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Abstract 

Diabetic Foot Ulcer (DFU) is the main complication of Diabetes, which, if not properly treated, may lead to amputation. One of 

the approaches of DFU treatment depends on the attentiveness of clinicians and patients. This treatment approach has drawbacks 

such as the high cost of the diagnosis as well as the length of treatment. Although this approach gives powerful results, the need 

for a remote, cost-effective, and convenient DFU diagnosis approach is urgent. In this paper, we introduce a new dataset of 754-

foot images which contain healthy skin and skin with a diabetic ulcer from different patients. A novel Deep Convolutional Neural 

Network, DFU_QUTNet, is also proposed for the automatic classification of normal skin (healthy skin) class versus abnormal 

skin (DFU) class. Stacking more layers to a traditional Convolutional Neural Network to make it very deep does not lead to better 

performance, instead leading to worse performance due to the gradient. Therefore, our proposed DFU_QUTNet network is 

designed based on the idea of increasing the width of the network while keeping the depth compared to the state-of-the-art 

networks. Our network has been proven to be very beneficial for gradient propagation, as the error can be back-propagated 

through multiple paths. It also helps to combine different levels of features at each step of the network. Features extracted by 

DFU_QUTNet network are used to train Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) classifiers. For the 

sake of comparison, we have fine-tuned then re-trained and tested three pre-trained deep learning networks (GoogleNet, VGG16, 

and AlexNet) for the same task. The proposed DFU_QUTNet network outperformed the state-of-the-art CNN networks by 

achieving the F1-score of 94.5%. 

Keywords  Diabetic foot ulcers. Convolutional Neural Networks. Deep learning. Classification. Transfer learning. 

 

 1 Introduction  

 Diabetes can lead to serious complications like lower limb amputation, blindness, kidney failure, and cardiovascular diseases. 

These complications are commonly preceded by Diabetic Foot Ulcers (DFUs) [1]. DFUs, generally known as sores, are open 

wounds that can develop on the feet of people with diabetes. .Based on global reporting, there were only 108 million people 

suffering from diabetes in 1980, while this number increased to more than 422 million people in 2014. For instance, looking at 

the adults over 18 years old, the overall prevalence increased from 4.7% to 8.5% during the period 1980-2014 [2]. Furthermore, 

the number of people living with diabetes is expected to increase up to 600 million by the end of 2035. It is also important to 

mention that about 80% of these people are from developing countries due to the lack of health care facilities and poor awareness 

[3]. Moreover, around 15% to 25% of diabetic patients will develop DFU at an advanced stage of the disease, which may lead to 

lower limb amputation if proper care is unavailable [4]. Due to failure to recognize and improper DFU treatment, over one 

million diabetic people with a ‘high-risk foot' will lose part of their leg each year [5]. Hygienic personal care, continuous 

medication, and periodic checkup with doctors are required for people with diabetes to prevent additional consequences. 

Therefore, diabetes will cause a huge financial burden for people with this disease and their families, mainly in developing 

countries, since the treatment cost is about 5.7 times the annual income [6]. 
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 Nowadays, the assessment of the early diagnosis of DFU in clinical systems involves several significant tasks, which 

represent continuous tracking of numerous lengthy actions enclosed in handling and managing of DFU for every individual case. 

These actions include; evaluation of patient’s medical history, examination of the DFU carefully by a diabetic foot specialist, and 

extra tests for assessment in developing the treatment plan, such as x-ray, MRI, and CT scans. In general, DFU patients have an 

inflated leg problem which may be itchy and aching depending on each case. Additionally, the DFU usually has uncertain 

external boundaries and asymmetrical structure. Several factors affect the DFU surrounding skin and its visual appearance, which 

include; scaly skin, bleeding, slough, important tissues (e.g. Granulation), blisters, callus formation, and redness. Therefore, the 

exact evaluation of these visual symptoms like texture features and color descriptors is the base of generating powerful computer 

vision algorithms for ulcer assessment [7]. 

However, the task of classifying DFU has many challenges. Firstly, the collection and professional labeling of DFU images 

require large time. Secondly, the similarity between DFU and healthy skin has high inter-class and intra-class variations 

depending on the patient's ethnicity, lighting conditions, and the DFU classification [8].  Lastly, it is hard to differentiate between 

healthy skin and DFU in some cases, for instance, when there are small sizes of DFU, skin wrinkles, and images with a toe.  

