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Abstract 

Background: Novel six organic donor-π-acceptor molecules (D-π-A) used for Bulk Heterojunction organic solar cells 

(BHJ), based on thienopyrazine were studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) 

approaches, to shed light on how the π-conjugation order influence the performance of the solar cells. The electron 

acceptor group was 2-cyanoacrylic for all compounds, whereas the electron donor unit was varied and the influence 

was investigated.

Methods: The TD-DFT method, combined with a hybrid exchange-correlation functional using the Coulomb-

attenuating method (CAM-B3LYP) in conjunction with a polarizable continuum model of salvation (PCM) together 

with a 6-31G(d,p) basis set, was used to predict the excitation energies, the absorption and the emission spectra of all 

molecules.

Results: The trend of the calculated HOMO–LUMO gaps nicely compares with the spectral data. In addition, the 

estimated values of the open-circuit photovoltage (Voc) for these compounds were presented in two cases/PC60BM 

and/PC71BM.

Conclusion: The study of structural, electronics and optical properties for these compounds could help to design 

more efficient functional photovoltaic organic materials.

Keywords: π-conjugated molecules, Thienopyrazine derivatives, Organic solar cells, TD-DFT, Optoelectronic 

properties, Voc (open circuit voltage)
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Background
�e organic bulk heterojunction solar cells (BHJ) are 
considered as one of the promising alternative used for 
renewable energy. �is is attributed to their several 
advantages to fabricate the flexible large-area devices 
and also to their low cost compared to other alternatives 
based on inorganic materials [1, 2]. Generally, the organic 
BHJ solar cells based on the mixture of electron donor 
(material organic) and electron acceptor materials as 
PCBM or its derivatives and have been utilized in the aim 

to harvest the sunlight. Over the past few years, consider-
able effort has been focused on improving organic solar 
cells (OSC) performance to achieve power conversion 
efficiencies (PCE) of 10%. �e following strategies have 
been adopted for this purpose [3–13]: (1) design of the 
new photoactive materials able to increase the efficiency 
of photoconversion such as fullerenes and π-conjugated 
semiconducting polymers; (2) use of functional layers 
of buffering, charge transport, optical spacing, etc., and; 
(3) morphological tuning of photoactive films by post-
annealing, solvent drying, or processing by using addi-
tives. After many efforts, the design of the organic BHJ 
solar cells based on polymer semiconducting (PSCs) as 
an electron donating and PCBM as an electron accept-
ing showed impressive performances in converting solar 
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energy to electrical energy. Finally, the power conversion 
efficiency (PCE) was improved in the range of 7–9.2% 
[14–21] for single layer PSCs and 10.6% [14] for tandem 
structured PSCs. �ese kinds of solar cells based on poly-
mers have potential applications in next-generation solar 
cells compared to dye-sensitized solar cells (DSSC) and 
inorganic thin-film. On the other hand, considerable 
research has been directed to developing an efficient 
small-molecule organic used as a semiconductors and 
to improve their performance in the organic solar cells 
(OSCs), with the near-term goal of achieving a PCE com-
parable to that of polymer solar cells (PSCs) [22–24].

