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1 Introduction

Since Siegel proposed to formulate spacetime duality in superspace [1, 2] double field the-

ory (DFT) has been developed and investigated by many authors [3–8] with the aim to

construct an effective theory of string with manifest T-duality symmetry.

The gauge transformation and diffeomorphism are unified into the generalized Lie

derivative of doubled space [5] similarly as done in generalized geometry [9–12]. For previ-

ous work on generalized geometric structures in DFT, see for example [13] and references

therein.

However, unlike generalized geometry, the gauge algebra of DFT generated by the

generalized Lie derivative does not close. To achieve closure we need to constrain the

algebra. One way to do so is to impose the section condition (strong constraint), a particular

solution of which reduces the DFT action to the standard action of supergravity. On the

other hand, the section condition is not the only possibility to close the DFT algebra [8, 14].

This was demonstrated via a Scherk-Schwarz [15] type compactification of DFT to the

double torus, now known as generalized Scherk-Schwarz (GSS) compactification [8, 16–18].

In the GSS compactification, the fields depend also on the internal space coordinate. The

doubled coordinates of the internal space enter in a very particular way through the GSS

ansatz. It has been shown that the resulting fluxes can be identified with the structure

constants of the gaugings of gauged supergravity theories, giving a geometric interpretation

to them all, including the non-geometric fluxes. This is very interesting, since in the

compactified direction the section condition is not imposed, i.e., the GSS compactification

gives an alternative solution to the closure constraint.

One aim of this paper is to provide an unified and geometric characterization of the

closure constraint based on the supermanifold formulation. The supermanifold considered

here is a non-negatively graded QP-manifold, i.e. a supermanifold with a graded Poisson

structure (P-structure) and a nilpotent vector field (Q-structure), and its generalization

called a pre-QP-manifold [19–23]. The usefulness of the graded manifold approach to DFT

has been first pointed out by Deser and Stasheff [24] and has been applied to the generalized

Lie derivative. After their work, the canonically transformed Hamiltonian functions of DFT

were introduced and the T-duality transformation and Bianchi identities in DFT, including

geometric and non-geometric fluxes, were formulated [20, 23, 25]. Here we elaborate the

closure constraint for the DFT algebra from, what we call here, the weak master equation

and also formulate the Bianchi identity on a pre-QP-manifold. We develop a O(D,D)

covariant formulation of the canonical transformation and give a geometrical characteriza-

tion of the Bianchi identities by introducing the pre-Bianchi identity on the doubled space.

This yields a geometrical characterization of the Bianchi identities given earlier in [25].

As we shall see, using the graded manifold approach, it becomes possible to charac-

terize the closure constraint without referring explicitly to local coordinates. Thus, it is

natural to consider its application to the formulation of DFT on a non-trivial background.

For this purpose, we first give the covariantization of the pre-QP-manifold. Using this for-

mulation, we examine the closure constraint obtained by the weak master equation. and

the corresponding Bianchi identities obtained from the pre-Bianchi identities. Then we

give an application for DFT on the group manifold.
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This paper is organized as follows. In section 2, we introduce the definition of pre-

QP-manifolds and reformulate the QP-structures of DFT in a O(D,D) covariant form.

Then, we discuss the O(D,D) covariant form of the canonical transformation and work

out the closure constraint. In section 3, we introduce the generalized vielbein of DFT

via a canonical transformation, thus providing a unified picture for the generalized flux

and giving a systematic formulation of the Bianchi identities. Then, we analyze the GSS

compactification of DFT by O(D,D) covariant canonical transformation. In section 4, we

investigate DFT on the group manifold using the pre-QP-structures. The last section is

devoted to conclusions and discussion.

2 DFT on pre-QP-manifold

In this section, we first briefly recall the original formulation of DFT and the generalized

Scherk-Schwarz compactification [8, 16, 17, 26]. Then, we review the supermanifold for-

mulation of DFT. The advantage of the supermanifold approach is that its QP-structure

gives a concise characterization of the underlying algebra/algebroid structure.

After this preparation, we formulate the DFT on a pre-QP-manifold and elaborate the

closure condition of the generalized Lie derivative and the meaning of the section condition

in this wider structure. We shall see that the failure of the closure of the algebra can be

understood as a failure of the classical master equation on the QP-manifold. However,

unlike the original supermanifold approach [23, 25] we do not make use of the section

condition, since it is not the only possibility to achieve closure of the algebra [8, 24, 27].

From the pre-QP structure formulation we obtain new criteria for the closure of the algebra

of the generalized Lie derivative. We will also see that the O(D,D) transformation is still

realized as a canonical transformation.

2.1 Structure of DFT

2.1.1 The double field theory (DFT)

DFT was developed with the aim to construct a manifest T-duality invariant formulation

of the effective theory of superstring, and thus has manifest O(D,D) symmetry. In order to

realize this symmetry geometrically, the winding sector is included as a Fourier transform

of extra dimensions and the theory is defined on a 2D-dimensional doubled space. We

denote coordinates of this doubled space as XM̂ = (X̃M , XM ) where the index M runs

from 1 to D and hatted indices are used for the doubled indices, so that M̂ runs from 1 to

2D. The partial derivative ∂
M̂

= (∂̃M , ∂M ) is also doubled correspondingly.

The dynamical fields in DFT are the generalized metric H
M̂N̂

and the generalized

dilaton d. The generalized metric H
M̂N̂

is a symmetric O(D,D) tensor, satisfying

η
M̂P̂

HP̂ Q̂η
Q̂N̂

= H
M̂N̂

, HM̂N̂H
N̂P̂

= δM̂
P̂

(2.1)

where η
M̂N̂

is an O(D,D) invariant metric,

η
M̂N̂

=

(
0 δMN

δM
N 0

)
, (2.2)
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and the 2D-dimensional indices are lowered and raised by η
M̂N̂

and its inverse ηM̂N̂ , re-

spectively. The generalized metric can be parametrized by the D-dimensional metric gMN

and the 2-form field bMN as

H
M̂N̂

=

(
gMN −gMP bPN

bMP g
PN gMN − bMP g

PQbQN

)
. (2.3)

We introduce the generalized vielbein E M̂
ˆ̄A

with index ˆ̄A for the local flat frame of

doubled space, (i.e., ˆ̄A runs from 1 to 2D), the O(D,D) invariant metric η
ˆ̄A ˆ̄B to raise and

lower indices in local flat frame, and an O(1, D − 1)×O(1, D − 1) invariant metric

S ˆ̄A ˆ̄B
=

(
sĀB̄ 0

0 sĀB̄

)
, (2.4)

with D-dimensional Minkowski metrics sĀB̄ and sĀB̄. For the O(D,D) covariance of DFT,

the generalized vielbein E ˆ̄A
M̂ is supposed to be an element of O(D,D). With the metric

S ˆ̄A ˆ̄B
, the generalized metric H

M̂N̂
is written as

H
M̂N̂

= E ˆ̄A
M̂
S ˆ̄A ˆ̄B

E ˆ̄B
N̂

. (2.5)

With the generalized metric and generalized dilaton, the DFT action of the NS-NS

sector [7] can be written as:

S =

∫
d2DXe−2d

(
1

8
HM̂N̂∂

M̂
HK̂L̂∂

N̂
H

K̂L̂
− 1

2
HM̂N̂∂

N̂
HK̂L̂∂

L̂
H

M̂K̂

− 2∂
M̂
d∂

N̂
HM̂N̂ + 4HM̂N̂∂

M̂
d∂

N̂
d

)
. (2.6)

In DFT the diffeomorphisms and gauge transformations in the D-dimensional theory

are unified into the generalized Lie derivative [5], similarly as in generalized geometry [9, 10],

and the algebra of the generalized Lie derivative characterizes the symmetry of DFT. The

above action is invariant under the gauge transformation generated by the generalized Lie

derivative L. The generalized Lie derivative of an O(D,D) vector V M̂ with weight w is

defined as

LΛV
M̂ = ΛN̂∂

N̂
V M̂ + (ηM̂P̂ η

N̂Q̂
∂
P̂
ΛQ̂ − ∂

N̂
ΛM̂ )V N̂ + w∂

N̂
ΛN̂V M̂ . (2.7)

Here, Λ is a generalized vector corresponding to the gauge parameter depending on the 2D

dimensional coordinates,

ΛM̂ =

(
λ̃M

λM

)
. (2.8)

The weight of both generalized metric H
M̂N̂

and generalized vielbein E ˆ̄A
M̂ is 0, and the

generalized Lie derivative acts on them as

LΛHM̂N̂
= ΛP̂∂

P̂
H

M̂N̂
− (∂P̂Λ

M̂
− ∂

M̂
ΛP̂ )H

P̂ N̂
− (∂P̂Λ

M̂
− ∂

N̂
ΛP̂ )H

M̂P̂
, (2.9)

LΛE ˆ̄A
M̂ = ΛN̂∂

N̂
E ˆ̄A

M̂ + (∂M̂Λ
N̂
− ∂

N̂
ΛM̂ )E ˆ̄A

N̂ . (2.10)
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By construction, the generalized Lie derivative contains the usual gauge transformation

of the B-field and the D-dimensional diffeomorphism: when we parametrize the generalized

metric as (2.3) and take a special solution of the section condition, called the supergravity

frame, by requiring that all fields are independent of the dual coordinate X̃M , the DFT

action reduces to the NS-NS sector of the supergravity action. In the supergravity frame

the generalized Lie derivative reduces to the D-dimensional diffeomorphism and the gauge

transformation of the B-field:

LΛgMN |
∂̃=0 = LλgMN , (2.11)

LΛbMN |
∂̃=0 = LλbMN + 2∂[M λ̃N ], (2.12)

where Lλ is the standard Lie derivative with respect to a D-dimensional vector λ. The

antisymmetrization of the generalized Lie derivative of DFT is known as C-bracket

[V1, V2]C ≡ LV1
V2 − LV2

V1. (2.13)

In the supergravity frame, the C-bracket reduces to the Courant bracket.

The obstruction for defining a generalization of the diffeomorphism by the generalized

Lie derivative is that LΛ does not satisfy the Leibniz rule. That is

∆M (Λ1,Λ2, V ) ≡ LΛ1
(LΛ2

V M )− LLΛ1
Λ2
V M − LΛ2

LΛ1
V M (2.14)

does not vanish, which is apparently satisfied by the standard Lie derivative Lλ. Vanishing

of the above ∆M (Λ1,Λ2, V ) means that the commutator of the generalized Lie derivative

satisfies

[LΛ1
,LΛ2

] = LLΛ1
Λ2

(2.15)

which is also called the closure condition. Closure is always guaranteed, when the section

condition is imposed

ηM̂N̂ (∂
M̂
Φ)(∂

N̂
Ψ) = 0 (2.16)

where Φ and Ψ denote any fields and gauge parameters of DFT. However, the section

condition is not necessary to achieve closure for the algebra.

2.1.2 Generalized Scherk-Schwarz (GSS) compactification

In this paper, we also analyze the generalized Scherk-Schwarz (GSS) compactification of

DFT where the 2D-dimensional DFT is reduced to (D − n)-dimensional gauged super-

gravity. The generalized Lie derivative of the 2D-dimensional DFT is twisted by the GSS

ansatz and the constraint of its internal space is relaxed compared to the section condi-

tion [8, 16–18].

For the GSS compactification, it is convenient to start with the DFT action in flux

formulation, which is equivalent to the DFT action in generalized metric formulation (2.6)

up to terms which vanish under the section condition [16]:

S =

∫
dXe−2dR , (2.17)

– 5 –
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with

R = F ˆ̄A ˆ̄B ˆ̄C
F ˆ̄D ˆ̄E ˆ̄F

(
1

4
S

ˆ̄A ˆ̄Dη
ˆ̄B ˆ̄Eη

ˆ̄C ˆ̄F − 1

12
S

ˆ̄A ˆ̄DS
ˆ̄B ˆ̄ES

ˆ̄C ˆ̄F − 1

6
η

ˆ̄A ˆ̄Dη
ˆ̄B ˆ̄Eη

ˆ̄C ˆ̄F

)

+ F ˆ̄A
F ˆ̄B

(
η

ˆ̄A ˆ̄B − S
ˆ̄A ˆ̄B

)
, (2.18)

where η
ˆ̄A ˆ̄B is an O(D,D) invariant metric in the local frame. The generalized fluxes F ˆ̄A ˆ̄B ˆ̄C

and F ˆ̄A
are defined as

F ˆ̄A ˆ̄B ˆ̄C
:= E ˆ̄CM̂

LE ˆ̄A
E M̂
ˆ̄B

= 3Ω
[ ˆ̄A ˆ̄B ˆ̄C]

, (2.19)

F ˆ̄A
:= −e2dLE ˆ̄A

e−2d = Ω
ˆ̄B
ˆ̄B ˆ̄A

+ 2E M̂
ˆ̄A

∂
M̂
d, (2.20)

where Ω ˆ̄A ˆ̄B ˆ̄C
:= E M̂

ˆ̄A
∂
M̂
E N̂
ˆ̄B
E ˆ̄CN̂

is the generalized Weitzenböck connection. Note that,

if we parametrize the O(D,D) vielbein by the D-dimensional metric gMN and 2-form

bMN , we find the H-flux and the geometric f -flux in F ˆ̄A ˆ̄B ˆ̄C
. Alternatively, if we take

the parametrization by the fields g̃MN and the two-vector βMN we obtain the so-called

non-geometric fluxes. This result provides a unified picture of fluxes discussed in [23].

As in the original Scherk-Schwarz compactification ansatz [15], the generalized Scherk-

Schwarz (GSS) compactification of DFT splits the 2D-dimensional target space with coor-

dinate X into 2d-dimensional external space with coordinate X and 2(D − d)-dimensional

internal space with coordinate Y, as X = (X,Y). Then, the ansatz for the generalized

vielbein E ˆ̄A
M̂
(X), generalized dilaton d(X) and gauge parameter ΛM̂ (X) are [16, 26],

E ˆ̄A
M̂
(X) = Ê

ˆ̄A
Î
(X)U Î

M̂
(Y), (2.21)

d(X) = d̂(X) + d̄(Y), (2.22)

ΛM̂ (X) = Λ̂Î(X)U
Î
M̂ (Y). (2.23)

where the fields with hat, Ê
ˆ̄A
Î
(X), d̂(X) and Λ̂Î(X) are the vielbein, dilaton and gauge

parameter of the reduced theory, respectively. We use the characters Î , Ĵ , K̂, L̂ and Ĥ for

the indices of the reduced theory, and the corresponding O(D,D) metric ηÎ Ĵ . The matrix

U
Î
M̂ (Y) and its inverse U Î

M̂
(Y) which give the GSS twist are elements of O(D,D) and

d̄(Y) is a scalar. The twist matrices are assumed to satisfy

U
Î
M̂∂

M̂
g(X) = ∂

Î
g(X) , (2.24)

for any field of the reduced theory, which means that the twist occurs only in the internal

space, and preserves the Lorentz invariance in the external spacetime of the reduced theory.

By substituting the above GSS ansatz (2.21) into the generalized fluxes (2.19)

and (2.20), we obtain the twisted generalized fluxes:

F ˆ̄A ˆ̄B ˆ̄C
= F̂ ˆ̄A ˆ̄B ˆ̄C

+ f
Î ĴK̂

Ê ˆ̄A
ÎÊ ˆ̄B

Ĵ Ê ˆ̄C
K̂ , (2.25)

F ˆ̄A
= F̂ ˆ̄A

+ f
Î
Ê ˆ̄A

Î (2.26)

– 6 –
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where F̂ ˆ̄A ˆ̄B ˆ̄C
and F̂ ˆ̄A

are generalized fluxes obtained from Ê ˆ̄A
Î and d̂ containing the dy-

namical field in the external spacetime. They have the same structure as the original

generalized fluxes (2.19) and (2.20), namely

F̂ ˆ̄A ˆ̄B ˆ̄C
= 3Ω̂

[ ˆ̄A ˆ̄B ˆ̄C]
, (2.27)

F̂ ˆ̄A
= Ω̂

ˆ̄B
ˆ̄B ˆ̄A

+ 2Ê ˆ̄A
Î∂

Î
d̂, (2.28)

where Ω̂ ˆ̄A ˆ̄B ˆ̄C
= Ê ˆ̄A

Î∂
Î
Ê ˆ̄B

Ĵ Ê ˆ̄CĴ
. The effect of the twist in the internal space is confined to

the generalized fluxes f
M̂N̂P̂

and f
M̂

defined by the matrix U
Î
M̂ (Y) as

f
Î ĴK̂

:= 3Ω̃[Î ĴK̂], (2.29)

f
Î
:= Ω̃Ĵ

Ĵ Î
+ 2U

Î
M̂∂

M̂
d̄, (2.30)

where Ω̃
Î ĴK̂

= U
Î
M̂∂

M̂
U
Ĵ
N̂U

K̂N̂
. In the GSS compactification, these fluxes f

Î ĴK̂
, f

Î
are

assumed to be constant in the same way as in the original Scherk-Schwarz compactification.

Imposing this ansatz the resulting theory becomes independent of the internal coordinate

and the DFT action is reduced to the effective action of the so-called gauged double field

theory (GDFT) [17].

