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ABSTRACT 
This work presents modified variants, in a recursive format, of the Kahaner’s additive fast Fourier transform (FFT) 
algorithm. The variants are presented in Kronecker products algebra language. The language serves as a tool for the analysis, 
design., modification and implementation of the FFT variants on re-configurable field programmable gate array (FPGA) 
computational structures. The target for these computational structures are discrete Fourier transform (DFT) beamforming 
algorithms for space-time-frequency applications in wireless. 

1. INTRODUCTION 
This work presents modified variants, in a recursive format, of the Kahaner additive fast Fourier transform (FFT) algorithm. 
The variants are presented in Kronecker products algebra language. The language serves as a tool for the analysis, design, 
modification and implementation of the FFT variants on re-configurable field programmable gate array (FPGA) 
computational structures. The target for these computational structures are discrete Fourier transform (DFT) beamforming 
algorithms for space-time-frequency applications in wireless. When using Kroncker products algebra, a given FFT algorithm 
can be written as a decomposition of basic factors or mathematical expressions which we term functional primitives. This 
decomposition action establishes a one-one correspondence between a mathematical formulation of an algorithm and a given 
hardware computational structure such as an FPGA. Variants of a given mathematical formulation can be obtained using 
properties of Kronecker products algebra. These variants may satisfy certain design criteria such as pipelining, parallelism, 
data flow control, etc. In turn, each of these new variants will produce a di.%erent hardware implementation. The efficiency of 
each algorithm is evaluated when a cost function is imposed on the design criteria. We proceed to describe in detail a 
Kronecker decomposition for the Kahaner’s FFT algorithm. 

2. KRONECKER DECOMPOSITION OF KAHANER’S ALGORITHM 

In his paper [ 181, D. K. Kahaner describes a procedure for factoring the Fourier matrix FN when N = p ’ , p and y any 

integers. Kahaner’s factorization method produces, up to matrix factor expansion, what is commonly known as the Cooley- 
Tukey (C-T) decimation in frequency algorithm. In this section we describe Kahaner’s algorithm in detail, and then present it 
a Kronecker product formulation This will aid in the understanding of the Kronecker products language used to analyze 
other FFT algorithms later on 

2.1 Kahaner’s Mathematical Formulation 

Kahaner starts by defining the discrete Fourier transform of N equally spaced data points X, , k = 0,. . . , N - I : 
2iTi 

--rk N-l 2ni -- 

F 
1 N-l 

B -- r- 
N c 

xke N =-cxkark, O<r<N, a=e N 
k=O N k=O 

In matrix form, 
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where A is the matrix: 
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Kahaner proceeds to write a general expression for F, , r = O,l, . . ., N - 1: 
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Writing r = pm + I, the following expression is obtained, 
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For each fixed I, the following vector is formed: 

Fp+l &2p+l l l l E;i,-l),,, p , l = O,l, l l l 7 P - 1 

After some algebraic manipulations, this vector is written as, 
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(2.8) 

By writing these p vectors (l = O,l, . . . , p - 1) in a column, the following result is obtained: 
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The vector F differs from the vector F by the permutation matrix YT, : 

F=n,F(l)= X0 
- N 

Since the matrix B has the general form of the matrix A , this result is generalized: 

F xO -- - 
N 

(2. no) 
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(2.13) 
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where 

A 0 1 - - 

hP 
- 

i- 

I 

DJ ( ‘> 0 D(i) . ~. op-l D(i) 

DJ ( ‘> - - ,j = OJ,..., y-l,Dy-’ = [l] 

2.2 Kronecker Products Formulation 

(2.14) 

(2. as> 

(2.16) 

We proceed to describe this matrix factorization method in kronecker products form. We start by introducing the following 
definitions: 

The matrix P, s, of order n = > r l s is called the stride by s permutation matrix, and is defined by 

P,, l d= (do,d~,d2~~***,dl,d,~+l,*~*,d~r-l~~+,s-l) > (2.17) 
for 

The diagonal matrix D, s >’ of order s is defined by 

D n,s = diag[l, Wn, W,“, . . . , W,S-’ 1 Wn = em”% 

(2.18) 

(2.19) 

The twiddle factor (phase factor) matrix Dr n of order n : > 
/ s / S 

Tn,so = c @ Dr$/ > (2.20) 
01 j-3 s 

If TZ=PS,then 

Tn,,.(n)=Tn, = c OD;;, = x@Dir >I* (2.21) > , 
01 j<s S 01 j-3 
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To arrive to a general form for the Fourier matrix FN , N = py 9 expressed in Kronecker products, we start with an 

expression for the Fourier matrix Fp and use this expression, and the Cooley-Tukey decimation in frequency algorithm 

expressed in Kronecker products, to obtain higher order Fourier matrices expressed in Kronecker products form: 

F F N= pi 
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- 
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The Cooley-Tukey decimation in frequency algorithm allows us to write F 2 

Fp2 = pp2 p (Ip QFp jTp2 p (F, QlpP) 

in the following form: 

Using 

we get, 
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Using the expression for Fp given above, we obtain 

Fp2 = Pp2 p (Ip 0 Pp 1 XI, 63 d~-1+o-2~ 
> > 

For the matrix F p3 , we write down again the expression for the Cooley-Tukey decimation in frequency algorithm: 

where, 
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Using, and the expression given above for F 2 , we get, 
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Continuing in the same manner: 
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III general, for a Fourier matrix 6;_,_, ,O 5 k < y , we write: 

We, again, set 

and the identity 
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may be used to write down the elements of D 
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The general expression for Fmysk thus becomes: 
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3. CONCLUSIONS 
This has presented modified variants, in a recursive format, of the Kahaner additive fast Fourier transform (FFT) algorithm. 
The variants are presented in Kronecker products algebra language. The language has been used as a tool for the analysis, 
design, modification and implementation of the FFT variants on re-configurable field programmable gate array (FPGA) 
computational structures 
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Figure 1. Multiplicative Channel Model 

Figure 2. Tapped-Delay-Line Channel Model 
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Figure 4. Binary Digital Comnmnic ;ations Diversity Model 
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