Small-molecule organic semi-conductors are more 
suitable than polymer-based ones for mass production 
because the latter suffer from poor reproducibility of the 
average molecular weight, high dispersity, and difficulties 
in purification. Recently, the small molecule for organic 
solar cells (SMOSCs) with PCEs exceeding 6% have been 
reported [25] thus making solution-processed SMOSCs 
strong competitors to PSCs. �is inspires us to develop 
a new low band gap for small molecules for organic solar 
cells application. In order to achieve high current den-
sity in SMOSCs, utilizing new donor molecules that can 
efficiently absorb the sunlight at the maximum solar flux 
region (500–900 nm) of the solar spectrum, because the 
energy conversion efficiency of the small molecule for 
organic solar cells is directly attached to the light harvest-
ing ability of the electron donor molecules. In addition, 
to get high open circuit voltage (Voc), the HOMO lev-
els of the donor molecules should be down a −5.0 eV, in 
which this factor is calculated by the difference between 
the HOMO and LUMO levels of the donor and acceptor 
materials, respectively. �e most small molecule organic 
semiconductors used in solar cells have a push–pull 
structure comprising electron donors and acceptors in 
objective to enhance the intramolecular charge transfer 
(ICT) and the band gap becomes narrow and then, yield-
ing higher molar absorptivity [22–25]. A common strat-
egy to enhance the power conversion efficiency of low 
band gap conjugated molecules as an alternating (D-A) 
or (D-π-A) structures because this improves the excita-
tion charge transfer and transport [26]. Different authors 
described in recent studies the importance of compounds 
with D-π-A structure and their role in the elaboration 
of the organic solar cell [27–29]. �e organic material 
based on thienopyrazine has been used as a donor unit; 
still receive considerable attention for their exceptional 
optoelectronic properties [30, 31]. Knowledge about the 
optoelectronic properties of these new materials can 
help with the design of new materials with optimized 
properties for solar energy conversion. In our previous 
works [32, 33], we have reported a theoretical study of 

photovoltaic properties on a series of D-π-A structures of 
thienopyrazine derivatives as photoactive components of 
organic BHJ solar cells.

In order to obtain materials with more predominant 
capability, the development of novel structures is now 
being undertaken following the molecular engineer-
ing guidelines, the theoretical studies on the electronic 
structures of these materials have been done in order 
to rationalization the properties of known ones and the 
prediction those of unknown ones [26]. As is known, the 
knowledge of the HOMO and LUMO levels of the mate-
rials is crucial in studying organic solar cells. �e HOMO 
and LUMO energy levels of the donor and of the accep-
tor compounds present an important factor for photovol-
taic devices which determine if the charge transfer will be 
happen between donor and acceptor. �e thienopyrazine 
derivatives would be much more promising for devel-
oping the panchromatic materials for photovoltaic, and 
thus, provide much higher efficiencies if new absorption 
bands could be created in the visible light region.

In this paper, we report a strategy to control the band-
gap and different optoelectronics properties by using the 
DFT method on a series of no symmetrical branched 
molecules based on thienopyrazine as a central core and 
cyanoacrylic acid as the end group connected with differ-
ent π-conjugated groups Xi, as shown in Fig. 1. We think 
that the presented study for these compounds listed in 
Fig. 1 bout their structural, electronic and optical proper-
ties could help to design more efficient functional photo-
voltaic organic materials, for aim to find the best material 
which is used as a donor electron in BHJ device in the 
solar cell.
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Fig. 1 Chemical structure of study compounds Pi (i = 1–6)
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Computational methods
All calculations were carried out using density func-
tional theory (DFT) with B3LYP (Becke three-parameter 
Lee–Yang–Parr) exchange-correlation functional [34]. 
6-31G(d,p) was used as a basis set for all atoms (C, N, H, 
O, S). Recently, Tretiak and Magyar [35] have demon-
strated that the charge transfer states can be achieved in 
D-π-A structure a large fraction of HF exchange is used. 
A newly designed, functional, the long range Coulomb-
attenuating method (CAM-B3LYP) considered long-
range interactions by comprising 81% of B88 and 19% of 
HF exchange at short-range and 35% of B88 and 65% of 
HF exchange at long-range [36]. Furthermore, �e CAM-
B3LYP has been used especially in recent work and was 
demonstrated its ability to predict the excitation energies 
and the absorption spectra of the D-π-A molecules [37–
40]. �erefore, in this work, TD-CAM-B3LYP method 
has been used to simulate the vertical excitation energy 
and electronic absorption spectra. It is important to take 
into account the solvent effect on theoretical calcula-
tions when seeking to reproduce or predict the experi-
mental spectra with a reasonable accuracy. Polarizable 
continuum model (PCM) [41] has emerged in the last 
two decades as the most effective tools to treat bulk sol-
vent effects for both the ground and excited states. In this 
work, the integral equation formalism polarizable con-
tinuum model (IEF-PCM) [42, 43] was used to calculate 
the excitation energy. �e oscillator strengths and excited 
state energies were investigated using TD-DFT calcula-
tions on the fully DFT optimized geometries.