The gauge algebra of GDFT is inherited from the original DFT. The corresponding

generalized Lie derivative of a generalized vector V̂ (X) in the reduced theory can be derived

from the one of the original DFT by substituting the GSS ansatz as

L̂
Λ̂(X)

V̂ Î(X) = L
Λ̂(X)

V̂ Î(X) + f Î
ĴK̂

Λ̂Ĵ(X)V̂ K̂(X). (2.31)

Thus, the generalized Lie derivative L̂ of GDFT is defined on the reduced fields and gauge

parameter which depend only on the external spacetime coordinate X.

The algebra of L̂ closes by the closure constraint for GDFT fields and the Jacobi

identity of the structure constant f
Î Ĵ

K̂ ,

∂
Î
V̂ (X)∂ ÎŴ (X) = 0, f[Î Ĵ

Ĥf
K̂]L̂Ĥ = 0. (2.32)

Note that the condition for closure for the internal space is relaxed compared to the solution

by using the section condition.

2.2 Supermanifold formulation of DFT

In this section, first we summarize briefly the supermanifold formulation of DFT given

in the refs. [20, 23, 24]. Then, we define a pre-QP-manifold which is a generalization of

QP-manifold that can describe the algebraic structure of DFT. On the pre-QP-manifold

the closure condition is relaxed, which fits to the generalized Lie derivative and gives a new

understanding of the section condition.

The algebra on a QP-manifold is a kind of simplified graded algebra as used in the BV-

and BRST- formalism. See e.g. [19] and references therein. There are two structures on

this supermanifold. One is called P-structure, which specifies a graded Poisson bracket and

– 7 –
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thus defines the derivation and the vector field on the supermanifold. The other is called

Q-structure, which is a nilpotent Hamiltonian vector field Q, an analogue of the BRST

charge, the nilpotency of which is imposed by the classical master equation. It is known

that a QP-manifold of degree 2 gives a concise definition of a Courant algebroid [28] and

thus fits to the formulation of the generalized geometry [9, 10].

The QP-manifold, however, is too strict to apply to DFT, as one can imagine from the

relation between the double geometry and generalized geometry or, more concretely, from

the relation between the C-bracket and Courant bracket.

We shall see that on a pre-QP-manifold we have more freedom to accommodate the

DFT algebra, and we can obtain a new closure condition for the generalized Lie derivative,

which gives another alternative to the section condition used in the original DFT.

2.2.1 Pre-QP-manifold and derived bracket

A P-manifold of degree n is a pair (M, ω), where M is a graded manifold with Z graded

coordinates and ω is a graded symplectic form of degree n defining a P-structure. In our

context, we always consider the case with non-negative n. The graded Poisson bracket

{−,−} is calculated from the graded symplectic form ω as

{f, g} ≡ (−1)|f |+n+1ιXf
ιXgω , (2.33)

for f, g ∈ C∞(M), where | · | denotes the degree. Here Xf is a Hamiltonian vector field

defined by ιXf
ω = −df . Using graded Darboux coordinates (qa, pa), the graded Poisson

bracket has a local coordinate representation given by

{f, g} =
f
←−
∂

∂qa

−→
∂ g

∂pa
− (−1)|q||p|

f
←−
∂

∂pa

−→
∂ g

∂qa
. (2.34)

The graded Poisson bracket is of degree −n and satisfies the following graded version of

skew symmetricity, Leibniz rule and Jacobi identity,

{f, g} = (−1)(|f |−n)(|g|−n)+1{g, f}, (2.35)

{f, gh} = {f, g}h+ (−1)(|f |−n)|g|g{f, h}, (2.36)

{f, {g, h}} = {{f, g}, h}+ (−1)(|f |−n)(|g|−n){g, {f, h}}. (2.37)

In the P-manifold we can define the following canonical transformation. Let α ∈
C∞(M) be a degree n function. Then, a canonical transformation generated by α is

defined by the following exponential adjoint action,

eδαf = f + {f, α}+ 1

2!
{{f, α}, α}+ · · · (2.38)

where f ∈ C∞(M) is any smooth function. Since the degree of the Poisson bracket {·, ·}
is −n, the operation eδα is degree preserving. Moreover, one can prove that this operation

is a canonical transformation satisfying

eδα{f, g} = {eδαf, eδαg}. (2.39)

for any smooth function f, g on M.

– 8 –
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On the P-manifold, we can also define a Q-structure by specifying a degree n + 1

function Θ ∈ C∞(M). This function Θ defines a degree 1 graded vector field Q as

Qf = {Θ, f}. (2.40)

If this vector is nilpotent, i.e., Q2 = 0, it is called a homological vector field, and the

corresponding Θ is called a Hamiltonian function or a homological function associated to

Q. The condition Q2 = 0 is equivalent to the classical master equation,

{Θ,Θ} = 0. (2.41)

A triple (M, ω,Θ), i.e., a P-manifold with a homological function Θ is called a QP-manifold.

The algebra on the n = 2 QP-manifold is equivalent to a Courant algebroid and as we

mentioned, it is too restrictive for DFT.

The pre-QP-manifold which is applicable to DFT is obtained by relaxing the classical

master equation. The pair (ω,Q) is called a pre-QP-structure and the triple (M, ω,Q) is

called a pre-QP-manifold without requiring the nilpotency Q2 = 0 of the vector field Q
in (2.40). Consequently, the classical master equation does not vanish,

{Θ,Θ} 6= 0 . (2.42)

Nevertheless, also in this case we call Θ the Hamiltonian function of the pre-QP-manifold.

As we shall see, in the pre-QP-manifold approach, the classical master equation is replaced

by another condition, and the section condition is just one of the possible solutions to that

condition.

Since the definition of a canonical transformation is independent of the Q-structure,

the equation (2.39) still holds and thus,

eδα{Θ,Θ} = {eδαΘ, eδαΘ}. (2.43)

This means that the classical master equation is preserved by the canonical transformation,

i.e., if Θ satisfies the classical master equation, then so does eδαΘ.

There is another important object in the supermanifold formulation, namely, the de-

rived bracket. For any degree n + 1 function Θ on a P-manifold, the derived bracket is

defined as a bilinear operation for f, g ∈ C∞(M):

[f, g] := −{{f,Θ}, g} . (2.44)

The derived bracket [−,−] is not necessarily graded antisymmetric. Using the graded

anti-symmetry (2.35) and the Jacobi identity (2.37) of the Poisson bracket, we obtain the

following identity of the derived bracket for any f, g, h ∈ C∞(M),

[f, [g, h]] = {{f,Θ}, {{g,Θ}, h}}
= {{{{f,Θ}, g},Θ}, h}+ (−1)(|f |+n+1)(|g|+n+1){{g,Θ}, {{f,Θ}, h}}

+ (−1)(|f |+n+1)(|g|+n) 1

2
{{g, {f, {Θ,Θ}}}, h}

= [[f, g], h] + (−1)(|f |+n+1)(|g|+n+1)[g, [f, h]]

+ (−1)|g|+n 1

2
{{{{Θ,Θ}, f}, g}, h}. (2.45)
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If the classical master equation {Θ,Θ} = 0 is satisfied, the derived bracket [·, ·] satisfies
the following Leibniz identity1 of degree −n+ 1,

[f, [g, h]] = [[f, g], h] + (−1)(|f |−n+1)(|g|−n+1)[g, [f, h]]. (2.46)

An important point to apply the pre-QP-manifold to DFT is the fact that the condition2

{{{{Θ,Θ}, f}, g}, h} = 0 (2.47)

is sufficient to satisfy the Leibniz identity (2.46). Thus, we can relax the classical master

equation to the equation (2.47) for closure of the derived bracket. We call the condi-

tion (2.47) the weak master equation. In general, {{{{Θ,Θ}, f}, g}, h} 6= 0, however,

{{{{Θ,Θ}, f}, g}, h} = 0 can be satisfied by restricting the space of functions instead of

requiring the classical master equation. This observation is important to understand a

unified picture for the closure condition in DFT and the role of the section condition.

The weak master equation (2.47) is changed by a twist. We consider a twist of a

Hamiltonian function by a function α, Θ → Θ′ = eδαΘ. Then, the closure condition

changes to

{{{{Θ′,Θ′}, f}, g}, h} = 0, (2.48)

Using eq. (2.39), this condition is written as

eδα{{{{Θ,Θ}, e−δαf}, e−δαg}, e−δαh} = 0, (2.49)

If functions f, g, h satisfying the weak master equation (2.47) are elements of C∞(N ), where

N is a graded submanifold of the pre-QP-manifoldM, then the closure condition is satisfied

by the functions twisted by e−δα . This is demonstrated in the following. Especially, this

gives the proper condition of the structure constant in the GSS twist in section 3.3.

2.2.2 Generalized Lie derivative on pre-QP-manifold

In the following we give the formulation of the generalized Lie derivative of DFT on the

pre-QP-manifold. It gives a characterization of the closure of the gauge algebra using the

weak master equation.

In order to construct the supermanifold formulation of DFT, we take a 2D dimensional

doubled space, M̃ × M , and an n = 2 graded symplectic manifold M = T ∗[2]T [1](M̃ ×
M). We introduce local coordinates on M as (XM̂ , QM̂ , P

M̂
,Ξ

M̂
) of degree (0, 1, 1, 2),

respectively. XM̂ = (X̃M , XM ) is a general coordinate on the base manifold M̃ × M .

QM̂ = (q̃M , qM ) is a degree one fiber coordinate of the tangent bundle T [1](M̃ × M).

Ξ
M̂

= (ξ̃M , ξM ) and P
M̂

= (p̃M , pM ) are the fiber coordinates of the cotangent bundle,

which are conjugate to XM̂ and QM̂ , respectively.

1If the bracket [·, ·] is graded antisymmetric, (2.46) is the graded Jacobi identity. In general, it is called

the graded Leibniz identity. In this paper we simply call it the Leibniz identity.
2This condition is also derived in [21] as the condition on the pre-QP-manifold, and later in the context

of an L∞ algebra in [22].
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The symplectic structure on M is

ω = δXM̂ ∧ δΞ
M̂

+ δQM̂ ∧ δP
M̂
, (2.50)

which leads to the following graded Poisson brackets,

{XM̂ ,Ξ
N̂
} = −{Ξ

N̂
, XM̂} = δM̂

N̂
, (2.51)

{QM̂ , P
N̂
} = {P

N̂
, QM̂} = δM̂

N̂
. (2.52)

In order to formulate DFT on the pre-QP-manifold, it is necessary to introduce the follow-

ing coordinates (Q′, P ′) which we call the DFT basis:

Q′M̂ :=
1√
2
(QM̂ − ηM̂N̂P

N̂
) , P ′

M̂
:=

1√
2
(P

M̂
+ η

M̂N̂
QN̂ ), (2.53)

where η
M̂N̂

and ηM̂N̂ are the O(D,D) invariant metrics defined in (2.2). In the DFT basis,

the Poisson brackets are

{Q′M̂ , Q′N̂} = ηM̂N̂ , {P ′
M̂
, P ′

N̂
} = η

M̂N̂
, {Q′M̂ , P ′

N̂
} = 0. (2.54)

The relation between the supermanifold formulation and the standard DFT description

is established by an injection map j′ from the generalized tangent and cotangent bundle over

the doubled spacetime M̂ = M̃×M to the graded manifoldM, j′ : M̂⊕TM̂⊕TM̂⊕T ∗M̂ →
M with degree shifting as follows,

j′ :
(
XM̂ , ∂

M̂
, ∂

M̂
, dXM̂

)
7−→ (XM̂ ,Ξ

M̂
, P ′

M̂
, Q′M̂ ). (2.55)

Then, the push forward j′∗ and pullback j′∗ of a generalized vector field V = V M̂∂
M̂

is

defined as

j′∗ : V = V M̂∂
M̂

7−→ V M̂P ′
M̂
, (2.56)

j′∗ : V M̂P ′
M̂

7−→ V M̂∂
M̂
, (2.57)

where V M̂P ′
M̂

∈ C∞(M). We can also define the similar map for a 1-form on M̂ . In the

following, we identify the generalized vectors V M̂∂
M̂

with V M̂P ′
M̂

and omit to write j′∗ and

j′∗ for simplicity. The O(D,D) invariant inner product for the generalized vector fields V

and V ′ can be defined by using the graded Poisson bracket of the corresponding functions

on the supermanifold,

〈V, V ′〉 = {V, V ′}. (2.58)

In order to formulate the generalized Lie derivative of DFT by using the pre-QP-

manifold, we take the following degree 3 function constructed by Ξ
M̂

and P ′
M̂
,

Θ0 = ηM̂N̂Ξ
M̂
P ′
N̂
, (2.59)

It is straightforward to show that the derived bracket using this Θ0 gives the generalized

Lie derivative on a generalized vector field V ,

LΛV = [Λ, V ]D = −{{Λ,Θ0}, V }. (2.60)
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as well as the generalized anchor map for a function f

ρΛ(f) = −{{Λ,Θ0}, f}. (2.61)

Thus, the Θ0 in (2.59) is a suitable Hamiltonian for the supermanifold formulation of DFT.

On the other hand, it is easy to see that the classical master equation of Θ0, (2.41)

does not vanish:

{Θ0,Θ0} = ηM̂N̂Ξ
M̂
Ξ
N̂
. (2.62)

This means that for the algebra of the derived bracket with Θ0, i.e., the generalized Lie

derivative defined on a pre-QP-manifold, the closure condition should be generalized as

discussed in the previous subsection. There, we have shown that the condition for the

Leibniz identity of the derived bracket on a pre-QP-manifold is given by the weak master

equation, (2.47). In the DFT case, the weak master equation is

{{{{Θ0,Θ0}, f}, g}, h} = 0. (2.63)

Eq. (2.63) gives the closure constraint of the generalized Lie derivative as follows: the

gauge parameter of generalized Lie derivative is a generalized vector, thus on the pre-QP-

manifold, we require the weak master equation for the generalized vectors V1, V2, V3:

{{{{Θ0,Θ0}, V1}, V2}, V3} = 0. (2.64)

This condition is equivalent to the closure constraint of the generalized Lie derivative in

DFT:

∂M̂V N̂
1 V2N̂∂

M̂
V

Q̂
3 − 2∂M̂V

[P̂
1 ∂

M̂
V

Q̂]
2 V3P̂ = 0. (2.65)

3 Bianchi identity and GSS twist in pre-QP-formalism

In this section, first we analyze the canonical transformation on pre-QP-manifold. We show

that the generalized vielbein can be introduced by a canonical transformation from the

general tangent frame to the local flat frame. The definition of the generalized vielbein as

anO(D,D) covariant canonical transformation provides a unified picture for the generalized

flux and gives a systematic way to formulate the Bianchi identities.

We also show that the twist operation in the GSS compactification of DFT can be

analyzed by an O(D,D) covariant canonical transformation. We show that the canonical

transformation of the Hamiltonian function of DFT gives the twisted Hamiltonian function

which realizes the generalized Lie derivative of gauged DFT (GDFT).

3.1 Canonical transformation on supermanifold

To define the generalized vielbein and flux of DFT, we need to introduce a local flat frame.

Correspondingly, we generalize the supermanifold to M = T ∗[2](T [1](M̃ × M) + V [1])

where V[1] is a vector space corresponding to the local flat frame with degree 1 shift. We

introduce the degree 1 coordinates (Q̄
ˆ̄A, P̄ ˆ̄A

) of T ∗[2]V [1], in adition to the coordinates

– 12 –



J
H
E
P
0
4
(
2
0
1
9
)
0
0
2

(XM̂ ,Ξ
M̂
, QM̂ , P

M̂
) of T ∗[2]T [1](M̃ × M). We also define the corresponding DFT basis

coordinates Q′ ˆ̄A and P ′
ˆ̄A
,

Q̄′ ˆ̄A :=
1√
2
(Q̄

ˆ̄A − η
ˆ̄A ˆ̄BP̄ ˆ̄B

) , P̄ ′
ˆ̄A
:=

1√
2
(P̄ ˆ̄A

+ η ˆ̄A ˆ̄B
Q̄′ ˆ̄B) (3.1)

in the same way as the DFT basis, Q′M̂ and P ′
M̂

defined in (2.53). Here, η ˆ̄A ˆ̄B
and its inverse

η
ˆ̄A ˆ̄B are O(D,D) invariant metrics. The Poisson brackets for Q̄′ ˆ̄A and P̄ ′

ˆ̄A
are

{Q̄′ ˆ̄A, Q̄′ ˆ̄B} = η
ˆ̄A ˆ̄B, {P̄ ′

ˆ̄A
, P̄ ′

ˆ̄B
} = η ˆ̄A ˆ̄B

, {Q̄′ ˆ̄A, P̄ ′
ˆ̄B
} = 0. (3.2)

Canonical transformations are generated by degree 2 functions on the n = 2 superman-

ifold. All possible degree 2 functions made from P ′ and P̄ ′ are given by linear combinations

of the following functions

A := A M̂
ˆ̄A
η

ˆ̄A ˆ̄BP ′
M̂
P̄ ′

ˆ̄B
, t := t M̂

P̂
ηN̂P̂P ′

M̂
P ′
N̂
, t̄ := t̄

ˆ̄B
ˆ̄A
η
ˆ̄C ˆ̄AP̄ ′

ˆ̄B
P̄ ′

ˆ̄C
, (3.3)

where the parameters A M̂
ˆ̄A
, t M̂

P̂
and t̄

ˆ̄B
ˆ̄A

are functions of XM̂ = (X̃M , XM ). The function

A generates GL(2D) transformations in general, and t and t̄ generate O(D,D) transfor-

mations in each frame. We can, in principle, also consider the degree 2 functions including

Q′ and Q̄′. However, we do not need them in the following discussions. We could also

introduce the degree 2 function made from Ξ
M̂
, but they do not generate the canonical

transformations of the fiber directions.