 

Our contributions reveal many interesting observations are summarized below: 

(1) We have introduced a new dataset of total 754-foot images which consist of healthy skin and skin with a diabetic ulcer 

from different patients.  The dataset has been manually labeled by a DFU expert.  

(2) We have designed and implemented a novel and robust Deep Convolutional Neural Network, DFU_QUTNet, from scratch 

based on the idea of increasing in the network’s width along with the global average pooling. Our network’s structure has 

proven to be helpful since it has different levels of features at each step of the network. It has also proved to be very 

beneficial for gradient propagation, as the error can be back-propagated through multiple paths. 

(3) Our model used to classify feet skin images into two classes: normal and abnormal (DFU). We improved the performance 

of DFU classification in term of the F1-score. Our model achieved a F1-score of 94.5% in classifying unseen images of our 

dataset, which outperforms the state-of-the-art CNN networks.  

(4) We have trained the multi-classifiers of K-Nearest Neighbor and Support Vector Machine (SVM) classifiers with the 

features extracted by our proposed DFU_QUTNet network.  

(5) We have fine-tuned and re-trained three pre-trained deep learning networks (GoogleNet, VGG16, and AlexNet) for DFU 

classification task to be compared with our model. DFU_QUTNet outperforms these three state-of-the-art CNN networks. 

(6) We have re-implemented DFUNet which was designed by Goyal, et al. [59] and trained it with our dataset. As far as we 

know, this is the only paper that employed CNNs to classify normal skin against abnormal skin (DFU). Our proposed 

DFU_QUTNet network outperforms DFUNet network.  

(7) As described in Section2, we have reviewed some of the state-of-the-art methods for deep learning and the traditional 

methods used to classify DFU.  

The rest of the paper is organized as follows: Section 2 reviews the related work. Section 3 explains the proposed methodology. 

Section 4 presents the results. Lastly, section5 draws conclusions. 

  

2 Related Work 

Numerous medical-telecommunication systems, including diabetes monitoring systems, have been developed in recent years 

[9][10]. The objectives of these systems are: to offer automated solutions for the lack in the specialists, to enhance the access of 

medical facilities, to enhance the available health care systems, and to reduce the cost of medical facilities [11]. However, a small 

number of expert systems related to the evaluation of diabetic foot pathologies which can be classified as automated and non- 

automated systems have been developed. 

2.1 DFU telemedicine systems 

New technology devices, such as laptops smart-phones and Internet media, have been developed which offer the possibility of 

remote communications. With the sophisticated mobile Internet (e.g. 5G), these devices have the ability to capture and send very 

high-quality pictures, audio and video [12][13]. Medical-telecommunication systems of the non-automated type, which are 

frequently set-up in a distant location, offer facilities for patients’ evaluation such as optical scanner [14], digital photography 

[15], 3D wound imaging [16], and video conferencing [17]. However, the availability of professional medical experts is still 

required to complete the patient’s evaluation on the other side. Although these systems give powerful results, the need for 

automated DFU pathology detection is urgent. 



 

Fig.1 The difference between deep learning and machine learning 

The employment of automated DFU detection systems is still in the earlier development stages and has extremely limited 

applications. Notably, in 2015, C. Liu et al. [4] and O. Jegede et al. [18] presented a smart system for DFU detection based on 3D 

surface reconstruction, infrared thermal images, and spectral imaging. However, the implementation of the system requires much 

expert training and expensive devices in order to work properly. Another system by Wang, et al. [19] is based on capturing an 

image using a capture box and determines the DFU area by utilizing the two-stage classification of Support Vector Machine.The 

first step of this system is segmentation which is executed by a super-pixel methodology. The extraction of features represents the 

second step which is used to implement two staged classification. In spite of the fact that the system presented powerful results, it 

has some drawbacks including its invalidity on a big dataset and the impracticality of the captured image box for data collection 

due to the need for patient’s foot to be in contact with box surface which in turn does not allow by the health care setting due to 

worries concerning infection control. Other important research by Manu, et al. [20] has implemented the DFU segmentation on 

whole foot images. 