By using HOMO and LUMO energy values for a mol-
ecule, chemical potential, electronegativity and chemical 
hardness can be calculated as follows [44]:

 Chemical potential 

 (Chemical hardness),

 (electronegativity),
all calculations were performed using the Gaussian 09 

package [45].

Results and discussion
Ground state geometry

�e optimized structures of all molecules obtained with 
the B3LYP/6-31G(d,p) level, are presented in Fig. 2.

Figure  2 shows the definition of torsional angles Φ1 
and Φ2 between D and π-spacer A and π-spacer respec-
tively, intramolecular charge transfer (ICT) which is rep-
resented by the π-spacer and the bridge bonds between 

µ = (EHOMO + ELUMO) / 2

η = (ELUMO − EHOMO) / 2

χ = − (EHOMO + ELUMO) / 2

D and π-spacer and A and π-spacer were marked as LB1 
and LB2 respectively, using compound [P1] as an example 
(see Fig. 2). Torsional angles Φ1 and Φ2 are the deviation 
from coplanarity of π-spacer with the donor and acceptor 
and the LB1 and LB2 are the bond lengths of π-spacer from 
the donor and acceptor. �e torsional angles (Φ1 and Φ2), 
and bridge lengths (LB1 and LB2) are listed in Table 1.

As shown in Table 1, all calculations have been done by 
using DFT/B3LYP/6-31G(d,p) level. �e large torsional 
angle Φ1 of the compounds P1, P2, P3, P4, P5 and P6 
suggest that strong steric hindrance exists between the 
donor and π-spacer.

For P2, the dihedral angles Φ1 formed between the 
donor group and π-spacer is 0.78°, indicating a smaller 
conjugation effect compared to the other compounds 
where the coplanarity can be observed, but this geometry 
of P2 allows inhibiting the formation of π-stacked aggre-
gation efficiently. Furthermore, the dihedral angles Φ2 of 
all compounds is very small (2.77, 2.95, 2.85, 2.82, 2.84 
and 2.76) wich indicates that the acceptor (cyanoacrylic 
unit) is coplanar with π-spacer (thiophene–thienopyra-
zine–thiophene). In the excited state (S1), we remark 
that the dihedral angles Φ1 for all compounds are signifi-
cantly decreased in comparison with those in the ground 
state (S0), except P2 and P6, Φ1 is almost similar to that 
of the ground state. It indicates that the nature of the S1 
state of the molecular skeleton of all compounds is differ-
ent from the S0 state, and the complete coplanarity in S1 
state triggers the fast transfer of the photo-induced elec-
tron from S0 to S1.

�e shorter value from the length of bridge bonds 
between π-spacer and the donor (LB1) and in another 
side between π-spacer and acceptor (LB2) favored the 
ICT within the D-π-A molecules. However, in the ground 
state (S0) the calculated critical bond lengths LB1 and 
LB2 are in the range of 1.421–1.462 Å showing espe-
cially more C=C character, except the compound P6, 
which enhances the π-electron delocalization and thus 
decreases the LB of the studied compounds and then 
favors intramolecular charge transfer ICT. On the other 
hand, upon photoexcitation to the excited state (S1), the 
bond lengths and torsional angles for these compounds 
significantly decreased in comparison with those in 
the ground state (S0), especially the linkage between 
the π-spacer and the acceptor moiety (LB2). �ese 
results indicate that the connection of acceptor group 
(2-cyanoacrylic acid) and the π-bridge is crucial for 
highly enhanced ICT character, which is important for 
the absorption spectra red-shift.