We discuss the canonical transformations generated by each function in (3.3) in the

following.

3.1.1 Canonical transformation by A and generalized flux

The canonical transformation generated by A is

eδAP ′
M̂

=
∞∑

n=0

(−1)n

(2n)!
(Kn)

M̂
N̂P ′

N̂
+

∞∑

n=0

(−1)n

(2n+ 1)!
(Kn) N̂

M̂
η
N̂P̂

A ˆ̄A
P̂ η

ˆ̄A ˆ̄BP̄ ′
ˆ̄B
, (3.4)

eδAP̄ ′
ˆ̄A
=

∞∑

n=0

(−1)n

(2n)!
(Ln) ˆ̄A

ˆ̄BP̄ ′
ˆ̄B
−

∞∑

n=0

(−1)n

(2n+ 1)!
(Ln) ˆ̄A

ˆ̄BA ˆ̄B
M̂P ′

M̂
, (3.5)

eδAΞ
M̂

= Ξ
M̂

+
1

2
∂
M̂
A ˆ̄A

N̂ (A−1)
ˆ̄B
N̂
P̄ ′ ˆ̄AP̄ ′

ˆ̄B
− 1

2
∂
M̂
A ˆ̄A

N̂ (A−1)
ˆ̄B
N̂
eδA(P̄ ′ ˆ̄A)eδA(P̄ ′

ˆ̄B
), (3.6)

where K and L are matrices defined as K N̂

M̂
= η

M̂P̂
A ˆ̄A

P̂ η
ˆ̄A ˆ̄BA ˆ̄B

N̂ and L ˆ̄A

ˆ̄B =

A ˆ̄A
N̂η

N̂P̂
A ˆ̄C

P̂ η
ˆ̄C ˆ̄B, correspondingly. Since the coordinates P ′

M̂
and P̄ ′

ˆ̄A
correspond to the

basis of the generalized tangent vector and the local flat frame, respectively, we can identify

the matrix A M̂
ˆ̄A

with the generalized vielbein. When we identify A ˆ̄A
M̂ with the generalized

vielbein, K N̂

M̂
is reduced to δ N̂

M̂
and L ˆ̄A

ˆ̄B to δ ˆ̄A

ˆ̄B, respectively.

For the DFT, we do not need the most general GL(2D) transformation of type eδA ,

but it is sufficient to consider the canonical transformation of the subgroup O(2)×O(D,D)
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of GL(2D). We parametrize O(2) by an angle θ and O(D,D) by an element E ˆ̄A
M̂ which is

identified with the vielbein. Then, a canonical transformation generated by A = θE is

eθδEP ′
M̂

= P ′
M̂

cos θ + E ˆ̄A
M̂
P̄ ′

ˆ̄A
sin θ, (3.7)

eθδE P̄ ′
ˆ̄A
= −E ˆ̄A

M̂P ′
M̂

sin θ + P̄ ′
ˆ̄A
cos θ, (3.8)

eθδEΞ
M̂

= Ξ
M̂

− 1

2
Ω
M̂N̂P̂

P ′N̂P ′P̂ sin2 θ + E ˆ̄A
P̂Ω

M̂N̂P̂
P ′N̂ P̄ ′ ˆ̄A sin θ cos θ

+
1

2
Ω
M̂N̂P̂

E ˆ̄A
N̂E P̂

ˆ̄B
P̄ ′ ˆ̄AP̄ ′ ˆ̄B sin2 θ. (3.9)

where Ω
M̂N̂P̂

= E ˆ̄A
M̂
E ˆ̄B

N̂
E ˆ̄C

P̂
Ω ˆ̄A ˆ̄B ˆ̄C

with Ω ˆ̄A ˆ̄B ˆ̄C
= E ˆ̄A

M̂∂
M̂
E ˆ̄B

N̂E ˆ̄CN̂
. In the following, we

consider the transformation with parameter θ = π
2 . In this case, the transformation rules

simplify as

e
π
2
δEP ′

M̂
= E ˆ̄A

M̂
P̄ ′

ˆ̄A
, e

π
2
δE P̄ ′

ˆ̄A
= −E ˆ̄A

M̂P ′
M̂
, (3.10)

e
π
2
δEΞ

M̂
= Ξ

M̂
− 1

2
Ω
M̂N̂P̂

P ′N̂P ′P̂ +
1

2
Ω
M̂N̂P̂

E ˆ̄A
N̂E P̂

ˆ̄B
P̄ ′ ˆ̄AP̄ ′ ˆ̄B. (3.11)

Then, the twisted Hamiltonian function becomes,

e
π
2
δEΘ0 = E M̂

ˆ̄A
Ξ
M̂
P̄ ′ ˆ̄A +

1

3!
F ˆ̄A ˆ̄B ˆ̄C

P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C − 1

2
Ω ˆ̄C ˆ̄A ˆ̄B

E ˆ̄A
P̂
E ˆ̄B

Q̂
P ′P̂P ′Q̂P̄ ′ ˆ̄C (3.12)

where F ˆ̄A ˆ̄B ˆ̄C
and Ω ˆ̄A ˆ̄B ˆ̄C

are the generalized flux and generalized Weitzenböck connection

introduced in (2.19). Thus, we have obtained the generalized flux and the Weitzenböck

connection as a flux generated by a canonical transformation of Hamiltonian Θ0.

We have concluded that the second term in (3.12) is in fact a generalized flux by

comparing with the explicit form of the vielbein given by E M̂
ˆ̄A

in (2.19). This can be

proven also directly using the representation of the generalized flux defined by the derived

bracket as follows:

F ˆ̄A ˆ̄B ˆ̄C
= 〈E ˆ̄C

,LE ˆ̄A
E ˆ̄B

〉 = −{E ˆ̄C
, {{E ˆ̄A

,Θ0}, E ˆ̄B
}}

= −{E P̂
ˆ̄C
P ′
P̂
, {{E M̂

ˆ̄A
P ′
M̂
,Θ0}, E N̂

ˆ̄B
P ′
N̂
}}

= −{e−π
2
δE P̄ ′

ˆ̄C
, {{e−π

2
δE P̄ ′

ˆ̄A
,Θ0}, e−

π
2
δE P̄ ′

ˆ̄B
}}

= −e−
π
2
δE{P̄ ′

ˆ̄C
, {{P̄ ′

ˆ̄A
, e

π
2
δEΘ0}, P̄ ′

ˆ̄B
}}. (3.13)

We regard the generalized vielbein as a set of the generalized vectors E ˆ̄A
= E ˆ̄A

M̂P ′
M̂

on

the pre-QP manifold. The first line is the definition of the generalized flux by the derived

bracket. After applying the canonical transformation, we obtain the last line, where the

Poisson bracket with P̄ ′
ˆ̄A
, P̄ ′

ˆ̄B
, P̄ ′

ˆ̄C
picks up the coefficient of P̄ ′ ˆ̄A, P̄ ′ ˆ̄B, P̄ ′ ˆ̄C in the transformed

Hamiltonian e
π
2
δEΘ0. Thus, we obtain the representation of the generalized flux in pre-

QP-manifold as

F ˆ̄A ˆ̄B ˆ̄C
= −{{{eπ

2
δEΘ0, P̄

′
ˆ̄A
}, P̄ ′

ˆ̄B
}, P̄ ′

ˆ̄C
}. (3.14)

This explains why the generalized flux is generated by a canonical transformation of

the Hamiltonian.
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3.1.2 Canonical transformation by t and t̄

Another possibility of an O(D,D) covariant canonical transformation is given by the

function t in (3.3). The matrix t
M̂

N̂ is an element of the Lie algebra of O(D,D) and

(et)
M̂

N̂ = T
M̂

N̂ is a O(D,D) matrix. The canonical transformations for coordinates P ′
M̂

and Ξ
M̂

are computed as follows.

eδtP ′
M̂

= (T−1)
M̂

N̂P ′
N̂
, (3.15)

eδtΞ
M̂

= Ξ
M̂

+
1

2
(∂

M̂
TT−1)

N̂
P̂P ′N̂P ′

P̂
. (3.16)

Note that ∂
M̂
TT−1 is a Maurer-Cartan form on O(D,D). The above transformation rules

lead to the twisted Hamiltonian function

eδtΘ0 = T
M̂

N̂Ξ
N̂
P ′M̂ +

1

3!
f
M̂N̂P̂

P ′M̂P ′N̂P ′P̂ , (3.17)

where we have defined the flux f
M̂N̂P̂

= 3T[M̂ |
Q̂(∂

Q̂
TT−1)|N̂P̂ ] = 3T[M̂

Q̂∂|Q̂|TN̂
R̂T

P̂ ]R̂.

Finally, we consider the O(D,D) covariant canonical transformation generated by the

function t̄ in (3.3). This transformation leads to the same formula as in (3.15) and (3.16)

with P ′
M̂

replaced by P̄ ′
ˆ̄A
and T by T̄ , respectively:

eδt̄P̄ ′
ˆ̄A
= (T̄−1) ˆ̄A

ˆ̄BP̄ ′
ˆ̄B
, (3.18)

eδt̄Ξ
M̂

= Ξ
M̂

+
1

2
(∂

M̂
T̄ T̄−1) ˆ̄B

ˆ̄C P̄ ′ ˆ̄BP̄ ′
ˆ̄C
. (3.19)

For the Hamiltonian function we obtain,

eδt̄Θ0 = Ξ
M̂
P ′M̂ +

1

2
(∂

M̂
T̄ T̄−1) ˆ̄B

ˆ̄C P̄ ′ ˆ̄BP̄ ′
ˆ̄C
P ′M̂ . (3.20)

These transformations generated by t and t̄ yield the O(D,D) transformations in each

frame.

We comment on the closure condition. The closure condition changes by twists as

explained in section 2.2.1. Since twist functions here do not include Ξ
M̂
, the closure

condition is not changed on a function f(X) of degree 0. AD-dimensional physical subspace

is not changed by a twist, however generalized connections are introduced by twists in the

closure condition of a generalized Lie derivative on generalized vector fields. We discuss a

concrete example in eq. (4.56) for a general case in section 4.

3.2 Generalized Bianchi identity on pre-QP-manifold

In this subsection, we propose a formulation of the Bianchi identity on the pre-QP-manifold

and derive the DFT Bianchi identities satisfied by the generalized flux and Weitzenböck

connection. On a QP-manifold, the Bianchi identity can be obtained from the classical

master equation, {ΘF ,ΘF } = 0 for the Hamiltonian function ΘF twisted by a flux as

discussed in [23]. Especially, the n = 2 QP-manifold can be applied to the generalized

geometry and the H-twisted Hamiltonian defines the Courant bracket with H-flux as a
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derived bracket. There, the classical master equation requires the Bianchi identity dH = 0.

On the other hand, on a pre-QP-manifold the classical master equation is not satisfied, i.e.,

{Θ,Θ} 6= 0. Thus, for this case we need a new formulation of the Bianchi identity.

For this purpose we introduce the most general Hamiltonian function ΘF which in-

cludes all possible fluxes. Since the DFT on pre-QP-manifold can be formulated by us-

ing only P ′ and P̄ ′, we need to consider the degree 3 Hamiltonian function consisting of

(XM̂ ,Ξ
M̂
, P ′M̂ , P̄ ′ ˆ̄C). It can be written by using six arbitrary tensors on M̂ = M̃ × M ,

denoted by ρ̄, ρ,F ,Φ,∆,Ψ:

ΘF=ρ̄ M̂
ˆ̄A
(X)Ξ

M̂
P̄ ′ ˆ̄A+ρ M̂

N̂
(X)Ξ

M̂
P ′N̂ +

1

3!
F ˆ̄A ˆ̄B ˆ̄C

(X)P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C+
1

2
Φ ˆ̄AM̂N̂

(X)P ′M̂P ′N̂ P̄ ′ ˆ̄A

+
1

2
∆ ˆ̄A ˆ̄BM̂

(X)P ′M̂ P̄ ′ ˆ̄AP̄ ′ ˆ̄B+
1

3!
Ψ

M̂N̂P̂
(X)P ′M̂P ′N̂P ′P̂ (3.21)

We have seen above that we can generate some of the fluxes by canonical transformation

of the Hamiltonian Θ0 (2.59) without flux. We show that the Bianchi identities for the

corresponding fluxes can be obtained by using the two Hamiltonians Θ0,ΘF combined

with a canonical transformation as follows: the Bianchi identity on pre-QP-manifold can

be defined by introducing the following degree 4 function B ∈ C∞(M),

B(ΘF ,Θ0, e
δα) = {ΘF ,ΘF } − eδα{Θ0,Θ0}, (3.22)

where α is a canonical transformation function of degree 2.

Then, the condition on the pre-QP-manifold for the Bianchi identity is the vanishing

of the function B, which we call pre-Bianchi identity:

B(ΘF ,Θ0, e
δα) = 0. (3.23)

Since for the QP-manifold case the classical master equation is satisfied, the second term

of B(ΘF ,Θ0, e
δα) vanishes and the pre-Bianchi identity reduces to the classical master

equation {ΘF ,ΘF } = 0, which gives the Bianchi identities for the fluxes introduced in ΘF .

The generalized Bianchi identity of DFT can be given by the pre-Bianchi identity (3.23)

in the following way. Here, we take the Hamiltonian function:

ΘF = E M̂
ˆ̄A

Ξ
M̂
P̄ ′ ˆ̄A +

1

3!
F ˆ̄A ˆ̄B ˆ̄C

P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C +
1

2
Φ ˆ̄AM̂N̂

P ′M̂P ′N̂ P̄ ′ ˆ̄A (3.24)

where fields E ,Φ and F are considered as independent objects. We take Θ0 the standard

Hamiltonian function of DFT introduced in (2.59) and α the transformation function A =
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θE in (3.3). Then, for θ = π
2 we obtain B(ΘF ,Θ0, e

π
2
δE ) as

B(ΘF ,Θ0, e
π
2
δE )

= (2∂
N̂
E M̂

ˆ̄A
E ˆ̄B

N̂ + E ˆ̄CM̂
F ˆ̄C ˆ̄A ˆ̄B

− ΩM̂
P̂ Q̂

E ˆ̄A
P̂E ˆ̄B

Q̂)Ξ
M̂
P̄ ′ ˆ̄AP̄ ′ ˆ̄B

+ (E ˆ̄AM̂Φ ˆ̄AN̂P̂
+ΩM̂

N̂P̂
)Ξ

M̂
P ′N̂P ′P̂

− 1

3

(
E M̂

ˆ̄A
∂
M̂

F ˆ̄B ˆ̄C ˆ̄D
− 3

4
F ˆ̄E ˆ̄A ˆ̄B

F
ˆ̄E
ˆ̄C ˆ̄D

+
3

4
Ω ˆ̄E ˆ̄A ˆ̄B

Ω
ˆ̄E
ˆ̄C ˆ̄D

)
P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C P̄ ′ ˆ̄D

+

(
− E P̂

ˆ̄A
∂
P̂
Φ ˆ̄BM̂N̂

+
1

2
F ˆ̄C ˆ̄A ˆ̄B

Φ
ˆ̄C
M̂N̂

− Φ ˆ̄AM̂Q̂
Φ ˆ̄BN̂

Q̂ +
1

2
Ω
P̂ M̂N̂

ΩP̂
Q̂R̂

E ˆ̄A
Q̂E ˆ̄B

R̂

)
P ′M̂P ′N̂ P̄ ′ ˆ̄AP̄ ′ ˆ̄B

+
1

4
(Φ

R̂M̂N̂
ΦR̂

P̂ Q̂
− Ω

R̂M̂N̂
ΩR̂

P̂ Q̂
)P ′M̂P ′N̂P ′P̂P ′Q̂. (3.25)

Therefore, the pre-Bianchi identity gives the following equations

2∂
N̂
E
[ ˆ̄A

M̂E ˆ̄B]
N̂ + E ˆ̄CM̂

F ˆ̄C ˆ̄A ˆ̄B
− ΩM̂

P̂ Q̂
E ˆ̄A

P̂E ˆ̄B
Q̂ = 0, (3.26)

E ˆ̄AM̂Φ ˆ̄AN̂P̂
+ΩM̂

N̂P̂
= 0, (3.27)

E M̂

[ ˆ̄A
∂
M̂

F ˆ̄B ˆ̄C ˆ̄D]
− 3

4
F ˆ̄E ˆ[Ā ˆ̄B

F
ˆ̄E
ˆ̄C ˆ̄D]

+
3

4
Ω ˆ̄E[ ˆ̄A ˆ̄B

Ω
ˆ̄E
ˆ̄C ˆ̄D]

= 0, (3.28)

−E P̂

[ ˆ̄A
∂
P̂
Φ ˆ̄B]M̂N̂

+
1

2
F ˆ̄C ˆ̄A ˆ̄B

Φ
ˆ̄C
M̂N̂

− Φ
[ ˆ̄A[M̂Q̂

Φ ˆ̄B]N̂ ]
Q̂ +

1

2
Ω
P̂ M̂N̂

ΩP̂
Q̂R̂

E ˆ̄A
Q̂E ˆ̄B

R̂ = 0, (3.29)

Φ
R̂[M̂N̂

ΦR̂

P̂ Q̂]
− Ω

R̂[M̂N̂
ΩR̂

P̂ Q̂]
= 0. (3.30)

By solving (3.26) and (3.27), we obtain local expressions for F ˆ̄A ˆ̄B ˆ̄C
and Φ ˆ̄AN̂P̂

. These

local expressions are consistent with the definition of the generalized flux F ˆ̄A ˆ̄B ˆ̄C
and the

Weitzenböck connection Ω ˆ̄A ˆ̄B ˆ̄C
in (3.12). The third equation (3.28) is nothing but the gen-

eralized Bianchi identity in [8, 27]. See also [29]. The fourth equation (3.29) gives another

generalized Bianchi identity for Φ ˆ̄AM̂N̂
. The equation (3.30) does not give a new condition.

