 
statistically analyzed to choose the best-performing model. In this work, each model is trained and fine-tuned 
using K = 10 through a grid search process.

Stacked generalization.  After examining the individual models, we combined the best-performing models 
using a stacked generalization60 algorithm to improve the predictive performance. Stacked generalization is an 
ensemble approach that combines two or more pre-trained models (base learners) followed by a second-level 
regression model (meta learner). In this method, we stacked six base learners (DT, RF, SVR, XGB, KNN, and 
ANN) followed by a meta learner (RF) as shown in Fig. 3. It is noteworthy to point out that LR was omitted from 
the stacked generalization as its performance was not satisfactory.

Despite being a powerful technique that relies on the strength of multiple models, the stacked generalization 
approach is more prone to data leakage while performing cross-validation because the same dataset is used to 
train both the base models and meta-regression models resulting in model overfitting. The data leakage and 
overfitting in the cross-validation stage may mislead the model selection process. Hence, in this work, we imple-
mented a stacking algorithm with cross-validation proposed by Wolpert60 to prevent data leakage and overfitting. 
In this technique, initially, the data is randomly divided into K sets. In the first stage, the base models are trained 
using K-1 sets and score-level features are extracted from those base models using the remaining set of training 
data. The process is repeated K times and each time a new dataset is prepared using the score-level features of 
the base models. In the second stage, a meta-regression model is trained using the data constructed from the 
first stage. Finally, each base model is trained using the entire training dataset and stacked together, which is 
subsequently connected to the previously trained meta-regression model (RF) to form the final model. It should 

Figure 2.   The architecture of an artificial neural network with two hidden layers with 256 and 64 neurons 
respectively.
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be noted that in this work, each base learner and meta learner are trained and evaluated independently using 
the tenfold cross-validation method.

Performance evaluation.  To evaluate the performance of different machine learning regression models, 
we use three evaluation metrics: mean square error (MSE), mean absolute error (MAE), and coefficient of deter-
mination (R2), which are defined below.

where, yi , ŷi and y are the true, predicted, and the average value of y respectively.
MSE measures the average of the squares of residuals, while MAE measures the average of the residuals. They 

both have positive values; a smaller value indicates less error and better performance. MSE penalizes the model 
with larger errors than the MAE and hence is more sensitive to the outliers in the data. The lower the values of 
MSE and MAE are, the better the predictive performance of a model. The R2 score, also known as the coefficient 
of determination, is also a statistical measure in a regression model that represents the proportion of the vari-
ance in the dependent variable that is predictable from the independent variable(s). Its value lies between 0 and 
1. Since R2 alone does not measure the accuracy of the predictions61,62, we have used this metric in conjunction 
with MSE and MAE to measure the performance of the regression models used in our study.

Results and discussion
First, we performed some exploratory data analysis on the DFT dataset. It reveals that the bimetallic chalcoge-
nides containing S and Se are found to have higher magnetic moments compared to those containing Te as shown 
in Fig. 4. This fact is supported by earlier research49 that revealed FeS and FeSe exhibiting stronger magnetization 
than FeTe. Furthermore, we found that Fe-chalcogenides containing Cr and S have higher magnetic moments 
than those containing other transition metal elements (Ni, Co, or Mn) and chalcogen elements (Se and Te) as 
shown in Fig. 4. An increase in the magnetic moment is also noticeable when Cr or Mn concentration increases 
in chalcogenides containing S or Se (see Fig. S4 in Supplementary Information).

Further, the substitutional sites of transition metal elements in the chalcogenides are found to influence the 
target value (magnetic moment).
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Figure 3.   Block diagram for stack generalization.
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Tenfold cross‑validation results of base learners and meta learners.  Table 2 shows the perfor-
mance comparison of various machine learning models on the training dataset mentioned in Table 1. The RF 
model is found to perform well based on the comparison of mean MSE, mean MAE, and mean R2. The detailed 
calculation of performance measures is provided in Tables S2, S3 and S4 (Supplementary Information). Except 
for the LR approach, all models perform reasonably well, which could be understood from the plausible non-
linear relationship between the target variable and the features in our dataset. The well-performing models are 
subsequently used to develop the final stacked model.

Next, to find the best meta-regression model for the stacked generalization approach, we used the output 
from the individual base models to train LR, RF, and XGB and recalculated mean MSE, mean MAE, and mean 
R2. The results are presented in Table 3. RF model is found to be the best meta-learner.

Evaluation of the final stacked model on an independent (DFT) test dataset.  Finally, we trained 
the models using the entire training dataset and tested them on the independent test dataset. Upon testing against 

Figure 4.   Dot plot showing the magnetic moment of Fe-based bimetallic chalcogenides; FexAyB where A 
represents Ni, Co, Cr, or Mn, and B represents S, Se, or Te, and x and y represent the concentration of respective 
atoms. Three shaded regions differentiate the magnetic moments of the chalcogenides containing S, Se, and 
Te respectively. Blue, orange, green, and red color dots correspond to the value of magnetic moments of the 
chalcogenides containing transition metal Ni, Co, Cr, and Mn respectively. Bimetallic chalcogenide with Cr and 
S exhibits a higher range for the magnetic moments.

Table 2.   10-Fold cross-validation results of different machine learning models. The best value in each column 
is highlighted in bold.