Electronic properties

Among electronic applications of these materials is 
their use as organic solar cells, we note that theoretical 
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Fig. 2 Optimized geometries obtained by B3LYP/6-31G(d,p) of the studied molecules

Table 1 Optimized selected bond lengths and bond angles of the studied molecules obtained by B3LYP/6-31G(d,p) level 
[the unit of bond lengths is angstroms (Å), the bond angles and dihedral angles is degree (°)]

Compounds S0 S1

LB1 LB2 Φ1 Φ2 LB1 LB2 Φ1 Φ2

P1 1.463 1.421 19.72 2.77 1.449 1.411 14.17 3.41

P2 1.435 1.423 0.78 2.95 1.425 1.413 0.56 3.98

P3 1.462 1.421 22.19 2.85 1.449 1.411 10.07 3.67

P4 1.463 1.422 22.04 2.82 1.451 1.411 11.61 3.34

P5 1.462 1.422 22.71 2.84 1.452 1.412 12.68 3.53

P6 1.818 1.422 41.37 2.76 1.810 1.412 42.23 3.50
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knowledge of the HOMO and LUMO energy levels of 
the components is crucial in studying organic solar cells. 
�e HOMO and LUMO energy levels of the donor and 
of the acceptor components for photovoltaic devices are 
very important factors to determine whether the effec-
tive charge transfer will happen between donor and 
acceptor. �e experiment showed that the HOMO and 
LUMO energies were obtained from an empirical for-
mula based on the onset of the oxidation and reduction 
peaks measured by cyclic voltammetry. But in the theory, 
the HOMO and LUMO energies can be calculated by 
DFT calculation. However, it is noticeable that solid-state 
packing effects are not included in the DFT calculations, 
which tend to affect the HOMO and LUMO energy levels 
in a thin film compared to an isolated molecule as consid-
ered in the calculations. Even if these calculated energy 
levels are not accurate, it is possible to use them to get 
information by comparing similar oligomers or polymers.

�e calculated frontier orbitals HOMO, LUMO 
and band gaps by using B3LYP/6-31G(d,p) level of 
six compounds (P1, P2, P3, P4, P5and P6) are listed 
in Table  2. �e values of HOMO/LUMO energies are 
−5.025/−3.057  eV for P1, −5.276/−3.293  eV for P2, 
−5.091/−3.099  eV for P3, −5.139/−3.124  eV for P4, 
−5.155/−3.140 eV for P5 and −3.140/−3.159 for P6 and 
corresponding values of energy gaps are 1.968 eV for P1, 
1.983 eV for P2, 1.992 eV for P3, 2.015 eV for P4, 2.015 eV 
for P5 and 2.171 eV for P6. �e calculated band gap Eg 
of the studied model compounds increases in the follow-
ing order P1 < P2 < P3 < P4 = P5 < P6. �e much lower 
Eg of P1, P2 and P3 compared to that of P6 indicates a 
significant effect of intramolecular charge transfer, which 
would make the absorption spectra red shifted. However, 
the Eg values of P1, P2 and P3 are smaller than that of 
P6. �is is clearly due to the effect of the electron-donor 
unit which is strong of P1, P2, and P3 than that of other 
compounds. All molecules present low energy gap are 
expected to have the most outstanding photophysical 
properties especially P1.

Quantum chemical parameters

Generally, the molecules having a large dipole moment, 
possesses a strong asymmetry in the distribution of elec-
tronic charge, therefore can be more reactive and be sen-
sitive to change its electronic structure and its electronic 
properties under an external electric field. �rough 
the Table 2, we can observe that the dipole moment (ρ) 
of compounds P1 and P4 are greater than others com-
pounds, therefore we can say that these compound are 
more reactive that other compound, indeed, these com-
pounds are more favorite to liberate the electrons to 
PCBM.

On another side, we note that the PCBM has the small-
est value of the chemical potential (μ  =  −4.9) com-
pared to six compounds (P1, P2, P3, P4, P5, and P6) 
(see Table 2), this is a tendency to view the electrons to 
escape from compound Pi has a high chemical potential 
to PCBM which has a small chemical potential, there-
fore PCBM behaves as an acceptor of electrons and oth-
ers compounds Pi behave as a donor of electrons. For the 
electronegativity, we remark that the PCBM has a high 
value of electronegativity than other compounds (P1, P2, 
P3, P4, P5, and P6) (Table 2), thus the PCBM is the com-
pound that is able to attract to him the electrons from 
others compounds. In another hand, we remark that the 
PCBM compound has a high value of chemical hardness 
(η) in comparison with other six compounds, this indi-
cates that the PCBM is very difficult to liberate the elec-
trons, while the other compounds are good candidates to 
give electrons to the PCBM (see Table 2).