Note that in the above derivation, we have used the ΘF given in (3.24) for simplicity.

However, in principle, we can use the most general Hamiltonian with fluxes given in (3.21).

As a result of the pre-Bianchi identity, we obtain the condition that the redundant fluxes

vanish.

3.3 GSS twist as canonical transformation

In this section, we show that the GSS ansatz (2.21) can be understood as a canonical

transformation. The generalized Lie derivative (2.31) and generalized flux (2.25) after the

compactification will be derived by using the canonical transformations on the pre-QP-

manifold.

For the GSS compactification in the supermanifold formalism, we also split the base

manifold into internal and external spaces. We use the same notation for coordinates

X = (X,Y) as in section 2.1.2, that is X is used for the 2(D − d)-dimensional external

space and Y is used for the 2d-dimensional internal space.
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Furthermore, we introduce 2D-dimensional intermediate coordinates of degree 1 de-

noted by (Q̂Î , P̂
Î
) where Î , Ĵ , K̂, L̂, Ĥ = 1, ..., 2D and we define the corresponding DFT

basis as

Q̂′Î :=
1√
2
(Q̂Î − ηÎ Ĵ P̂

Ĵ
) , P̂ ′

Î
:=

1√
2
(P̂

Î
+ η

Î Ĵ
Q̂Ĵ) (3.31)

in the same way as Q′M̂ and P ′
M̂

introduced before. The constant matrix η
Î Ĵ

and its inverse

ηÎ Ĵ are O(D,D) invariant metrics. The Poisson brackets for Q̂′Î and P̂ ′
Î
are

{Q̂′Î , Q̂′Î} = ηÎ Ĵ , {P̂ ′
Î
, P̂ ′

Ĵ
} = η

Î Ĵ
, {Q̂′Î , P̂ ′

Ĵ
} = 0. (3.32)

The intermediate coordinate P̂ ′
Î
of the supermanifold is associated to the basis of the

generalized vector V̂ (X) of the reduced theory with injection j′:

j′∗ : V̂ (X) = V̂ Î(X)∂
Î
7−→ V̂ Î(X)P̂ ′

Î
, (3.33)

j′∗ : V̂ Î(X)P̂ ′
Î
7−→ V̂ Î(X)∂

Î
. (3.34)

We identify the generalized vectors on the reduced theory V̂ Î(X)∂
Î
with V̂ Î(X)P̂ ′

Î
and again

omit to write the maps j′∗ and j′∗ for simplicity.

Due to the intermediate coordinate P̂ ′
Î
, there are three new types of canonical trans-

formation functions in addition to (3.3).

Â := Â ˆ̄A
ÎηÂB̂P̂ ′

Î
P̄ ′

ˆ̄B
, A := A

Î
M̂ηÎ Ĵ P̂ ′

Ĵ
P ′
M̂
, t̂ := t̂

Î
ĴηÎK̂ P̂ ′

Ĵ
P̂ ′
K̂
. (3.35)

Here, the matrices Â ˆ̄A
Î and A

Î
M̂ are elements of GL(2D) in general, and the matrix t̂

Î
Ĵ

belongs to the Lie algebra of O(D,D). The canonical transformation generated by these

functions are given by the same formulae as in the previous section.

For the GSS compactification, the generalized vielbein of the reduced theory is iden-

tified with the matrix Â ˆ̄A
Î in (3.35) and taken as a function of X and an element of

O(D,D). Then, the canonical transformation with Â = π
2 Ê defines a map from the local

flat coordinate to the intermediate coordinate.

e−
π
2
δ
Ê P̄ ′

ˆ̄A
= Ê ˆ̄A

Î(X)P̂ ′
Î
. (3.36)

The GSS twist (2.21) is produced by the canonical transformation with A = π
2U

where the parameter U
Î
M̂ is an element of O(D,D) which depends only on Y, and the

components of U
Î
M̂ are non-trivial only when both indices lie in the internal directions

(condition (2.24)). Then, the canonical transformation e−
π
2
δU provides the GSS twist of

the generalized vielbein Ê ˆ̄A
Î(X) and the gauge parameter ΛÎ(X) of the reduced theory.

e−
π
2
δU (Ê ˆ̄A

Î(X)P̂ ′
Î
) = Ê ˆ̄A

Î(X)U
Î
M̂ (Y)P ′

M̂
, (3.37)

e−
π
2
δU (Λ̂Î(X)P̂ ′

Î
) = Λ̂Î(X)U

Î
M̂ (Y)P ′

M̂
. (3.38)
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The canonical transformation generated by t̂ in (3.3) is the O(D,D) transformation of

frame P̂
Î
. Using this degrees of freedom, we can define a more general form of GSS twists:

e−
π
2
δU eδt̂(Ê ˆ̄A

Î(X)P̂ ′
Î
) = Ê ˆ̄A

Î(X)
(
T̂
Î
ĴU

Ĵ
M̂ (Y)

)
P ′
M̂
, (3.39)

e−
π
2
δU eδt̂(Λ̂Î(X)P̂ ′

Î
) = Λ̂Î(X)

(
T̂
Î
ĴU

Ĵ
M̂ (Y)

)
P ′
M̂
. (3.40)

When we assume that T̂
Î
Ĵ depends only on Y, we can regard the matrix T̂

Î
ĴU

Ĵ
M̂ (Y)

as GSS twist matrix. In (3.37) and (3.38), the GSS twist is generated by the canonical

transformation e
π
2
δU . On the other hand, when we take U

Î
M̂ = δ

Î
M̂ in (3.39) and (3.40),

the GSS twist is generated by the canonical transformation eδT̂ . In the following, we discuss

the GSS twist by the canonical transformation e
π
2
δU .

The twisted Hamiltonian function is given by the same equation as (3.12) where E ˆ̄A
M̂

is replaced by U
Î
M̂ (Y):

Θ̂GSS = e−
π
2
δUΘ0

= U M̂

Î
Ξ
M̂
P̂ ′Î +

1

3!
f
Î ĴK̂

P̂ ′Î P̂ ′Ĵ P̂ ′K̂ − 1

2
Ω̃
Î ĴK̂

U Ĵ
M̂
U K̂

N̂
P ′M̂P ′N̂ P̂ ′Î . (3.41)

Here, the Weitzenböck connection Ω̃
Î ĴK̂

= U
Î
M̂∂

M̂
U
Ĵ
N̂U

K̂N̂
is made from U

Î
M̂ (Y) and the

resulting flux f
Î ĴK̂

= 3Ω̃[Î ĴK̂] is assumed to be constant by the GSS ansatz.

The generalized Lie derivative on the reduced theory is derived from the parent theory

as

LΛV = −{{Λ,Θ0}, V }. (3.42)

The right hand side is calculated using the property of the canonical transformation as

−{{Λ,Θ0}, V } = −{{e−π
2
δU (Λ̂Î(X)P̂ ′

Î
),Θ0}, e−

π
2
δU (V̂ Ĵ(X)P̂ ′

Ĵ
)}

= −e−
π
2
δU {{Λ̂Î(X)P̂ ′

Î
, Θ̂GSS}, V̂ Ĵ(X)P̂ ′

Ĵ
}

= e−
π
2
δU
(
L
Λ̂
V̂ Î P̂ ′

Î
+ f

ĴK̂
ÎΛ̂Ĵ V̂ K̂ P̂ ′

Î

)

= U M̂

Î

(
L
Λ̂
V̂ Î + f

ĴK̂
ÎΛ̂Ĵ V̂ K̂

)
P ′
M̂

(3.43)

From this we can read off that

L̂
Λ̂
V̂ = −{{Λ̂(X), Θ̂GSS}, V̂ (X)}

=
(
L
Λ̂
V̂ Î + f

ĴK̂
ÎΛ̂Ĵ V̂ K̂

)
P̂ ′
Î
. (3.44)

Thus, this derived bracket realizes the generalized Lie derivative of GDFT (2.31).

The closure condition for the derived bracket is provided by the weak master equa-

tion (2.47) for generalized vectors of the reduced theory. The master equation for the

twisted Hamiltonian function Θ̂GSS is

{Θ̂GSS, Θ̂GSS} = ηM̂N̂Ξ
M̂
Ξ
N̂
+ ηM̂N̂∂

N̂
U
Î
P̂U

ĴP̂
Ξ
M̂
P̂ ′Î P̂ ′Ĵ +

3

4
f
ĤÎĴ

f Ĥ
K̂L̂

P̂ ′Î P̂ ′Ĵ P̂ ′K̂ P̂ ′L̂

−Ω̃
Î ĴK̂

U ÎM̂U Ĵ
N̂
U K̂

P̂
Ξ
M̂
P ′N̂P ′P̂
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+

(
∂
P̂
Ω̃
ĴK̂L̂

− 1

2
f
Î ĴĤ

Ω̃Ĥ
K̂L̂

)
U P̂

Î
U K̂

M̂
U L̂

N̂
P ′M̂P ′N̂ P̂ ′Î P̂ ′Ĵ

−Ω̃
ÎK̂L̂

Ω̃
ĴĤ

L̂U K̂
M̂
U Ĥ

N̂
P ′M̂P ′N̂ P̂ ′Î P̂ ′Ĵ

+
1

4
ηŜR̂∂RUÎN̂

U Î
M̂
∂
Ŝ
U
ĴQ̂

U Ĵ
P̂
P ′M̂P ′N̂P ′P̂P ′Q̂. (3.45)

Then, the weak master equation for the generalized vectors V̂1(X), V̂2(X), V̂3(X) of the

reduced theory

{{{{Θ̂GSS, Θ̂GSS}, V̂1}, V̂2}, V̂3} = 0 (3.46)

leads the following conditions for the generalized vectors and structure constants:

∂ Î V̂ Ĵ
1 V̂2Ĵ∂Î V̂

K̂
3 − 2∂ Î V̂

[Ĵ
1 ∂

Î
V̂

K̂]
2 V̂3Ĵ = 0, (3.47)

f
Ĥ[Î Ĵf

Ĥ
K̂L̂] = 0. (3.48)

Since the generalized vectors depend only on the external space coordinate X, the first

condition is just the closure constraint for the external space. The second condition is

satisfied by the Jacobi identity for the constant flux f
Î ĴK̂

.

By the canonical transformation given by the dynamical generalized vielbein Ê, the

Hamiltonian function Θ̂GSS is transformed as

e
π
2
δ
Ê Θ̂GSS = Ê ˆ̄A

ÎU M̂

Î
Ξ
M̂
P̄ ′ ˆ̄A +

1

3!
(F̂ ˆ̄A ˆ̄B ˆ̄C

+ f
Î ĴK̂

Ê ˆ̄A
ÎÊ ˆ̄B

Ĵ Ê ˆ̄C
K̂)P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C (3.49)

− 1

2
Ω̂ ˆ̄C ˆ̄A ˆ̄B

Ê
ˆ̄A
Î
Ê

ˆ̄B
Ĵ
P̂ ′Î P̂ ′Ĵ P̄ ′ ˆ̄C − 1

2
Ω̃
Î ĴK̂

U Ĵ
M̂
U K̂

N̂
Ê ˆ̄A

ÎP ′M̂P ′N̂ P̄ ′ ˆ̄A.

where F̂ ˆ̄A ˆ̄B ˆ̄C
and f

Î ĴK̂
are defined in (2.27) and (2.29), respectively.

The dynamical field in the reduced effective theory is in Ê ˆ̄A
Î . Therefore, the generalized

flux of the theory after the GSS compactification is calculated in superspace formalism by

applying the canonical transformation as:

F ˆ̄A ˆ̄B ˆ̄C
= 〈E ˆ̄C

,LE ˆ̄A
E ˆ̄B

〉 = −{E ˆ̄C
, {{E ˆ̄A

,Θ0}, E ˆ̄B
}}

= −{e−π
2
δU e−

π
2
δ
Ê P̄ ′

ˆ̄C
, {{e−π

2
δU e−

π
2
δ
Ê P̄ ′

ˆ̄A
,Θ0}, e−

π
2
δU e−

π
2
δ
Ê P̄ ′

ˆ̄B
}}

= −e−
π
2
δU e−

π
2
δ
Ê{P̄ ′

ˆ̄C
, {{P̄ ′

ˆ̄A
, e

π
2
δ
Ê Θ̂GSS}, P̄ ′

ˆ̄B
}}

= F̂ ˆ̄A ˆ̄B ˆ̄C
+ f

M̂N̂P̂
Ê ˆ̄A

M̂ Ê ˆ̄B
N̂ Ê ˆ̄C

P̂ . (3.50)

Thus, we can obtain the representation of the generalized flux as

F ˆ̄A ˆ̄B ˆ̄C
= −{{{eπ

2
δ
Ê Θ̂GSS, P̄

′
ˆ̄A
}, P̄ ′

ˆ̄B
}, P̄ ′

ˆ̄C
} (3.51)

This shows that the GSS twisted flux appears in the twisted Hamiltonian function in the

same way as in (3.14).

We summarize the correspondence between the DFT and the GSS compactified DFT

objects on the pre-QP-manifolds in table 1. The Q-structure Θ0 is replaced by Θ̂GSS

in the GSS compactified DFT. Thus, the deformation of the background of DFT on the

pre-QP-manifold is realized by the deformation of the Hamiltonian function.
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DFT GSS

generalized vector V M̂ (X)P ′
M̂

V̂ Î(X)P̂ ′
Î

Hamiltonian Θ0 Θ̂GSS

generalized
Lie derivative LΛV =−{{Λ,Θ0},V } L̂

Λ̂
V̂ =−{{Λ̂,Θ̂GSS}, V̂ }

weak
master equation {{{{Θ0,Θ0},V1},V2},V3}=0 {{{{Θ̂GSS,Θ̂GSS}, V̂1}, V̂2}, V̂3}=0

generalized flux −{{{eπ
2
δEΘ0, P̄

′
ˆ̄A
}, P̄ ′

ˆ̄B
}, P̄ ′

ˆ̄C
} −{{{eπ

2
δ
Ê Θ̂GSS, P̄

′
ˆ̄A
}, P̄ ′

ˆ̄B
}, P̄ ′

ˆ̄C
}

Table 1. Correspondence of the objects in standard DFT and in GSS twisted case on the pre-QP-

manifold.

4 Covariantized pre-QP-manifold and DFT on group manifold

We have seen in previous section that in GSS compactification, the information of the

twisted background is confined to the Hamiltonian function Θ̂GSS in (3.41). The generalized

Lie derivative and flux are then obtained simply by replacing the Hamiltonian Θ0 of original

DFT with the Hamiltonian Θ̂GSS twisted by the GSS ansatz. We consider here to replace

the GSS background with a general non-trivial background. Therefore, we use again the

intermediateO(D,D) frame as in GSS case, which is denoted by the indices Î , Ĵ · · · together
with the general tangent frame and the flat local frame with indices M̂, N̂ · · · and ˆ̄A, ˆ̄B, · · · ,
respectively. For notations, see appendix A. Then, we take the ansatz analogous to (2.21)

for the total vielbein as

E ˆ̄A
M̂ = Ê ˆ̄A

ÎE
Î
M̂ , (4.1)

where E
Î
M̂ is the background vielbein and Ê ˆ̄A

Î is the fluctuation vielbein. The geometry

of the background is contained in the background vielbein and the dynamical fields are in

the fluctuation vielbein.