Model name Mean MSE(SD) Mean MAE(SD) Mean R2(SD)

Linear regression (LR) 7.00 (0.48) 2.16 (0.07) 0.69(0.02)

Decision tree (DT) 1.67 (0.32) 0.54(0.05) 0.93(0.01)

Random forest (RF) 1.44 (0.21) 0.55(0.04) 0.93(0.01)

Support vector regressor (SVR) 1.62 (0.18) 0.57(0.03) 0.92(0.01)

Extreme gradient boosting (XGB) 1.58 (0.21) 0.68(0.04) 0.93(0.01)

K-nearest neighbour (KNN) 1.74 (0.30) 0.63(0.04) 0.92(0.01)

Artificial neural network (ANN) 1.45 (0.19) 0.59(0.04) 0.93(0.01)

Table 3.   10-Fold cross-validation results of various meta-learners. Significant values are in bold.

Model name Mean MSE(SD) Mean MAE(SD) Mean R2(SD)

Linear regression (LR) 1.40 (0.19) 0.56 (0.04) 0.94(0.01)

Extreme gradient boosting (XGB) 1.36 (0.27) 0.54(0.04) 0.94(0.01)

Random forest (RF) 1.29 (0.28) 0.50 (0.05) 0.94 (0.01)
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the independent 653 DFT-test data points (Table 1), the MSE, MAE, and R2 of the stacked model are found to be 
1.655 (µB)2, 0.546 µB, and 0.922 respectively compared to tenfold cross-validation values of 1.29 (µB)2, 0.50 µB 
and 0.94. These results show that our final model performs equally well on the test data as it did during the vali-
dation indicating the generalizability of the approach.

Figure 5 shows the comparison between the true magnetization and predicted magnetization for each data 
point on the independent DFT test dataset. We have sorted the test data points in ascending order based on the 
value of the magnetic moment obtained from the DFT (true value). One can notice that the predictive perfor-
mance of the model is much better for M < 14 μB. This is expected as only 3% of the entire training dataset is 
available to train the machine learning model for M > 14 μB. Though we noticed over and under prediction of 
magnetic moments in some instances, our model identifies non-magnetic and magnetic chalcogenides with a 
high degree of certainty. A deeper analysis of the under and over-predicted region reveal that a limited number 
of data points having similar target value are used during the training of the model, which explains the variation 
in the predicted target value (M) in those regions. Nevertheless, our study shows that the complex electronic 
interactions involved in the DFT calculations are well captured by the purposed model to predict magnetism 
in bimetallic chalcogenides.

Expanding the applicability of the proposed model.  In this work, a unit cell of FeS having 16 Fe and 
16 S atoms is used to generate the DFT dataset. As a result, we have predefined fixed values of y (0.0625, 0.125, 
0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625) and x (= 1 − y) as multiples of 1/16. Furthermore, the 
descriptors S1, S2, S3, and S4 can each take integer values from 0 to 4. To overcome this limitation and increase 
the flexibility of our model, we have developed a generalized algorithm that can take the concentration y (or x) 
in percentages with a constraint of 0 < y < 0.625. It also allows the user to choose the concentration of substituted 
atoms on the atomic sites S1, S2, S3, and S4 in percentages. Then, the algorithm calculates the input features y, 
x, S1, S2, S3, and S4 in the suitable form required to feed the ML model. The detailed procedure is explained in 
Algorithm 1. The implementation of the algorithm is available in the provided GitHub link.

Figure 5.   Scatter plots showing true (green circle) versus predicted (red circle) magnetic moments (M) in 
bimetallic chalcogenides. Data points from the independent test dataset, sorted in ascending order based on the 
value of the magnetic moment (M) obtained from DFT (true value).
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Conclusions
The quest for new magnetic materials that are cheaper than the rare-earth element-based magnets is of significant 
interest in current years for their application that ranges from data storage to automotive vehicles to biomedical 
fields to the green energy sector. Experimental and computational investigation of possible alternative magnetic 
materials is expensive and time-consuming. In this work, we have used a data-driven framework that would accel-
erate the discovery of new magnetic materials. We used an optimized FeS structure and employed a substitution 
technique to design new bimetallic chalcogenides of different compositions. The first principle DFT is used to 
generate training and test data. After training and evaluating several machine learning models, we have developed 
a stacked machine learning model combining several best-performing base models as the final predictive tool. 
The final model has shown a high degree of accuracy on the independent DFT-test data with MSE, MAE, and R2 
values of 1.655 (µB)2, 0.546 µB, and 0.922 respectively. Additionally, we have developed a generalized algorithm to 
expand the applicability of our model to a wide range of inputs. The predicted data reveal the Fe-based bimetallic 
chalcogenides containing chalcogen element S and a higher concentration of transition metal Cr yielding higher 
magnetic moments than the other configurations, which is consistent with the DFT data. This work presents a 
strategy for discovering a new magnetic material made from less expensive and more abundant elements that 
would eventually replace the costly existing magnetic materials made out of rare-earth metals.
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Data availability
The trained model, training (DFT) and test (DFT) dataset, predicted dataset, source code, and other relevant 
materials are publicly available at https://​github.​com/​dppant/​magne​tism-​predi​ction.
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