Figure 3 shows the frontier molecular orbitals for all the 
Six compounds (computed at B3LYP/6-31G(d,p) level). 
�e FMOs of all six models have analogous distribution 
characteristics. All HOMOs show the typical aromatic 
features with electron delocalization for the whole con-
jugated molecule and are mainly localized at the donor 
parts and conjugated spacer, whereas the LUMOs are 
concentrated on the π-spacer and at the acceptor moie-
ties (cyano acrylic unit). In another hand, the HOMO 

Table 2 Calculated EHOMO, ELUMO levels, energy gap (Eg), dipole moment (ρ) and  other quantum parameters chemical 
as  electronegativity (χ), chemical potential (μ) and  chemical hardness (η) values of  the studied compounds obtained 
by B3LYP/6-31G(d,p) level

Compounds EHOMO (eV) ELUMO (eV) Eg (eV) μ (eV) η (eV) χ (eV) ρ (Debye)

P1 −5.025 −3.057 1.968 −4.092 1.866 4.092 8.966

P2 −5.276 −3.293 1.983 −4.2175 2.117 4.218 1.851

P3 −5.091 −3.099 1.992 −4.125 1.932 4.125 6.803

P4 −5.139 −3.124 2.015 −4.149 1.98 4.149 8.980

P5 −5.155 −3.140 2.015 −4.157 1.996 4.157 5.975

P6 −5.33 −3.159 2.171 −4.2445 2.171 4.245 7.552 

PCBM −6.100 −3.750 ***** −4.925 2.350 4.925 ******
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Fig. 3 The contour plots of HOMO and LUMO orbitals of the studied compounds Pi
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possesses an anti-bonding character between the con-
secutive subunits, while the LUMO of all oligomers shows 
a bonding character between the two adjacent fragments, 
so the lowest lying singlet states are corresponding to the 
electronic transition of π–π* type. �erefore the photo-
excited electron will be transferred from donor moiety 
(donor of an electron) to the acceptor group during the 
excitation process, which is of benefit to the injection 
of the photoexcited electrons to the LUMO of the semi-
conductor (PCBM). In another side, we remark that the 
acceptor group (–CCNCOOH) of all compound has a 
considerable contribution to the LUMOs which could 
lead to a strong electronic coupling with PCBM surface 
upon photoexcitation electron and thus improve the elec-
tron injection efficiency, and subsequently enhance the 
short-circuit current density Jsc.

Photovoltaic properties

Generally, the power conversion efficiency (PCE) is the 
most commonly used parameter to compare the perfor-
mance of various solar cells, and to describe it for any 
compounds, some important parameters has been evalu-
ated such as the short-circuit current density (JSC), the 
open circuit voltage (VOC), the fill factor (FF), and the 
incident photon to current efficiency (Pinc). �e power 
conversion efficiency (PCE) was calculated according to 
the following Eq. (1): 

where the JSC is estimated by the maximum current 
which flows in the device under illumination when no 
voltage is applied, in which dependent on the morphol-
ogy of the device and on the lifetime and the mobility of 
the charge carriers [46].

�e maximum open-circuit voltage (Voc) of the BHJ 
is determined by the difference between the HOMO of 
the donor (π-conjugated molecule) and the LUMO of the 
acceptor, taking into account the energy lost during the 
photo-charge generation [47, 48]. It has been found that 
the VOC is not very dependent on the work functions of 
the electrodes [49, 50].

�e theoretical values of open-circuit voltage Voc of 
the BHJ solar cell have been calculated from the follow-
ing expression [47, 48]:

where the represents the elementary charge, and the 
value of 0.3 V is an empirical factor. Scharber et al. [48] 
proposed the Eq  (2) using −4.3 eV as LUMO energy for 
the PC71BM.