Here, we formulate the double geometry on a non-trivial background with pre-QP-

manifold. As we have seen in the previous sections, the structure of the generalized Lie

derivative and the consistency conditions are characterized by the pre-QP-structure. For

this purpose, we introduce the covariantized pre-QP-manifold and analyze the double ge-

ometry of the background. The background vielbein is an element of GL(2D) and the

metric η
M̂N̂

is not constant in general. As in the standard geometry, we introduce the

generalized affine connection and the covariant derivative. The generalized Lie derivative

and the fluxes are also considered in the background geometry. Then, the fluctuation is

introduced on this background. We apply this formulation to DFT on the group manifold

proposed in [30].

4.1 GL(2D) covariant formulation of pre-QP-manifold

First, let us consider the pre-QP-manifold on an arbitrary background. For this purpose, we

introduce the background covariant supercoordinate conjugate to the coordinate of the base

manifold. The new Hamiltonian function is given in terms of these covariant coordinates,

realizing the covariant derivative of generalized vectors analogously to the GSS case. The
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weak master equation for the Hamiltonian function provides several conditions for closure

of the covariant generalized Lie derivative. We also discuss the canonical transformations

in covariant form and derive the pre-Bianchi identitiy.

4.1.1 Covariant derivative on pre-QP-manifold

Let M̃ ×M be a 2D-dimensional manifold3 with local coordinates XM̂ = (x̃M , xM ) where

M̂, N̂ , · · · are GL(2D) indices. We consider the graded manifoldM = T ∗[2](T [1](M̃×M)⊕
V [1]⊕ V̄ [1]) with coordinates (XM̂ , QM̂ , P

M̂
,Ξ

M̂
) for T ∗[2]T [1](M̃ ×M) as in section 2.2.2

which is associated with the base manifold and the generalized tangent frame. We also

introduce the graded coordinates for the vector space as, (Q̂Î , P̂
Î
) for T ∗[2]V [1] associated

with the intermediate frame in the GSS case, and (Q̄
ˆ̄A, P̄ ˆ̄A

) for T ∗[2]V̄ [1] associated with

the local flat frame. The graded Poisson bracket is defined as

{XM̂ ,Ξ
N̂
} = −{Ξ

N̂
, XM̂} = δM̂

N̂
, (4.2)

{QM̂ , P
N̂
} = {P

N̂
, QM̂} = δM̂

N̂
, (4.3)

{Q̂Î , P̂
Ĵ
} = {P̂

Ĵ
, Q̂Î} = δÎ

Ĵ
, (4.4)

{Q̄ ˆ̄A, P̄ ˆ̄B
} = {P̄ ˆ̄B

, Q̄
ˆ̄A} = δ

ˆ̄A
ˆ̄B
. (4.5)

In order to discuss the geometric structures of the curved target space M̂ = M̃ ×M

using the P-manifold M, we introduce an injection map j : M̂×TM̂×TM̂×T ∗M̂ → M as

j : (XM̂ , ∂
M̂
, ∂

M̂
, dXM̂ ) 7−→ (XM̂ ,Ξ

M̂
, P

M̂
, QM̂ ). (4.6)

That is, the 2D-dimensional vector field V M̂∂
M̂

and 1-form field α
M̂
dXM̂ on M̂ are

identified with V M̂P
M̂

and α
M̂
QM̂ by the push forward j∗ and pullback j∗, respectively:

j∗ : V
M̂∂

M̂
7−→ V M̂P

M̂
, j∗ : αM̂

dXM̂ 7−→ α
M̂
QM̂ , (4.7)

j∗ : V M̂P
M̂

7−→ V M̂∂
M̂
, j∗ : αM̂

QM̂ 7−→ α
M̂
dXM̂ . (4.8)

We also use the coordinates P̂
Î
and Q̂Î corresponding to the basis of the intermediate

frame and its dual, respectively. Note that in this subsection, we are not using the

DFT basis. Since the coordinate Ξ
M̂

is conjugate to XM̂ , the Poisson bracket {−,Ξ
M̂
}

corresponds to the partial derivative ∂
M̂

on M̂ .

In order to introduce the covariant derivative ∇
M̂

on the target space M̂ by the

Poisson bracket, we define the covariantized coordinate Ξ∇
M̂

on the P-manifold with affine

connection Γ and spin connection W as

Ξ∇
M̂

:= Ξ
M̂

+ Γ
M̂N̂

P̂QN̂P
P̂
+W

M̂Î
ĴQ̂Î P̂

Ĵ
. (4.9)

3The formulation in this paper is applicable to general 2D-dimensional base manifold without decom-

position into M̃ ×M .
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With this definition, the Poisson bracket of all coordinates with Ξ∇
M̂

are

{XM̂ ,Ξ∇
N̂
} = δM̂

N̂
, (4.10)

{P
M̂
,Ξ∇

N̂
} = Γ

N̂M̂
P̂P

P̂
, (4.11)

{QM̂ ,Ξ∇
N̂
} = −Γ

N̂P̂
M̂QP̂ , (4.12)

{P̂
Î
,Ξ∇

N̂
} = W

N̂ Î
Ĵ P̂

Ĵ
, (4.13)

{Q̂Î ,Ξ∇
N̂
} = −W

N̂ ˆ̄J

ˆ̄IQ̂
ˆ̄J , (4.14)

{Ξ∇
M̂
,Ξ∇

N̂
} = −1

2
R

M̂N̂Ŝ
R̂QŜP

R̂
− 1

2
R̄

M̂N̂ Î
ĴQ̂Î P̂

Ĵ
. (4.15)

Here, R
M̂N̂Ŝ

R̂ and R̄
M̂N̂ Î

Ĵ are curvature tensor defined by Γ
M̂N̂

P̂ and W
M̂Î

Ĵ , respectively:

R
M̂N̂Ŝ

R̂ = 2∂[M̂Γ
N̂ ]Ŝ

R̂ + 2Γ[M̂ |P̂ |
R̂Γ

N̂ ]Ŝ
P̂ , (4.16)

R̄
M̂N̂ Î

Ĵ = 2∂[M̂W
N̂ ]Î

Ĵ + 2W[M̂ |K̂|
ĴW

N̂ ]Î
K̂ . (4.17)

The Poisson bracket {−,Ξ∇
M̂
} with the vector fields V M̂P

M̂
, V̂ Î P̂

Î
and 1-forms

α
M̂
QM̂ , α̂

Î
Q̂Î on the P-manifold realizes their covariant derivative on M̂ :

{V M̂P
M̂
,Ξ∇

N̂
} = ∇

N̂
V M̂P

M̂
, {α

M̂
QM̂ ,Ξ∇

N̂
} = ∇

N̂
α
M̂
QM̂ , (4.18)

{V̂ Î P̂
Î
,Ξ∇

N̂
} = ∇

N̂
V̂ Î P̂

Î
, {α̂

Î
Q̂Î ,Ξ∇

N̂
} = ∇

N̂
α̂
Î
Q̂Î , (4.19)

where the covariant derivative of a tensor V
Î
M̂ is defined as

∇
P̂
V M̂

Î
= ∂

P̂
V
Î
M̂ + Γ

P̂ N̂
M̂V N̂

Î
−W

P̂ Î
ĴV M̂

Ĵ
. (4.20)

We introduce the background vielbein E
Î
M̂ on M̂ by the canonical transformation as

in the previous section. Let us denote this canonical transformation by φ. It is defined by

φ(P
M̂
) = E Î

M̂
P̂
Î
, φ(P̂

Î
) = E

Î
M̂P

M̂
, (4.21)

φ(QM̂ ) = E
Î
M̂ Q̂Î , φ(Q̂Î) = E Î

M̂
QM̂ . (4.22)

where E Î
M̂

is the inverse vielbein, E Î
M̂
E

Ĵ
M̂ = δIJ . Furthermore, we assume that φ acts

trivially on the base manifold coordinate as φ(XM̂ ) = XM̂ . We also require the condition

of Poisson map on the dual coordinate Ξ
N̂
. Especially,

φ({XM̂ ,Ξ
N̂
}) = {φ(XM̂ ), φ(Ξ

N̂
)} = δM̂

N̂
,

φ({ • ,Ξ
N̂
}) = {φ( • ), φ(Ξ

N̂
)} = 0, (4.23)

should hold, where • represents all other coordinates. Then, the consistent canonical

transformation of the dual coordinate Ξ
M̂

is

φ(Ξ
M̂
) = Ξ

M̂
− Ω

M̂N̂
P̂QN̂P

P̂
+Ω

M̂N̂
P̂E

Î
N̂EĴ

P̂
Q̂Î P̂

Ĵ
. (4.24)
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Here Ω
M̂N̂

P̂ is the Weitzenböck connection of the background defined by

Ω
M̂N̂

P̂ = −∂
M̂
E Î

N̂
E

Î
P̂ . (4.25)

The transformation rule (4.24) is obtained straightforwardly: the canonical transfor-

mation of the dual coordinate Ξ
M̂

should be degree preserving. It can be expanded in

general as

φ(Ξ
M̂
) = A

M̂
N̂Ξ

N̂
+

1

2
B

M̂
N̂P̂P

N̂
P
P̂
+ C

M̂N̂
P̂QN̂P

P̂
+

1

2
D

M̂N̂P̂
QN̂QP̂

+
1

2
B̂

M̂
ÎĴ P̂

Î
P̂
Ĵ
+ Ĉ

M̂Î
ĴQ̂Î P̂

Ĵ
+

1

2
D̂

M̂ÎĴ
Q̂ÎQ̂Ĵ , (4.26)

where the coefficients are functions of XM̂ . Then, the condition of the canonical transfor-

mation (4.23) determines the coefficients.

The covariantized coordinate Ξ∇ should be consistent with the canonical transforma-

tion φ. Using these transformation rules, the canonical transformation φ acts on Ξ∇
M̂

as

φ(Ξ∇
M̂
) = Ξ

M̂
+(W

M̂Î
ĴE Î

N̂
E

Ĵ
P̂ −Ω

M̂N̂
P̂ )QN̂P

P̂
+(Ω

M̂N̂
P̂ +Γ

M̂N̂
P̂ )E

Î
N̂EĴ

P̂
Q̂Î P̂

Ĵ
. (4.27)

If we require the vielbein postulate,

∇
M̂
E

Î
N̂ = 0, (4.28)

that is,

W
M̂Î

ĴE Î
N̂
E

Ĵ
P̂ − Ω

M̂N̂
P̂ − Γ

M̂N̂
P̂ = 0. (4.29)

then, this leads to the invariance of the covariant coordinate Ξ∇
M̂

under the canonical

transformation φ as

φ(Ξ∇
M̂
) = Ξ∇

M̂
. (4.30)

Consequently, the Poisson brackets (4.10)–(4.15) are invariant under the canonical trans-

formation φ

4.1.2 O(D,D) structure and DFT basis

In order to apply the discussion above to DFT, we introduce the O(D,D) structure by

defining the standard O(D,D) metric ηÎ Ĵ on the intermediate frame. The background

vielbein E
Î
M̂ and the metric ηM̂N̂ on the generalized tangent frame of the background are

related as

ηM̂N̂ = E
Î
M̂ηÎ ĴE

Ĵ
N̂ , (4.31)

where ηM̂N̂ is not constant in general. We require compatibility with the O(D,D) metric

in the intermediate frame:

∇
M̂
η
Î Ĵ

= 0. (4.32)

The equation (4.32) gives the following condition on the spin connection:

W
M̂Ĵ

L̂η
L̂K̂

+W
M̂K̂

L̂η
ĴL̂

= W
M̂ĴK̂

+W
M̂K̂Ĵ

= 0. (4.33)
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In the present formulation, we also require the vielbein postulate (4.28), then the

covariant derivative of η
M̂N̂

in (4.31) automatically vanishes as a consequence of (4.32),

∇
M̂
η
N̂P̂

= ∂
M̂
η
N̂P̂

− Γ Q̂

M̂N̂
η
Q̂P̂

− Γ Q̂

M̂P̂
η
N̂Q̂

= 0. (4.34)

Now we are ready to introduce the DFT basis on the covariantized pre-QP-manifold

as in the section 2.2.2. Explicitly, we have

P ′
M̂

:=
1√
2
(P

M̂
+ η

M̂N̂
QN̂ ), Q′M̂ :=

1√
2
(QM̂ − ηM̂N̂P

N̂
), (4.35)

P̂ ′
Î
:=

1√
2
(P̂

Î
+ η

Î Ĵ
Q̂Ĵ), Q̂′Î :=

1√
2
(Q̂Î − ηÎ Ĵ P̂

Ĵ
), (4.36)

P̄ ′
ˆ̄A
:=

1√
2
(P̄ ˆ̄A

+ η ˆ̄A ˆ̄B
Q̄

ˆ̄B), Q̄′ ˆ̄A :=
1√
2
(Q̄

ˆ̄A − η
ˆ̄A ˆ̄BP̄ ˆ̄B

). (4.37)

where η
ˆ̄A ˆ̄B is the O(D,D) metric on the local flat frame.

The Poisson brackets among the DFT basis coordinates P ′
M̂
, P̂ ′

Î
, Q′M̂ , Q̂′Î are given by

{P ′
M̂
, P ′

N̂
} = η

M̂N̂
, {Q′M̂ , Q′N̂} = ηM̂N̂ ,

{P̂ ′
Î
, P̂ ′

Ĵ
} = η

ÎĴ
, {Q̂′Î , Q̂′Ĵ} = ηÎ Ĵ ,

{P̄ ′
ˆ̄A
, P̄ ′

ˆ̄B
} = η ˆ̄A ˆ̄B

, {Q̄′ ˆ̄A, Q̄′ ˆ̄B} = η
ˆ̄A ˆ̄B, (4.38)

and with the covariant coordinate Ξ∇
M̂

{P ′
M̂
,Ξ∇

N̂
} = Γ P̂

N̂M̂
P ′
P̂
, (4.39)

{Q′M̂ ,Ξ∇
N̂
} = −Γ M̂

N̂Q̂
Q′Q̂, (4.40)

{P̂ ′
Î
,Ξ∇

N̂
} = W

N̂ Î
Ĵ P̂ ′

Ĵ
, (4.41)

{Q̂′Î ,Ξ∇
N̂
} = −W

N̂Ĵ
ÎQ̂′Ĵ , (4.42)

{Ξ∇
M̂
,Ξ∇

N̂
} = −1

2
R

M̂N̂Ŝ
R̂(Q′Ŝ + ηŜT̂P ′

T̂
)(P ′

R̂
− η

R̂Û
Q′Û )

− 1

2
R̄

M̂N̂ Î
Ĵ(Q̂′Î + ηÎK̂ P̂ ′

K̂
)(P̂ ′

Ĵ
− η

ĴL̂
Q̂′L̂). (4.43)

The canonical transformation φ acts on the DFT basis Q′M̂ , Q̂′Î , P ′
M̂

and P̂ ′
Î
as,

φ(Q′M̂ ) = E
Î
M̂ Q̂′Î , φ(Q̂′Î) = E Î

M̂
Q′M̂ , (4.44)

φ(P ′
M̂
) = E Î

M̂
P̂ ′
Î
, φ(P̂ ′

Î
) = E

Î
M̂P ′

M̂
. (4.45)

We see that the Poisson brackets (4.39)–(4.43) are of the same form as (4.11)–(4.15)

and thus, the Poisson bracket of the generalized vectors in DFT basis with Ξ∇
M̂

realizes the

covariant derivative:

{V M̂P ′
M̂
,Ξ∇

N̂
} = ∇

N̂
V M̂P ′

M̂
, {V̂ Î P̂ ′

Î
,Ξ∇

N̂
} = ∇

N̂
V̂ Î P̂ ′

Î
. (4.46)
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4.1.3 Pre-QP-structure and gauge algebra

Since the covariant coordinate Ξ∇
M̂

realizes the background covariant derivative, we can

formulate the pre-Q-sturcture on the covariantized pre-QP-manifold. The pre-Q-structure

written with Ξ∇
M̂

realizes the generalized Lie derivatives in background covariant form. The

simplest Hamiltonian function is

Θ∇
0 = ηM̂N̂Ξ∇

M̂
P ′
N̂
. (4.47)

The derived bracket from this Hamiltonian function defines the covariant generalized

Lie derivative L∇
Λ with generalized vector Λ = ΛM̂ (X)P ′

M̂
on a generalized vector

V = V M̂ (X)P ′
M̂

on the background

L∇
ΛV ≡ −{{Λ,Θ∇

0 }, V } , (4.48)

where the covariant generalized Lie derivative is given by replacing the derivative in the

generalized Lie derivative by ∇
M̂
:

L∇
ΛV

M̂ = ΛN̂∇
N̂
V M̂ + (∇M̂Λ

N̂
−∇

N̂
ΛM̂ )V N̂ . (4.49)

We define the canonically transformed Hamiltonian function using φ introduced in the

previous subsection:

Θ̂∇
0 = φ(Θ∇

0 ) = ηÎ ĴE
Î
M̂Ξ∇

M̂
P̂ ′
Ĵ
. (4.50)

Since the canonical transformation φ maps the general tangent frame to intermediate frame

as in (4.45), the transformed Hamiltonian Θ̂∇
0 realizes the covariant generalized Lie deriva-

tive for generalized vectors Λ̂ = Λ̂Î(X)P̂ ′
Î
and V̂ = V̂ Î(X)P̂ ′

Î
in the intermediate O(D,D)

basis as the derived bracket:

L∇
Λ̂
V̂ ≡ −{{Λ̂, Θ̂∇

0 }, V̂ } . (4.51)

where

L∇
Λ̂
V̂ Î = Λ̂Ĵ∇

Ĵ
V Î + (∇ÎΛ̂

Ĵ
−∇

Ĵ
Λ̂Î)V̂ Ĵ . (4.52)

Here, we want to make some remarks. First, note that the vielbein postulate guarantees

the equivalence between the generalized Lie derivatives (4.49) and (4.52) defined on the

two different frames. Second, once the covariant generalized Lie derivative is defined, we

can formulate the generalized torsion in DFT on the pre-QP-manifold. The generalized

torsion of the background is then

T (V1, V2) = {{V1,Θ
∇
0 −Θ0}, V2} = T

P̂ N̂
M̂V P̂

1 V N̂
2 P ′

M̂
(4.53)

where

T
P̂ N̂

M̂ = Γ
P̂ N̂

M̂ − Γ
N̂P̂

M̂ + ΓM̂
P̂ N̂

(4.54)

Finally, note that we can consider other possibilities of Hamiltonian functions written with

Q′ and Q̂′, but in our discussion here for the DFT case it is sufficient to consider the

generalized vectors in the P ′ and P̂ ′ sector of the DFT basis.
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The closure condition of the generalized Lie derivative (4.52) is the weak master equa-

tion (2.47) for generalized vectors:

{{{{Θ̂∇
0 , Θ̂

∇
0 }, V̂1}, V̂2}, V̂3} = 0. (4.55)

The above weak master equation leads to the following condition for the spin connection

W
M̂Î

Ĵ and arbitrary generalized vectors V̂1, V̂2 and V̂3,

− 2(∂M̂ V̂ Ĵ
1 V̂2Ĵ∂M̂ V̂ Î

3 − 2∂M̂ V̂
[Ĵ
1 ∂

M̂
V̂

Î]
2 V̂3Ĵ)

− 2ηÎĤ
(
2Ω[ĤĴ ]K̂ − 3W[ĤĴK̂]

)
EK̂M̂

[
∂
M̂
V̂ L̂
1 V̂2L̂V̂

Ĵ
3 − ∂

M̂
V̂ L̂
1 V̂ Ĵ

2 V̂3L̂ + V̂ Ĵ
1 ∂

M̂
V̂ L̂
2 V̂3L̂

]

+ 2
(
2Ω[L̂Ĵ ]K̂ − 3W[L̂ĴK̂]

)
EK̂M̂

[
∂
M̂
V̂ Î
1 V̂

L̂
2 V̂ Ĵ

3 − V̂ L̂
1 ∂

M̂
V̂ Î
2 V̂

Ĵ
3 + V̂ L̂

1 V̂ Ĵ
2 ∂

M̂
V̂ Î
3

]

− 3!V̂ Î
1 V̂

Ĵ
2 V̂ K̂

3

[
2R[Î ĴK̂L̂] −W

Ĥ[Î ĴW
Ĥ

K̂L̂] − 2(2W[Î Ĵ
Ĥ − 2Ω[Î Ĵ

Ĥ)W
ĤK̂L̂]

]

= 0. (4.56)

We discuss this condition order by order in the differential on generalized vectors. Then,

the following conditions are sufficient to satisfy (4.56).

∂M̂ V̂ Ĵ
1 V̂2Ĵ∂M̂ V̂ Î

3 − 2∂M̂ V̂
[Ĵ
1 ∂

M̂
V̂

Î]
2 V̂3Ĵ = 0, (4.57)

(−2Ω[Î Ĵ ]K̂ + 3W[Î ĴK̂])E
K̂M̂∂

M̂
V̂ L̂
1 = 0, (4.58)

2R[Î ĴK̂L̂] −W
Ĥ[Î ĴW

Ĥ
K̂L̂] − 2(2W[Î Ĵ

Ĥ − 2Ω[Î Ĵ
Ĥ)W

ĤK̂L̂] = 0, (4.59)

The first condition is the closure condition of the generalized Lie derivative and it is satisfied

with the section condition. The second and third condition can be solved for various cases.

Here we just show that the solutions for ordinary DFT and DFTWZW are included.

1) The second condition (4.58) is satisfied by taking,

3W[Î ĴK̂] = 2Ω[Î Ĵ ]K̂ . (4.60)

Then, the third condition becomes

R[Î ĴK̂L̂] +W Ĥ
[Î ĴW|Ĥ|K̂L̂] = 0. (4.61)

This choice (4.60) corresponds to DFTWZW [31, 32], by taking 3W[Î ĴK̂] = F
Î ĴK̂

.

Then, the condition (4.61) is satisfied by the Jacobi identity for the structure constant.

2) The second condition (4.58) can be satisfied by

W
Î[ĴK̂] = Ω

Î[ĴK̂], (4.62)

with the section condition for E
Î
M̂ and V̂1,

Ω
K̂ÎĴ

EK̂M̂∂
M̂
V̂ N̂
1 = E

ĴQ̂
ηP̂ M̂∂

P̂
E

Î
Q̂∂

M̂
V̂ N̂
1 = 0. (4.63)

With this choice of spin connection (4.62), the Riemann tensor vanishes: R
Î ĴK̂L̂

= 0,

so the third condition becomes

ηM̂N̂∂
M̂
E[Î

P̂∂
N̂
E

Ĵ
Q̂E

K̂P̂
E

L̂]Q̂ = 0. (4.64)

With the section condition on the background vielbein, then (4.64) is satisfied.

– 27 –



J
H
E
P
0
4
(
2
0
1
9
)
0
0
2

4.1.4 Canonical transformations and generalized flux

In section 3, we discussed the canonical transformations of the Hamiltonian function and

introduced the generalized fluxes. With a similar discussion, we can consider the canonical

transformation on the pre-QP-manifold on general backgrounds. A list of the canonical

transformations intertwining between the various frames is given in appendix A.

The canonical transformation is generated by degree 2 functions. The possible canon-

ical transformation functions made from P ′, P̂ ′ and P̄ ′ are

A := AÎM̂P ′
M̂
P̂ ′
Î
, Â := Â

ˆ̄AĴ P̂ ′
Ĵ
P̄ ′

ˆ̄A
, A := A ˆ̄AM̂P ′

M̂
P̄ ′

ˆ̄A
, (4.65)

u := u
P̂
M̂ηN̂P̂P ′

M̂
P ′
N̂
, û := û

Î
ĴηK̂Î P̂ ′

Ĵ
P̂ ′
K̂
, ū := ū ˆ̄A

ˆ̄Bη
ˆ̄C ˆ̄AP̄ ′

ˆ̄B
P̄ ′

ˆ̄C
. (4.66)

Note that AÎM̂ , Â
ˆ̄AĴ and A ˆ̄AM̂ are GL(2D) matrices and have no correspondence to viel-

beine E
Î
M̂ , Ê ˆ̄A

Î and E ˆ̄A
M̂ in general. The transformation rules for P ′, P̂ ′ and Ξ∇

M̂
are,

eδAP ′
M̂

=
∞∑

n=0

(−1)n

(2n)!
(κn)

M̂
N̂P ′

N̂
+

∞∑

n=0

(−1)n

(2n+ 1)!
(κn)

M̂
N̂η

N̂P̂
AÎP̂ P̂ ′

Î
,

eδAP̂ ′
Î
=

∞∑

n=0

(−1)n

(2n)!
(λn)

Î
Ĵ P̂ ′

Ĵ
−

∞∑

n=0

(−1)n

(2n+ 1)!
(λn)

Î
ĴA

Ĵ
M̂P ′

M̂
,

eδAΞ∇
M̂

= Ξ∇
M̂

− 1

2
∇

M̂
AK̂N̂ (A−1)

N̂
Ĵ P̂ ′

Ĵ
P̂ ′
K̂
+

1

2
∇

M̂
AK̂N̂ (A−1)

N̂
ĴeδA(P̂ ′

Ĵ
)eδA(P̂ ′

K̂
),

where the matrices κ and λ are defined as κ
M̂

N̂ = A
ÎM̂

AĴN̂ and λ
Î
Ĵ = A

ÎN̂
AĴN̂ , respec-

tively. By identifying A with the vielbein, A
Î
M̂ = E

Î
M̂ , κ and λ become δ

M̂
N̂ and δ

Î
Ĵ ,

respectively. In this case, the canonical transformation for A = θE are written as

eθδEP ′
M̂

= P ′
M̂

cos θ + E Î
M̂
P̂ ′
Î
sin θ, (4.67)

eθδE P̂ ′
Î
= −E

Î
M̂P ′

M̂
sin θ + P̂ ′

Î
cos θ. (4.68)

The coordinate Ξ∇
M̂

is invariant under the canonical transformation.

eθδEΞ∇
M̂

= Ξ∇
M̂
. (4.69)

Then, the canonical transformation eθδE of the Hamiltonian function Θ̂∇
0 is

eθδE Θ̂∇
0 = ηÎ ĴE

Î
M̂Ξ∇

M̂
(−E

Ĵ
N̂P ′

N̂
sin θ + P̂ ′

Ĵ
cos θ). (4.70)

Especially, for θ = −π
2 we obtain

e−
π
2
δE Θ̂∇

0 = Θ∇
0 . (4.71)

Applying the similar discussion to Â, we can introduce the fluctuation vielbein Ê ˆ̄A
Î .

When we take Â ˆ̄A
Î = π

2 Ê ˆ̄A
Î , we obtain the canonical transformation rules as follows.

e
π
2
δ
Ê P̂ ′

Î
= Ê

ˆ̄B
Î
P̄ ′

ˆ̄B
, (4.72)

e
π
2
δ
Ê P̄ ′

ˆ̄A
= −Ê ˆ̄A

Î P̂ ′
Î
, (4.73)

e
π
2
δ
ÊΞ∇

M̂
= Ξ

M̂
− 1

2
E ˆ̄C

M̂
Ω̂∇

ˆ̄C ˆ̄A ˆ̄B
Ê

ˆ̄A
Î
Ê

ˆ̄B
Ĵ
P̂ ′Î P̂ ′Ĵ +

1

2
E ˆ̄C

M̂
Ω̂∇

ˆ̄C ˆ̄A ˆ̄B
P̄ ′ ˆ̄AP̄ ′ ˆ̄B. (4.74)
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Here we have defined a tensor Ω̂∇
ˆ̄A ˆ̄B ˆ̄C

:= E ˆ̄A
M̂∇

M̂
Ê ˆ̄B

ÎÊ ˆ̄CÎ
. This tensor is just the covari-

antized Weitzenböck connection Ω̂ ˆ̄A ˆ̄B ˆ̄C
, which can be decomposed as

Ω̂∇
ˆ̄A ˆ̄B ˆ̄C

= Ω̃ ˆ̄A ˆ̄B ˆ̄C
+ E ˆ̄A

M̂W
M̂ÎĴ

Ê ˆ̄B
ÎÊ ˆ̄C

Ĵ (4.75)

The canonical transformation of the Hamiltonian function Θ̄∇
0 is

e
π
2
δ
Ê Θ̂∇

0 = E ˆ̄A
M̂Ξ∇

M̂
P̄ ′ ˆ̄A +

1

3!
F̂ ˆ̄A ˆ̄B ˆ̄C

P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C − 1

2
Ω̂∇

ˆ̄A ˆ̄B ˆ̄C
Ê

ˆ̄B
Î
Ê

ˆ̄C
Ĵ
P̂ ′Î P̂ ′Ĵ P̄ ′ ˆ̄A (4.76)

where F̂ ˆ̄A ˆ̄B ˆ̄C
:= 3Ω̂∇

[ ˆ̄A ˆ̄B ˆ̄C]
. The generalized flux can be calculated by the derived bracket

similarly as (3.14), as

F̂ ˆ̄A ˆ̄B ˆ̄C
= −{{{eπ

2
δ
Ẽ Θ̂∇

0 , P̄
′
ˆ̄A
}, P̄ ′

ˆ̄B
}, P̄ ′

ˆ̄C
}. (4.77)

Since

〈E ˆ̄C
,L∇

E ˆ̄A
E ˆ̄B

〉 = −{E ˆ̄C
, {{E ˆ̄A

,Θ∇
0 }, E ˆ̄B

}}

= −{Ê ˆ̄C
K̂E

K̂
P̂P ′

P̂
, {{Ê ˆ̄A

ÎE
Î
M̂P ′

M̂
,Θ∇

0 }, Ê ˆ̄B
ĴE

Ĵ
N̂P ′

N̂
}}

= −{e−π
2
δEe−

π
2
δ
Ê P̄ ′

ˆ̄C
, {{e−π

2
δEe−

π
2
δ
Ê P̄ ′

ˆ̄A
,Θ∇

0 }, e−
π
2
δEe−

π
2
δ
Ê P̄ ′

ˆ̄B
}}

= −e−
π
2
δ
Êe−

π
2
δE{P̄ ′

ˆ̄C
, {{P̄ ′

ˆ̄A
, e

π
2
δ
Êe

π
2
δEΘ∇

0 }, P̄ ′
ˆ̄B
}}

= −e−
π
2
δ
Êe−

π
2
δE{P̄ ′

ˆ̄C
, {{P̄ ′

ˆ̄A
, e

π
2
δ
Ẽ Θ̂∇

0 }, P̄ ′
ˆ̄B
}}

= F̂ ˆ̄A ˆ̄B ˆ̄C
. (4.78)

4.1.5 Pre-Bianchi identities

Now we can consider the pre-Bianchi identity for DFT on covariantized pre-QP-manifold.

To define the B function (3.22), we take the Hamiltonian function with general fluxes as,

ΘF = E ˆ̄A
M̂Ξ∇

M̂
P̄ ′ ˆ̄A +

1

3!
F ˆ̄A ˆ̄B ˆ̄C

P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C +
1

2
G ˆ̄AÎĴ

P̄ ′ ˆ̄AP̂ ′Î P̂ ′Ĵ , (4.79)

and for Θ0, we take Θ̂∇
0 given in (4.50). Since, as we have seen before, the canonical

transformations e
π
2
δ
Êe

π
2
δE generate the fluctuation on the background Hamiltonian Θ∇

0 ,
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we choose the α in eq.(3.22) as π
2 Ê. Then, the B function is given by

B
(
ΘF ,Θ̂

∇
0 , e

π
2
δ
Ê

)

=(2∂
N̂
E ˆ̄A

M̂E ˆ̄B
N̂ +E ˆ̄CM̂

F ˆ̄C ˆ̄A ˆ̄B
+2Γ

ÎK̂Ĵ
EK̂M̂ Ê ˆ̄A

ÎÊ ˆ̄B
Ĵ − Ω̂∇M̂

ˆ̄A ˆ̄B
)Ξ∇

M̂
P̄ ′ ˆ̄AP̄ ′ ˆ̄B

+(E ˆ̄CM̂
G ˆ̄CÎĴ

+Ω̂∇M̂
ˆ̄D ˆ̄C

Ê
ˆ̄D
Î
Ê

ˆ̄C
Ĵ
)Ξ∇

M̂
P̂ ′Î P̂ ′Ĵ

+

(
− 1

3
E ˆ̄A

M̂∂
M̂

F ˆ̄B ˆ̄C ˆ̄D
+
1

4
F

ˆ̄E
ˆ̄A ˆ̄B

F ˆ̄E ˆ̄C ˆ̄D

+Γ
Ĵ ÎK̂

Ω̂∇

N̂ ˆ̄A ˆ̄B
E ÎN̂ ÊĴ

ˆ̄C
ÊK̂

ˆ̄D
− 1

4
Ω̂∇

M̂ ˆ̄A ˆ̄B
Ω̂∇M̂

ˆ̄C ˆ̄D

)
P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C P̄ ′ ˆ̄D

+

(
E ˆ̄A

M̂∇
M̂

G ˆ̄BÎĴ
+
1

2
F

ˆ̄E
ˆ̄A ˆ̄B

G ˆ̄EÎĴ
−G ˆ̄AÎ

K̂
G ˆ̄BĴK̂

−Γ ˆ̄A ˆ̄C ˆ̄B
E ˆ̄CN̂ Ω̂∇

N̂ ˆ̄D ˆ̄E
Ê

ˆ̄D
Î
Ê

ˆ̄E
Ĵ
+
1

2
Ω̂∇

M̂ ˆ̄A ˆ̄B
Ω̂∇M̂

ˆ̄C ˆ̄D
Ê

ˆ̄C
Î
Ê

ˆ̄D
Ĵ

)
P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̂ ′Î P̂ ′Ĵ

+
1

4
(G

ˆ̄A
ÎĴ

G ˆ̄AK̂L̂
− Ω̃∇

M̂ ˆ̄A ˆ̄B
Ω̃∇M̂

ˆ̄C ˆ̄D
Ẽ

ˆ̄A
Î
Ẽ

ˆ̄B
Ĵ
Ẽ

ˆ̄C
K̂
Ẽ

ˆ̄D
L̂
)P̂ ′Î P̂ ′Ĵ P̂ ′K̂ P̂ ′L̂, (4.80)

where Γ ˆ̄A ˆ̄B ˆ̄C
= Γ

ÎĴK̂
Ê ˆ̄A

ÎÊ ˆ̄B
Ĵ Ê ˆ̄C

K̂ . The pre-Bianchi identity B = 0 gives the following

relations:

2∂
N̂
E ˆ̄A

M̂E ˆ̄B
N̂ + E ˆ̄CM̂

F ˆ̄C ˆ̄A ˆ̄B
+ 2Γ

ÎK̂Ĵ
EK̂M̂ Ê ˆ̄A

ÎÊ ˆ̄B
Ĵ − Ω̂∇M̂

ˆ̄A ˆ̄B
= 0, (4.81)

E ˆ̄CM̂
G ˆ̄CÎĴ

+ Ω̂∇M̂
ˆ̄D ˆ̄C

Ê
ˆ̄D
Î
Ê

ˆ̄C
Ĵ
= 0, (4.82)

1

3
E ˆ̄A

M̂∂
M̂

F ˆ̄B ˆ̄C ˆ̄D
− 1

4
F

ˆ̄E
ˆ̄A ˆ̄B

F ˆ̄E ˆ̄C ˆ̄D
− Γ

Ĵ ÎK̂
Ω̂∇

N̂ ˆ̄A ˆ̄B
E ÎN̂ ÊĴ

ˆ̄C
ÊK̂

ˆ̄D

+
1

4
Ω̂∇

M̂ ˆ̄A ˆ̄B
Ω̂∇M̂

ˆ̄C ˆ̄D
= 0, (4.83)

E ˆ̄A
M̂∇

M̂
G ˆ̄BÎĴ

+
1

2
F

ˆ̄E
ˆ̄A ˆ̄B

G ˆ̄EÎĴ
− G ˆ̄AÎ

K̂
G ˆ̄BĴK̂

−Γ ˆ̄A ˆ̄C ˆ̄B
E ˆ̄CN̂ Ω̂∇

N̂ ˆ̄D ˆ̄E
Ê

ˆ̄D
Î
Ê

ˆ̄E
Ĵ
+

1

2
Ω̂∇

M̂ ˆ̄A ˆ̄B
Ω̂∇M̂

ˆ̄C ˆ̄D
Ê

ˆ̄C
Î
Ê

ˆ̄D
Ĵ
= 0, (4.84)

G
ˆ̄A
ÎĴ

G ˆ̄AK̂L̂
− Ω̃∇

M̂ ˆ̄A ˆ̄B
Ω̃∇M̂

ˆ̄C ˆ̄D
Ẽ

ˆ̄A
Î
Ẽ

ˆ̄B
Ĵ
Ẽ

ˆ̄C
K̂
Ẽ

ˆ̄D
L̂
= 0. (4.85)

By solving the first and second equations (4.81) and (4.82), we obtain the local ex-

pressions of F ˆ̄A ˆ̄B ˆ̄C
and G ˆ̄AÎĴ

. The third and fourth equation (4.83) and (4.84) are the

generalized Bianchi identities for F ˆ̄A ˆ̄B ˆ̄C
and G ˆ̄AÎĴ

, respectively. The last equation (4.85)

is trivially satisfied due to (4.82). These equations correspond to the pre-Bianchi identi-

ties (3.26)–(3.30), i.e., if we take flat background, these equations reduce to the pre-Bianchi

identities of the original DFT.

4.2 Application to DFTWZW

In this section, we apply our discussions to DFTWZW and specify the pre-QP-structure.

We assume the background space as a group manifold G, so we can regard the coordinate

P̂ ′
Î
of its tangent space TG as the generator of the Lie algebra of G by the injection map
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j′∗(P̂ ′
Î
) = T

Î
. Then, the derived bracket of P̂ ′

Î
should reproduce the Lie bracket:

− {{P̂ ′
Î
, Θ̂∇

0 }, P̂ ′
Ĵ
} = j′∗[TI , TJ ]Lie. (4.86)

The left hand side is calculated as,

− {{P̂ ′
Î
, Θ̂∇

0 }, P̂ ′
Ĵ
} = (W K̂

ÎĴ
+ 2W[Î Ĵ ]

K̂)P̂ ′
K̂
, (4.87)

and the right hand side is written by definition of a Lie algebra as

j′∗[TI , TJ ]Lie = F
Î Ĵ

K̂ P̂ ′
K̂
. (4.88)

Thus, the condition (4.86) leads the condition of the spin connection:

W K̂
ÎĴ

+ 2W[Î Ĵ ]
K̂ = F

K̂Î
Ĵ . (4.89)

This condition is solved by

W
Î Ĵ

K̂ =
1

3
F
Î Ĵ

K̂ (4.90)

and this solution is just the one proposed in the DFTWZW model. We give the brief

summary of DFTWZW in the appendix.

With this spin connection (4.90), the derived bracket with Θ̂∇
0 reproduces the gener-

alized Lie derivative (D.18) of DFTWZW as

− {{Λ̂, Θ̂∇
0 }, V̂ } = ΛĴD

Ĵ
V Î + (DÎΛ

Ĵ
−D

Ĵ
ΛÎ)V Ĵ + F Î

ĴK̂
ΛĴV K̂ . (4.91)

Since the generalized Lie derivative is realized in superfield formalism, we can rewrite

the generalized flux (D.19) of DFTWZW by Θ̂∇
0 .

〈E ˆ̄C
,L∇

E ˆ̄A
E ˆ̄B

〉 = −{E ˆ̄C
, {{E ˆ̄A

, Θ̂∇
0 }, E ˆ̄B

}} = F̃ ˆ̄A ˆ̄B ˆ̄C
+ F ˆ̄A ˆ̄B ˆ̄C

. (4.92)

We have already discussed the closure condition of the generalized Lie derivative

in section 4.1.3. The weak master equation for arbitrary generalized vectors is written

in (4.57)–(4.59). The first equation (4.57) is just a section condition for fluctuation fields.

In DFTWZW case, the spin connection is required to satisfiy 3W[Î ĴK̂] = 2Ω[Î Ĵ ]K̂ = F
Î ĴK̂

in (4.90). The equation (4.58) is satisfied with this condition, and (4.59) leads the Jacobi

identity of the structure constant F
Î ĴK̂

. Thus, the weak master equation yields the section

condition and the Jacobi identity as the closure condition of generalized Lie derivative of

DFTWZW (D.27).

The pre-Bianchi identity is of the same form and we obtain (4.81)–(4.85) where the

spin connection satisfies (4.90).

5 Summary and conclusion

In this paper we formulated the algebraic structure of DFT on a pre-QP-manifold in an

O(D,D) covariant form and gave the closure condition of the corresponding generalized

Lie derivative. On the pre-QP-manifold we have more freedom to accommodate the DFT
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algebra: the classical master equation is relaxed to a weaker derived bracket, i.e., the weak

master equation, which defines the closure condition for the generalized Lie derivative.

The weak master equation is in fact the condition of the Leibniz identity on the pre-QP-

manifold.

Introducing a local flat frame, we defined the generalized vielbein and investigated the

canonical transformations and the generalized flux on the pre-QP-manifold. The definition

of the generalized vielbein as an O(D,D) covariant canonical transformation provides a

picture which unifies all fluxes to a single generalized flux and gives a systematic way to

formulate the Bianchi identities: the generalized Bianchi identities for all possible fluxes

can be read off from a single pre-Bianchi identity.

We have also shown that the GSS compactification fits to this formalism. To formulate

the GSS compactification we introduce the intermediate coordinate. With this coordinate

we can introduce the GSS twist by a canonical transformation intertwining between the

general coordinate frame and the intermediate frame. The fluctuation vielbein is then ob-

tained as the canonical transformation from the intermediate frame to the local flat frame.

This splitting gives the right description of the generalized flux in gauged DFT (GDFT).

One advantage of the superfield formulation is its background independence as can

be seen, e.g., from the special structure of the derived bracket. It shows that all infor-

mation on the background is completely contained in the Hamiltonian function Θ̂GSS of

the intermediate frame. From the geometrical point of view, it is natural to formulate the

geometry by using connection and covariant derivative. Therefore, in the last section, we

developed the covariantized pre-QP-manifold to formulate the background geometry and

gave a consistent theory with the Hamiltonian Θ̂∇ instead of Θ̂GSS.

One important observation is the algebraic property of the Ξ∇ coordinate. It shows

that the Poisson structure is preserved in original PQ coordinates as well as in the primed

DFT basis. Note that the coordinate Ξ∇ is fixed by the requirement of conservation of the

P-structure and the vielbein postulate.

We have shown that the familiar geometric objects are obtained from the pre-QP-

manifold through certain identifications. Thus, we have also shown the application of

the superfield formulation to the group manifold case. A construction of DFT on the

group manifold has been intensively discussed in [33] in the wider context of Poisson-Lie

T-duality, which contains both abelian and non-abelian T-duality as special cases. The

solution of the weak master equation in section 4 reduces consistently to the DFTWZW

theory discussed in [33].

Finally, we discuss the relation of our approach to GSS compactification and DFT on

group manifolds in supermanifold formulation. In section 3.3 we derived the GSS twist in

terms of a canonical transformation. There, a GSS twist matrix U
M̂

N̂ (Y) is introduced via

the canonical transformation of the degree 2 function A = π
2U in (3.35). The GSS twisted

vielbein is (3.37) and the twisted Hamiltonian function is (3.41).

On the other hand, the GSS compactified DFT can be regarded as a covariantized

DFT whose background manifold is a generalized twisted torus. From this point of view,

the background vielbein E
Î
M̂ is identified with the GSS twist matrix U

Î
M̂ (Y). With this
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identification, the total vielbein E ˆ̄A
M̂ is identified with the GSS twisted vielbein. In our

approach, this corresponds to the GSS twist matrix introduced by the canonical transfor-

mation eδA in section 4.1.4. We identify the transformation function A
Î
M̂ with the GSS

twist matrix E
Î
M̂ (Y). Then, the GSS twisted vielbein is obtained as

E ˆ̄A
M̂ (X)P ′M̂ = e−

π
2
δE (Ê ˆ̄A

Î(X)P̂ ′
Î
) = Ê ˆ̄A

Î(X)E
Î
M̂ (Y)P ′

M̂
. (5.1)

In this case, the GSS twisted Hamiltonian function (4.50) becomes,

Θ̂∇
GSS = U

Î
M̂Ξ

M̂
P̂ ′Î +

1

3!
F
Î ĴK̂

P̂ ′Î P̂ ′Ĵ P̂ ′K̂ (5.2)

+
1

4
U
Î
M̂Γ

M̂N̂
P̂ (Q′N̂ + ηN̂Q̂P ′

Q̂
)(P ′

P̂
− η

P̂ R̂
Q′R̂)P̂ ′Î − 1

3!
F
Î ĴK̂

Q̂′ÎQ̂′Ĵ P̂ ′K̂ .

The difference between the Hamiltonean function (3.41) and the one given above (5.2)

is due to the fact that the former one was not written in a covariant form, while the latter

one is covariant. Explicitly, we have

Θ̂∇
GSS − Θ̂GSS =

1

2

(
1

2
U
Î
P̂Γ

P̂ M̂N̂
+ Ω̃

Î ĴK̂
U Ĵ

M̂
U K̂

N̂

)
P ′M̂P ′N̂ P̂ ′Î

− 1

4
U
Î
M̂Γ

M̂N̂P̂
Q′N̂Q′P̂ P̂ ′Î − 1

3!
F
Î ĴK̂

Q̂′ÎQ̂′Ĵ P̂ ′K̂ . (5.3)

However, these terms do not affect the generalized Lie derivative and we obtain the same

formula for the generalized flux from the connection in covariantized formulation.
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A Notation

In this appendix, we summarize the notations. We list up indices and generalized vectors

in each frame in table 2. We also show the corresponding canonical transformations.

We use indices M̂, N̂ , · · · = 1, 2, . . . , 2D for generalized tangent frame, Î , Ĵ , K̂, L̂, Ĥ =

1, 2, . . . , 2D for intermediate frame, and ˆ̄A, ˆ̄B, · · · = 1, 2, . . . , 2D for local flat frame. We

use common indices in GSS and DFT on the group manifold (DFTG).

The generalized vectors on the pre-QP-manifold are denoted by V M̂P ′
M̂
, V̂ Î P̂ ′

Î
and

V̄
ˆ̄AP̄ ′

ˆ̄A
in general tangent frame, intermediate frame and local flat frame, respectively. In

GSS, generalized vectors depend only on the external space coordinate X in the intermediate

frame and the local flat frame. On the other hand, DFT in the covariantized case does not

restrict the coordinate dependence of generalized vectors in each frame, in general.

The arrows with the canonical transformation functions note the relations of each

frame by the corresponding canonical transformations.
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frame generalized 
tangent intermediate local flat

Indices

Generalized 
vector

Canonical 
Transformation

Indices

Generalized 
vector

Canonical 
Transformation

Î , Ĵ , K̂, L̂, Ĥ

V̂
Î(X)P̂ ′

Î

V̂
Î(X)P̂ ′

Î

Î , Ĵ , K̂, L̂, Ĥ

A =
π

2
E

A =
π

2
E

A =
π

2
U Â =

π

2
Ê

t̂

DFT
G

GSS

Â =
π

2
Ê

A =
π

2
E

ˆ̄A, ˆ̄B, . . .

V̄
ˆ̄
A(X)P̄ ′

ˆ̄
A

V̄
ˆ̄
A(X)P̄ ′

ˆ̄
A

ˆ̄A, ˆ̄B, . . .

t̄

t̄

M̂, N̂ , . . .

V
M̂ (X)P ′

M̂

V
M̂ (X)P ′

M̂

M̂, N̂ , . . .

t

t t̂

Table 2. Notations.

B Canonical transformation of Θ0 by θE and pre-Bianchi identity

In section 3.1.1, we discussed the canonical transformation by the degree 2 function E
in (3.3). In order to see the correspondence to original DFT structures, we restricted

the transformation function E ˆ̄A
M̂ to an element of O(D,D) and discussed the canonical

transformation e
π
2
δE . For general θ case, we obtain the twisted Hamiltonian function in

following form.

eθδEΘ0 = ηM̂N̂Ξ
M̂
(P ′

N̂
cos θ + E ˆ̄D

N̂
P̄ ′

ˆ̄D
sin θ)

+

[(
− 1

2
ηM̂N̂η

ˆ̄A ˆ̄B∂
M̂
E ˆ̄A

ŜE ˆ̄B
R̂ cos θ sin2 θ

)
P ′
R̂
P ′
Ŝ
P ′
N̂

+

(
− ηM̂Ŝ∂

M̂
E T̂

ˆ̄A
η

ˆ̄A[ ˆ̄BE ˆ̄D]
T̂
E ˆ̄B

R̂ sin θ cos2 θ − 1

2
ηM̂N̂∂

M̂
E ˆ̄A

Ŝη
ˆ̄A ˆ̄BE ˆ̄B

R̂E ˆ̄D
N̂
sin3 θ

)
P ′
R̂
P ′
Ŝ
P̄ ′

ˆ̄D

+

(
− 1

2
ηM̂R̂∂

M̂
E ˆ̄A

T̂ η
ˆ̄A ˆ̄DE ˆ̄C

T̂
+ ηM̂N̂∂

M̂
E ˆ̄A

T̂ η
ˆ̄A[ ˆ̄BE ˆ̄C]

T̂
E ˆ̄B

R̂E ˆ̄D
N̂

)
P ′
R̂
P̄ ′

ˆ̄C
P̄ ′

ˆ̄D
sin2 θ cos θ

+

(
1

2
ηM̂N̂η

ˆ̄A ˆ̄B∂
M̂
E ˆ̄A

T̂E ˆ̄C
T̂
E ˆ̄D

N̂
sin3 θ

)
P̄ ′

ˆ̄B
P̄ ′

ˆ̄C
P̄ ′

ˆ̄D

]
. (B.1)

From a Hamiltonian function

ΘF = ρ̄ M̂
ˆ̄A
Ξ
M̂
P̄ ′ ˆ̄A + ρ M̂

N̂
Ξ
M̂
P ′N̂ +

1

3!
F ˆ̄A ˆ̄B ˆ̄C

P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C +
1

2
Φ ˆ̄CM̂N̂

P ′M̂P ′N̂ P̄ ′ ˆ̄C

+
1

2
∆ ˆ̄A ˆ̄BM̂

P ′M̂ P̄ ′ ˆ̄AP̄ ′ ˆ̄B +
1

3!
Ψ

M̂N̂P̂
P ′M̂P ′N̂P ′P̂ (B.2)

we obtain the pre-Bianchi identity from the following function B(ΘF ,Θ0, e
θδE ).