Furthermore, computerized methodologies based on image processing or manually engineered-feature methods were applied 

for related skin cut segmentation (such as a wound) and tissue classification. In general, the conventional machine learning 

technique was applied through extracting several features like color descriptors and texture descriptors on small defined patches 

of injury images. Then, the classification task takes place to categorize skin patches into normal and abnormal by utilizing 

machine learning algorithms [21] [22] [23] [24]. The hand_crafting features methods are influenced by lighting conditions as in 

several computer vision systems, whereas skin color relying upon the patient ethnicity group. Generally, all the skin cuts 

connected to an ulcer and wound are labeled as a wound. From the medical viewpoint, the ulcer is due to an internal problem, 

while the wound is due to an external problem. There are more differences between ulcers and wounds in the skin cut such as the 

appearance of skin in case of wound or ulcer, pathology (disease processes), physiology (the method the body responds), and 

aetiology (the cause) [25,26]. Therefore, DFU takes into consideration the work of finding the difference between normal and 

abnormal skin at the same place of appearance. 

 

2.2 Deep Learning 

In recent years, deep learning has powered and solved many pattern recognition and computer vision tasks such as image 

classification [27], age classification [28], sketch recognition [29] and nuclei detection [30]. It is considered the main factor for 

such improvements in medical image analysis [31], [32]. It has been successfully employed in many biomedical image analysis 

challenges, such as malaria detection [33], skin biopsy histopathological image annotation [34] and retinal ailment detection [35]. 

Classical image analysis and Classical machine learning include a series of steps, which are preprocessing, feature extraction, and 

careful selection of features, learning, and classification. The performance of these methods is strongly dependent on the chosen 

features and the accuracy of the preceding steps while deep learning enables automated learning of the feature sets for particular 

problems instead of hand-crafting features [36]. Fig.1 shows the difference between deep learning and machine learning. 

 



Fig.2 Workflow of deep learning tasks                                                                                                                                                                  

Deep learning has been used in different tasks such as detection, counting, and classification. In spite of the fact that each of 

these tasks has its own specificities, there is essential overlap in pipeline implementation of these applications as shown in fig2. 

Classification is one of the most significant tasks in the medical field [31]. Several approaches of this task have been proposed in 

recent years, but still, remain challenging problems. There are numerous factors affect the performance of this task's algorithms 

such as noise, overlapping, complex shapes, as well as low-resolution of images, and there exists no single method that 

successfully handles all these factors. However, deep learning has overcame most of these challenges and has shown great 

improvements in the field of medical image classification as well as in different computer vision areas, especially towards the 

hard and important issues such as understanding images of different scopes such as spectral, marine organism classification, 

sickle cells anemia classification and hatching eggs classification [37], [38],[39], [40].  

Machine learning algorithms and conventional computer vision have many limitations including the need of countless manual 

tuning for each image, the difficulties in data representation with multi-level abstraction, and the processing ability of a large 

image data. The solution is a newly developed machine-learning algorithm, termed as Deep Convolutional Neural Networks [36]. 

This solution has the ability to obtain multi-level representation methods using non-linear simple modules first. Then, the simple 

feature representations are transformed into extra advanced abstract representations by these modules. In other words, the deep 

convolutional networks employ images as input for learning features, like locations from the pixel array values and edges at 

certain directions. Then, a combination of these edges has performed at a higher level in learning additional significant abstract 

features like desirable object components. The final stage is the connection of these components together to form the final objects 

[41].    

Convolutional Neural Networks (CNNs) are one of the reasons that make deep learning popular today [42]. They have shown 

record-breaking performance in different image classification tasks [27]. CNN was first proposed for image classification tasks 

[43]. CNN is a feed-forward neural network consisting of one or more convolutional layers followed by pooling layers as shown 

in Fig3. Additionally, the high performance and classification accuracy of CNN has made it popular for almost all classification 

tasks specifically for image classification. Convolutional Neural Networks (CNNs) play the core role in medical image 

classification [31].  