(1)PCE =

JSC VOCFF

Pinc

(2)VOC =

∣
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In addition, low LUMO of the π-conjugated com-
pounds and a high LUMO of the acceptor of the electron 
(PC71BM, PC60BM) increase the value of VOC, which con-
tributes a high efficiency of the solar cells [48, 50].

�e theoretical values of the open circuit voltage Voc 
of the studied molecules range from 1.499 to 1.804  eV 
in the case of PC60BM and 0.425 to 0.73 eV in the case 
of PC71BM (Table  3), these values are sufficient for a 
possible efficient electron injection into LUMO of the 
acceptor.

In other side the Table 3 and the Fig. 4 show that the 
differences (LD  −  LA) of LUMO energy levels between 
those new designed donors (P1, P2, P3, P4, P5 and P6) 
and the acceptor of PC60BM is larger than 0  eV except 
P2. �e same remark in case PC71BM, the differences 
(LD − LA) energy is also larger than 0 eV, which ensures 
efficient electron transfer from the donor to the acceptor 
(PC60BM, PC71BM) except P2 in case PC60BM because 
is more lower to 0  eV. �is makes the transfer of elec-
tron from this compound (P2) to LUMO of PC60BM 
very difficult (LUMO of P2 is located below to LUMO of 
PC60BM).

�erefore, all the studied molecules can be used as BHJ 
because the electron injection process from the excited 
molecule to the conduction band of PCBM and the sub-
sequent regeneration is possible in an organic sensitized 
solar cell.

It is possible to assess the ideal performance donor, 
according to the position of its [ELUMO (donor) − ELUMO 
(acceptor)] energy and its band gap (Fig. 5). �eoretically, 
a maximum energy conversion efficiency of about 10% 
could be achieved for CPOs [51, 52] an oligomer having 
a LUMO energy level between −3.8 and −4.0 eV and a 
band gap between 1.2 and 1.9 eV has a theoretical power 
conversion efficiency between 8 and 10%. In a tandem 
configuration, the combination of two polymers band 
gap of 1.8 eV and 1.5 or 1.5 and 1.2 eV in two active lay-
ers separated to increase the effectiveness of a complete 
device for achieving a conversion efficiency of energy 
theoretical about 15%. We note that the higher power 
conversion efficiency could be achieved for P2 is 4 and 3% 
for P3.

Optical properties

To understand the electronic transitions from our 
compounds, the quantum calculation on electronic 
absorption spectra in the gaseous phase and solvent 
(chloroform) was performed using TD-DFT/CAM-
B3LYP/6–31G(d, p) level. �e calculated absorption 
wavelengths (ʎmax), oscillator strengths (ƒ) and verti-
cal excitation energies (E) for gaseous phase and solvent 
(chloroform) were carried out and listed in Table 4. �e 
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spectra show a similar profile for all compounds which 
present a main intense band at higher energies from 
548.16 to 591.46 nm for gas phase and 574.33 to 625.38 

for chloroform solution and were assigned to the ICT 
transitions. From Table 4, we could find that as the donor 
group changing, the first vertical excitation energies (E) 
were changed in decreasing order in both phases (gase-
ous and solvated): P6 > D5 > P4 > P2 > P3 > P1 showing 
that there is a red shift when passing from P6 to P1. We 
remark that the transition which has the larger oscillator 
strength is the most probable transition from the ground 
state to an excited state of all transitions, correspond-
ing to excitation from HOMO to LUMO of gas phase 
and chloroform solution, �is electronic absorption cor-
responds to the transition from the molecular orbital 
HOMO to the LUMO excited state, is a π–π* transition. 
�ese results indicate that all molecules have only one 
band in the Visible region (λabs > 400 nm) (Fig. 6) and P1 
could harvest more light at the longer-wavelength which 
is beneficial to further increase the photo-to-electric 
conversion efficiency of the corresponding solar cells. So 
the lowest lying transition can be tuned by the different 
π-spacer.