B(ΘF ,Θ0, e
θδE )

= (ρ̄ ˆ̄A
M̂ ρ̄

ˆ̄AN̂ +ρ
P̂
M̂ρP̂ N̂ −ηM̂N̂ )Ξ

M̂
Ξ
N̂
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+(2∂
N̂
ρ̄ ˆ̄A

M̂ ρ̄ ˆ̄B
N̂ + ρ̄

ˆ̄CM̂F ˆ̄C ˆ̄A ˆ̄B
+ρN̂M̂∆ ˆ̄A ˆ̄BN̂

−ΩM̂
R̂Ŝ

E ˆ̄A
R̂E ˆ̄B

Ŝ sin2 θ)Ξ
M̂
P̄ ′ ˆ̄AP̄ ′ ˆ̄B

+(2∂QρN̂
M̂ρ

P̂
Q̂+ ρ̄ ˆ̄A

M̂Φ
ˆ̄A
N̂P̂

+ρR̂M̂Ψ
R̂N̂P̂

+ΩM̂
N̂P̂

sin2 θ)Ξ
M̂
P ′N̂P ′P̂

−2(ρ̄
ˆ̄BM̂∆ ˆ̄B ˆ̄AN̂

+∂
N̂
ρ̄P̂ˆ̄A

ρ
P̂
M̂ −∂

P̂
ρ
N̂

M̂ ρ̄ ˆ̄A
P̂

−ρP̂ M̂Φ ˆ̄AP̂N̂
+E ˆ̄A

ŜΩM̂
N̂Ŝ

sinθ cosθ)Ξ
M̂
P ′N̂ P̄ ′ ˆ̄A

+

(
− 2

3!
ρ̄M̂ˆ̄A

∂
M̂
F ˆ̄B ˆ̄C ˆ̄D

+
3

4
F ˆ̄E

ˆ̄A ˆ̄B
F ˆ̄E ˆ̄C ˆ̄D

+
1

4
∆ ˆ̄A ˆ̄BM̂

∆ ˆ̄C ˆ̄D
M̂ − 1

4
Ω ˆ̄E ˆ̄A ˆ̄B

Ω
ˆ̄E
ˆ̄C ˆ̄D

sin4 θ

)
P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C P̄ ′ ˆ̄D

+

(
− ρ̄ ˆ̄A

P̂∂
P̂
Φ ˆ̄BM̂N̂

+
1

2
F ˆ̄A ˆ̄B ˆ̄C

Φ
ˆ̄C
M̂N̂

−ρ
M̂

P̂∂
P̂
∆ ˆ̄A ˆ̄BN̂

−Φ ˆ̄A
P̂
M̂
Φ ˆ̄BP̂N̂

−∆ ˆ̄C ˆ̄AM̂
∆

ˆ̄C
ˆ̄BN̂

+
1

2
∆ ˆ̄A ˆ̄B

P̂Ψ
P̂ M̂N̂

− 1

2
Ω
P̂ M̂N̂

ΩP̂
ˆ̄A ˆ̄B

sin4 θ+ΩP̂

M̂ ˆ̄A
Ω
P̂ N̂ ˆ̄B

sin2 θ cos2 θ

)
P ′M̂P ′N̂ P̄ ′ ˆ̄AP̄ ′ ˆ̄B

+

(
ρ̄ ˆ̄A

N̂∂
N̂
∆ ˆ̄B ˆ̄CM̂

− 3

2
F ˆ̄D

ˆ̄A ˆ̄B
∆ ˆ̄D ˆ̄CM̂

+Φ ˆ̄AN̂M̂
∆ ˆ̄B ˆ̄C

N̂ − 2

3!
ρ N̂

M̂
∂
N̂
F ˆ̄A ˆ̄B ˆ̄C

−ΩN̂

M̂ ˆ̄C
Ω
N̂ ˆ̄A ˆ̄B

sin3 θ cosθ

)
P ′M̂ P̄ ′ ˆ̄AP̄ ′ ˆ̄BP̄ ′ ˆ̄C

+

(
2

3!
ρ̄ ˆ̄A

Q̂∂
Q̂
Ψ

M̂N̂P̂
−Φ

ˆ̄B
M̂N̂

∆ ˆ̄B ˆ̄AP̂

+
3

2
Φ ˆ̄AQ̂M̂

ΨQ̂
N̂P̂

−ρ
M̂

Q̂∂
Q̂
Φ ˆ̄AN̂P̂

+ΩR̂
M̂N̂

Ω
R̂P̂ ˆ̄A

sin3 θ cosθ

)
P ′M̂P ′N̂P ′P̂ P̄ ′ ˆ̄A

+

(
1

4
Φ ˆ̄AM̂N̂

Φ
ˆ̄A
P̂ Q̂

+
3

4
Ψ

R̂M̂N̂
ΨR̂

P̂ Q̂

− 2

3!
ρ
M̂

R̂∂
R̂
Ψ

N̂P̂ Q̂
− 1

4
Ω
R̂M̂N̂

ΩR̂
P̂ Q̂

sin4 θ

)
P ′M̂P ′N̂P ′P̂P ′Q̂. (B.3)

C Classical master equation for Θ̄∇

0

We discussed the weak master equation for Θ̂∇
0 in section 4.1.3. It is based on the calculation

of {Θ̂∇
0 , Θ̂

∇
0 }. Here, we show the full form of {Θ̂∇

0 , Θ̂
∇
0 }.

{Θ̂∇
0 , Θ̂

∇
0 } = ηM̂N̂Ξ

M̂
Ξ
N̂

+
(
− 2Ω

Î ĴK̂
+ 2W

Î ĴK̂
+W

K̂ÎĴ

)
EK̂M̂Ξ

M̂
P̂ ′Î P̂ ′Ĵ

+ ΓM̂
Q̂P̂

Ξ
M̂
(Q′Q̂P ′P̂ + P ′Q̂P ′P̂ −Q′Q̂Q′P̂ − P ′Q̂Q′P̂ )−W M̂

ÎĴ
Ξ
M̂
Q̂′ÎQ̂′Ĵ

−
[
W Ĥ

ÎĴ

(
Ω
K̂L̂Ĥ

−W
K̂L̂Ĥ

)
+

1

2
R

Î ĴK̂L̂
− 1

4
W

M̂ÎĴ
W M̂

K̂L̂

]
P̄ ′Î P̄ ′Ĵ P̄ ′K̂ P̄ ′L̂

+

[
−W Ĥ

K̂L̂

(
Ω
Î ĴĤ

+W
ÎĤĴ

)
+

1

2
R

Î ĴK̂L̂
+

1

2
W

M̂ÎĴ
W M̂

K̂L̂

]
P̂ ′Î P̂ ′ĴQ̂′K̂Q̂′L̂

+
1

2

[
− 2

(
Ω
Î ĴĤ

+W
ÎĤĴ

)
HĤN̂Γ

N̂M̂N̂
+R

Î ĴM̂N̂
+ Γ

P̂ M̂N̂
W P̂

ÎĴ

]

× P̂ ′Î P̂ ′Ĵ(P ′M̂ −Q′M̂ )(Q′N̂ + P ′N̂ )

+
1

4
W

M̂ÎĴ
W M̂

K̂L̂
Q̂′ÎQ̂′ĴQ̂′K̂Q̂′L̂
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+
1

2
Γ
P̂ N̂M̂

W P̂
ÎĴ
Q̂′ÎQ̂′Ĵ(P ′M̂ −Q′M̂ )(Q′N̂ + P ′N̂ )

+
1

4
Γ
R̂P̂ N̂

ΓR̂
Q̂M̂

(P ′M̂ −Q′M̂ )(P ′N̂ −Q′N̂ )(Q′P̂ + P ′P̂ )(Q′Q̂ + P ′Q̂). (C.1)

D Double Field Theory on group manifolds

Let us briefly recall the DFT on group manifold defined in ref. [30].

D.1 Background vielbein, covariant derivative and fluctuation

We consider a 2D-dimensional group manifold Ĝ and introduce local coordinates XM̂ =

(x̃M , xM ) and a doubled metric ηM̂N̂ where M̂, N̂ , · · · are GL(2D) indices on a curved space

of Ĝ. We also consider the local O(D,D) frame by introducing the generalized vielbein

E
Â
M̂ with O(D,D) invariant metric ηÎ Ĵ , which relate to the doubled metric as

ηM̂N̂ = ηÎ ĴE
Î
M̂E

Ĵ
N̂ , (D.1)

where, Î , K̂, · · · are indices of the local O(D,D) frame. The generalized vielbein E
Î
M̂ takes

values in GL(2D) in general. The inverse of each metric is denoted by η
M̂N̂

and η
Î Ĵ
. In

the following we raise or lower the curved indices and the local O(D,D) indices by the

corresponding metric.

The local basis of the tangent space TĜ is denoted by

∂
M̂

=

(
∂̃M̂

∂
M̂

)
. (D.2)

Then, the vector field defined by the generalized vielbein

D
Î
= E

Î
M̂∂

M̂
, (D.3)

satisfies the commutation relation

[D
Î
, D

Ĵ
] = F

Î Ĵ
K̂D

K̂
(D.4)

where

F
Î ĴK̂

= 2Ω[Î Ĵ ]K̂ , (D.5)

with

Ω
Î ĴK̂

= D
Î
E

Ĵ
M̂E

K̂M̂
, (D.6)

as in the standard DFT. As a background vielbein, we take the left invariant vector field

and thus, F
Î Ĵ

K̂ becomes the structure constant of the Lie algebra of Ĝ.

We denote the affine connection by Γ and the spin connection by W and define the

covariant derivative of a tensor V
Ĵ
M̂ by

∇
Î
V
Ĵ
M̂ = D

Î
V
Ĵ
M̂ + E

Î
P̂Γ

P̂ N̂
M̂V

Ĵ
N̂ −W

Î Ĵ
K̂V

K̂
M̂ (D.7)
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We impose that the covariant derivative of the generalized vielbein and the O(D,D) metric

vanish:

∇
Î
E

Ĵ
M̂ = 0. (D.8)

∇
Î
η
ĴK̂

= 0. (D.9)

The equation (D.8) gives the following relation between the affine connection and spin

connection:

EK̂

M̂
W Ĵ

K̂Î
= EK̂

M̂
Ω Ĵ

K̂Î
+ Γ N̂

M̂P̂
E P̂

Î
EĴ

N̂
, (D.10)

where Ω is defined in (D.6). The equation (D.9) gives the following condition on the spin

connection:

∇
Î
η
ĴK̂

= W
Î Ĵ

L̂η
L̂K̂

+W
ÎK̂

L̂η
ĴL̂

= 0. (D.11)

Note that the covariant derivative of η
M̂N̂

automatically vanishes,

∇
M̂
η
N̂P̂

= ∂
M̂
η
N̂P̂

− Γ Q̂

M̂N̂
η
Q̂P̂

− Γ Q̂

M̂P̂
η
N̂Q̂

= 0. (D.12)

In the following, we consider the case where the total vielbein E M̂
ˆ̄A

can split into a

fluctuating part Ê ˆ̄A
Î and a background vielbein E

Â
M̂ as [30],

E M̂
ˆ̄A

= Ê ˆ̄A
ÎE

Î
M̂ , E ˆ̄A

M̂
= Ê

ˆ̄A
Î
E Î

M̂
. (D.13)

Here ˆ̄A, ˆ̄B, · · · are indicies of the double local flat O(1, D−1)×O(1, D−1) vector. In DFT

on the group manifold, we consider as the dynamical fields, the fluctuation vielbein Ê ˆ̄A
Î

and the fluctuation part of generalized dilation d̂ . The standard DFT, corresponds to the

trivial background vielbein, i.e., E
Î
M̂ = δ

Î
M̂ , E Î

M̂
= δÎ

M̂
and the total vielbein becomes

the original DFT vielbein.

We also split the total dilaton d̃ into the background part and the fluctuation part as

d̃ = d+ d̂. (D.14)

The background metric H
Î Ĵ

is written as

H
M̂N̂

= E
M̂

ÎS
Î Ĵ
E

N̂
Ĵ . (D.15)

where

S
Î Ĵ

=

(
s̃IJ 0

0 sIJ

)
. (D.16)

The fluctuation metric H
ÎĴ

is written by fluctuation vielbeine,

H
Î Ĵ

= Ê
ˆ̄A
Î
S ˆ̄A ˆ̄B

Ê
ˆ̄B
Ĵ
. (D.17)
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D.2 Covariant generalized Lie derivative and generalized flux

In DFT on group manifold, the following generalized Lie derivative and fluxes written

with the covariant derivative are introduced. A covariant generalized Lie derivative on a

generalized vector field V̂ is

L∇
Λ̂
V̂ Î = Λ̂Ĵ∇

Ĵ
V̂ Î + (∇ÎΛ̂

Ĵ
−∇

Ĵ
Λ̂Î)V̂ Ĵ , (D.18)

where the gauge parameter Λ̂ is a generalized vector. The gauge transformation of the

fields is generated by this generalized Lie derivative.

Then, the covariant generalized fluxes are introduced by using the above generalized

Lie derivative (D.18), the total vielbein E ˆ̄A
M̂ and the total dilaton d̃ as

F ˆ̄A ˆ̄B ˆ̄C
= 〈E ˆ̄A

,L∇
E ˆ̄B

E ˆ̄C
〉 = F̃ ˆ̄A ˆ̄B ˆ̄C

+ F ˆ̄A ˆ̄B ˆ̄C
, (D.19)

F ˆ̄A
= −e2d̃LE ˆ̄A

e−2d̃ = 2D ˆ̄A
d̃+ Ω̃

ˆ̄B
ˆ̄B ˆ̄A

(D.20)

where F̃ ˆ̄A ˆ̄B ˆ̄C
:= 3Ω̃

[ ˆ̄A ˆ̄B ˆ̄C]
with Ω̃ ˆ̄A ˆ̄B ˆ̄C

:= E M̂
ˆ̄B

∂
M̂
Ê ˆ̄C

ÎÊ ˆ̄AÎ
and F ˆ̄A ˆ̄B ˆ̄C

:= Ê ˆ̄A
ÎÊ ˆ̄B

Ĵ Ê ˆ̄C
K̂F

Î ĴK̂
.

The action of DFTWZW is rewritten using the generalized flux [30].

S =

∫
d2DXe−2d̃

(
F ˆ̄A

F ˆ̄B
S

ˆ̄A ˆ̄B +
1

4
F ˆ̄A ˆ̄C ˆ̄D

F ˆ̄B

ˆ̄C ˆ̄DS
ˆ̄A ˆ̄B − 1

12
F ˆ̄A ˆ̄B ˆ̄C

F ˆ̄A ˆ̄B ˆ̄C
S

ˆ̄A ˆ̄DS
ˆ̄B ˆ̄ES

ˆ̄C ˆ̄F

− 1

6
F ˆ̄A ˆ̄B ˆ̄C

F ˆ̄A ˆ̄B ˆ̄C −F ˆ̄A
F ˆ̄A

)
. (D.21)

The DFT on group manifold has been developed as DFTWZW which is considered as a

double field formalism of conformal string field theory (CSFT) for the Wess-Zumino-Witten

(WZW) model [31, 32].

From now on we take the background group manifold as the direct product of two Lie

groups Ĝ = G̃×G and the O(D,D) metric η
Î Ĵ

as

η
Î Ĵ

=

(
κ̃IJ 0

0 −κIJ ,

)
(D.22)

where κ̃IJ and κIJ are the Killing metrics on Lie(G̃) and Lie(G), respectively. Then, the

structure constant of the background group manifold is written by the structure constants

of Lie(G̃) and Lie(G) as

F
Î Ĵ

K̂ =





f̃ IJ
K

fIJ
K

0 (otherwise)

(D.23)

and therefore, F
Î ĴK̂

is totally antisymmetric. In DFTWZW, the generalized Lie derivative

contains the Lie bracket of the background group manifold [31].

LΛV̂
Î = Λ̂ĴD

Ĵ
V̂ Î + (DÎΛ̂

Ĵ
−D

Ĵ
Λ̂Î)V̂ Ĵ + F Î

ĴK̂
Λ̂Ĵ V̂ K̂ . (D.24)
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We assume that the covariant generalized Lie derivative (D.18) reproduces the generalized

Lie derivative of DFTWZW (D.24). Then, the spin connection is written by the structure

constant as follows.

W
Î Ĵ

K̂ =
1

3
F
Î Ĵ

K̂ . (D.25)

In the following, we discuss the closure condition of the generalized Lie deriva-

tive (D.24) which takes the form

[L
Λ̂1
,L

Λ̂2
]Λ̂Î

3 − L
L
Λ̂1

Λ̂2
Λ̂Î
3 = F L̂

[ĴK̂F Î
Ĥ]L̂Λ̂

Ĥ
1 Λ̂Ĵ

2 Λ̂
K̂
3 − LL̂Λ̂1Ĵ Λ̂

Ĵ
2LL̂

Λ̂Î
3 − 2L

L̂
Λ̂Î
[1L

L̂Λ̂2]Ĵ Λ̂
Ĵ
3 .

(D.26)

The right hand side vanishes and the closure condition is satisfied with the section condition

and the Jacobi identity of F
ÂB̂Ĉ

.

D
Î
·DÎ · = 0, F L̂

[ĴK̂F Î
Ĥ]L̂ = 0. (D.27)

The generalized fluxes and action are defined in the same form as (D.19), (D.20)

and (D.21).
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

[2] W. Siegel, Two vierbein formalism for string inspired axionic gravity,

Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

[3] C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].

[4] C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[5] C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets,

JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

[6] O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory,

JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

[7] O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory,

JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].
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