 



 
Fig.3 basic structure of CNN. Conv refers to Convolution layer, Pooling refers to Pooling layer, FC refers to a fully connected layer 

 

One of these CNNs is AlexNet. It was the first significant development in 2012 [43]. These significant developments have 

included several improvements. Firstly, it introduced better non-linearity in the network with ReLU activation. ReLU helps to 

avoid demising gradient problems. Secondly, it presents the dropout concept identical to regularization. In the dropout concept, 

the neurons are arbitrarily activated and deactivated in all layers for avoiding overfitting problem. Accordingly, the data is 

compelled to come across different routes. Hence, the network is capable of better generalization. Thirdly, introducing data 

augmentation indicates that the images are displayed with an arbitrary crop, rotation, and translation when supplied to the 

network. Consequently, it enforces the network since it has extra awareness of the image attributes, instead of the image itself. 

Last, but not least, for improving the classification accuracy, extra convolutional layers are stacked in advance the pooling layers. 

Afterward, the VGGNet network was introduced [44]. It inserted additional layers of convolutions and pooling for boosting the 

accuracy [44]. After VGGNet, GoogleNet was introduced [41], where convolution layers with different filter sizes are processed 

on the same input and then concatenated together. This type of structure assists in having multi-level feature extraction at each 

step. The ResNet network was introduced after the GoogleNet network. ResNet presented the concept of residual connection 

which is every two layers; there is an identity mapping via an element-wise addition [45]. An extra complicated structure was 

developed by the DenseNet network by connecting the entire blocks of layers to each other [46]. These networks have been fine-

tuned to classify different tasks of medical image classification [59], [60], [61]. Stacking extra layers to traditional CNN will not 

always improve the performance, but it may be the inverse because of the gradient. Therefore, we present a convolutional neural 

network model based on the Directed acyclic graph (DAG) concept where we increased the width of the network. Our proposed 

model will help to have different levels of features at each step of the network and will be very beneficial for gradient 

propagation. 

 

3 Methodology 

This section consists of five parts: (i) our dataset with examples of diabetic foot ulcer for different patients (ii) labeling process of 

or dataset as normal and abnormal patched skin (iii) pre-processing of Training patches (data augmentation) (iv) fine-tuned 

CNNs architectures of pre-trained models (ALEXNET [43], GoogleNet [41], and VGG16 [44]) (v) our proposed model 

(DFU_QUTNet) which is our own CNN architecture, DFU_QUTNet, to enhance the DFU classification performance.   

3.1 Our Dataset 

We first collected a standardized dataset of color images of diabetic foot ulceration from different patients. Our comprehensive 

dataset consists of 754 images of patient’s feet with DFU and healthy skin from the Nasiriyah Hospital’s diabetic center which is 

located in the south of Iraq, with ethical approval and written consent from all relevant persons and patients. These images are 

captured by Samsung galaxy note 8 and iPad with different brightness and angles. All collected images have been de-identified 

and will be managed following related policies. The collected images were then pre-processed to create patches with standard 

sizes in order to be used to train and test the proposed model and pre-trained deep-learning models (GoogleNet, VGG16, and 

AlexNet) for DFU classification.  

 

3.2 Expert Labeling of Images 

We first cropped the Region of Interest (ROI) with a size of 224×224.  This region is a significant region around the ulcer which 

includes important tissues of both skin classes (normal and abnormal), then the specialist labeled the cropped patches. The 

ground-truth labels are marked by a medical specialist in two forms of normal and abnormal skin patches. We collected a total of 

1609 skin patches with 542 normal and 1067 abnormal (DFU).  Finally, we divided the data-set into 80% of patches for training, 



and 20% of patches for a testing set of images. Fig 4 shows samples of normal and abnormal patches before the cropping process. 

Fig 5 shows some samples from our dataset. 

 

Fig.4 Samples of Normal and Abnormal patches  

 

Fig.5 Samples of patches with labels in our dataset 

 



Fig.6 Data augmentation samples a) original image b) rotation of 45 c) rotation of 90 d) rotation of 145 e) rotation of 180 f) rotation of 245 g) 

rotation of 280 h) rotation of 345 i) brightness of 70  j) brightness of 90 k) contrast of 70 l) contrast of 90 m) horizontal flip n) vertical flip.  