In order to study the emission photoluminescence 
properties of the studied compounds Pi (i = 1 to 6), the 
TDDFT/CAM-B3LYP method was applied to the geom-
etry of the lowest singlet excited state optimized at the 
CAM-B3LYP/6–31 (d, p), and the theoretical emission 
calculations with the strongest oscillator are presented 
in Table 5. �e emission spectra arising from the S1 state 
is assigned to π* → π and LUMO → HOMO transition 
character for all molecules. �rough analyzing the tran-
sition configuration of the fluorescence, we found that 
the calculated fluorescence has been just the reverse 
processed of the lowest lying absorption. Moreover, the 
observed red-shifted emission of the photoluminescence 
(PL) spectra when passing from P1 to P6 is in reasonable 
agreement with the obtained results of absorption. We 
can also note that relatively high values of Stocks Shift 
(SS) are obtained from all compounds P1 (179.64 nm), P2 
(176.64), P3 (181.49 nm), P4 (178.33 nm), P5 (177.26 nm) 

Table 3 Energy values of ELUMO (eV), EHOMO (eV), Egap (eV) and the open circuit Voltage Voc (eV) and LUMOdonor−LUMOac-

ceptorof the studied molecules obtained by B3LYP/6-31G(d,p) level

Compounds ELUMO (ev) EHOMO (ev) Voc (eV)/PC60BM LD − LA(PC60BM) Voc (eV)/PC71BM LD − LA(PC71BM)

P1 −3.057 −5.025 1.499 0.169 0.425 1.243

P2 −3.293 −5.276 1.75 −0.067 0.676 1.007

P3 −3.099 −5.091 1.565 0.127 0.491 1.201

P4 −3.124 −5.139 1.613 0.102 0.539 1.176

P5 −3.140 −5.155 1.629 0.086 0.555 1.160

P6 −3.159 −5.330 1.804 0.107 0.730 1.141

PC61BM −3.226 −5.985 **** **** **** ****

PC71BM −4.300 −6.000 **** **** **** ****
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Fig. 4 Sketch of B3LYP/6-31G(d,p) calculated energies of the HOMO, 

LUMO level of study molecules

Fig. 5 Calculated efficiency under AM1.5G illumination for single 

junction devices based on composites that consist of a donor with 

a variable band gap and LUMO level and an acceptor with a variable 

LUMO level [34]
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and P6 (152.68 nm) (Table 5), this indicate that the com-
pounds which have a weak Stocks Shift present a mini-
mal conformational reorganization between ground state 
and excited state. Indeed, this stops the intermolecular 
transfer charge and delaying the injection phenomenon 
from LUMO of the compounds to LUMO of PCBM. In 
fact, the Stokes shift, which is defined as the difference 
between the absorption and emission maximums (EVA–
EVE), is usually related to the bandwidths of both absorp-
tion and emission bands [53].

Excited state lifetimes

�e radiative lifetimes (in au) have been computed for 
spontaneous emission using the Einstein transition prob-
abilities according to the following formula [54]:

where (c) is the velocity of light, EFlu is the excitation 
energy, and ƒ is the oscillator strength (O.S.). �e com-
puted lifetimes (τ), for the title compounds are listed 
in Table  5. However, an increase in lifetimes of Pi will 
retard the charge recombination process and enhance 
the efficiency of the photovoltaics cells. So, long radia-
tive lifetimes facilitate the electron transfer upon the 
photoexcited electron, from LUMO of electron-donor 
to LUMO of electron-acceptor, thus lead to high light-
emitting efficiency. �e radiative lifetimes of the study 
compounds are from 7.61 to 7.11 ns and increases in the 
following order P4 < P1 < P2 < P5 < P3 < P6. �is result is 
sufficient to obtain a high light-emitting efficiency, espe-
cially for P6.

Conclusions
We have used the density functional theory method 
to investigate the geometries and electronic proper-
ties of some thienopyrazine-derivatives in alternate 

(3)τ = C
3

/

2(EFlu)
2
f

Table 4 Absorption spectra data obtained by TD-DFT methods for  the title compounds at  CAM-B3LYP/6-31G(d,p) opti-
mized geometries in the gas phase and in solvent phase (chloroform)

Compounds In the gas phase In solvent phase MO/character

λabs (nm) Eex (eV) ƒ λabs (nm) Eex (eV) ƒ

P1 591.46 2.0963 1.0923 625.38 1.9826 1.2732 HOMO → LUMO

P2 584.40 2.1215 1.0513 618.01 2.0062 1.2540 HOMO → LUMO

P3 585.30 2.1183 1.0564 620.04 1.9996 1.2416 HOMO → LUMO

P4 581.15 2.1334 1.1148 615.49 2.0144 1.2817 HOMO → LUMO

P5 580.40 2.1362 1.0411 613.46 2.0211 1.2234 HOMO → LUMO

P6 548.16 2.2618 0.8707 574.33 2.1587 1.0239 HOMO → LUMO

Fig. 6 Simulated UV–visible optical absorption spectra of the title 

compounds with the calculated data at the TD-DFT/CAM-B3LYP/6-

31G(d,p) level in chloroform solvent

Table 5 Emission spectra data obtained by  TD-DFT methods for  the title compounds at  B3LYP/6–31G(d,p) optimized 
geometries in chloroform solvent

Compounds Excited state Main composition MO ʎmax emis (nm) ΔE (eV) ƒ Radiative life times (ns) SS

P1 S1 S0 LUMO → HOMO 0.69404 805.02 1.5401 1.3298 7.33 179.64

P2 S1 S0 LUMO → HOMO 0.68889 794.65 1.5602 1.2922 7.35 176.64

P3 S1 S0 LUMO → HOMO 0.69578 801.53 1.5468 1.3050 7.40 181.49

P4 S1 S0 LUMO → HOMO 0.68760 793.82 1.5619 1.3328 7.11 178.33

P5 S1 S0 LUMO → HOMO 0.69658 790.72 1.5680 1.2771 7.36 177.26

P6 S1 S0 LUMO → HOMO 0.69912 727.01 1.7054 1.0439 7.61 152.68
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donor-π-acceptor structure. �e modification of chemi-
cal structures can greatly modulate and improve the 
electronic and optical properties of pristine studied mate-
rials. �e electronic properties of new conjugated materi-
als based on thienopyrazine and heterocyclic compounds 
and different acceptor moieties have been computed by 
using 6-31G(d,p) basis set at a density functional B3LYP 
level, in order to guide the synthesis of novel materi-
als with specific electronic properties. �e concluding 
remarks are:

�e predicted band gaps by using DFT-B3LYP/6-
31G(d,p) are in the range of 1.968–2.171 eV, knowing that 
the small band gap due to the increasing of the displace-
ment of the electron between donor and acceptor spacer 
is very easy. �e much lower Eg of P1, P2, and P3 com-
pared to other compounds a significant effect of intramo-
lecular charge transfer. However, the Eg values of P1, P2 
and P3 are smaller than that of P6.

�e theoretical values of the open circuit voltage Voc 
of the studied molecules range from 1.499 to 1.804  eV 
in the case of PC60BM and 0.425 to 0.73 eV in the case 
of PC71BM, these values are sufficient for a possible effi-
cient electron injection. After the results, we note that 
all the studied molecules can be used as BHJ because 
the electron injection process from the excited molecule 
to the conduction band of PCBM and the subsequent 
regeneration is possible in an organic sensitized solar 
cell. It is concluded that We note that the higher power 
conversion efficiency could be achieved for P2 is 4 and 
3% for P3.

�e TD-DFT calculations, at least TD-CAM-B3LYP/6-
31G(d,p) was used to replicate the optical transitions in 
order to predict the excited and emission states; the pre-
dicted result of the absorption wavelengths for P1, P2, P3, 
P4, P5, and P6 is 805.02, 794.65, 801.53, 793.82, 790.72 
and 727.01 nm respectively.

�e decreasing of the band gap of these six materials 
due to increasing the absorption wavelengths, then the 
best commands which can be used in photovoltaic cells 
such as donor of electronic, is one which has the small 
band gap and large wavelengths, thus all compounds 
(1–6) are appropriate to do this role.
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