3.3 Augmentation of Training patches 
 

CNN requires a large volume of the labeled training set to perform well. If the training set is small, the parameters of CNN will 

not be well tuned and results in considerable overfitting. The data augmentation process generally improves the performance of 

different tasks with deep learning [47][48]. Furthermore, collecting a large amount of medical data is costly and difficult. Thus, 

we applied data augmentation techniques to enhance the performance of the deep learning models and avoiding the overfitting 

problem. We utilized a set of different image processing methods like flipping, rotation, contrast improvement, using various 

color models, and random scaling to complete the data augmentation. The rotation is achieved by rotating the image by an angle 

of 45, 90,145,180,245,280,345. Then, two types of flipping (horizontal flip, vertical flip) with contrast and brightness of 70 and 

90 degrees were applied to the original patches. The size of the patches is 224×224. With data augmentation techniques, these 

patches are duplicated 13 times for training. Fig 6 illustrates all types of image processing methods.  

 

3.4 Pre-trained CNN Architectures 

The state-of-the-art CNNs networks have been trained and tested on enormous image datasets such as ImageNet dataset which is 

approximately 1.28 million natural images of various domains for several classification tasks [49]. Pre-trained CNNs can be fine-

tuned on medical image data sets, enabling the large networks for learning specific features of the interesting task. A large 

number of studies have shown that transfer learning of pre-trained models is effective and efficient for medical image 

classification [50][51][52]. Using the transfer learning approach of pre-trained models enhances performance. We have used 

three CNNs models which are (GoogleNet[41], AlexNet[43], and VGG16[44]). These CNNs models have achieved high 

accuracy in different domains and we fine-tuned them for classification of abnormal (DFU) and normal (healthy skin) classes. 

Fig 7 explains the steps of our process of transfer learning:  

(1) VGGNet 16: This network was proposed by Simonyan, et al, [44] and was one of the winners of ILSVRC 2014. VGG-16 

has 13 convolutional layers, 5 layers of max-pooling, and 3 fully connected layers [44]. The inputs image size is 

224x224x3 with 3×3 filters size for convolutional layers. VGGNet was used for the classification of different 1000 classes. 

(2) AlexNet: Alex Krizhevsky, et al, [43], introduced the AlexNet and won the ILSVRC 2012. It is comprised of five 

convolutional layers with max-pooling layers which follows some of them plus three full-connected layers with an ending 

of softmax layer. The first convolutional layer has 96 kernels of 11x11x3 pixel pace size for filtering the input image of 

size 227x227x3 while the second convolutional layer has 256 kernels of size 5x5x48 for filtering the first convolutional 

layer output. The pooled/normalized outputs of the second layer are connected to the third convolutional layer, which 

consists of 384 kernels of size 3x3x256. The next convolutional layer (fourth) contains 384 kernels of size 3x3x192 while 

the last convolutional layer (the fifth) comprises 256 kernels of size 3x3x192. Note that the last three convolutional layers 

(third, fourth, and fifth) do not have any normalization or pooling layers connected between each other. Finally, there are 

4096 neurons in the fully-connected layers. AlexNet was used to classify 1000 classes of images. We resized the images of 

our dataset to fit with the input size of AlexNet.  

(3) GoogLeNet:  This model was originally trained on ImageNet dataset and introduced by Szegedi, et al, [41] at 2015. It is 

composed of 22 convolutional layers involving nine Inception modules. Each Inception module has three dissimilar kernel 

sizes, which are 1x1, 3x3, and 5x5 for convolutional, as well as, 3x3 for pooling. The input size is 224x224x3 of the color 

image. In a similar manner to the other CNNs, the training stage of the convolutional filter entries is based on the stochastic 

gradient descent algorithm (SGD). GoogLeNet structure helps to have multi-level feature extraction at each step. 



All these pre-trained Networks have been fine-tuned to classify feet’s skin into two classes namely normal and abnormal (DFU) 
and re-trained with our dataset. GoogLeNet, AlexNet, and VGG16 Networks are commonly employed for classification with 

transfer learning. GoogLeNet utilizes multi-size convolution kernels, in addition to pooling, inside a single layer. AlexNet is 

considered the first improvement of CNNs. Finally, the VGG network follows the common arrangement of the basic CNN, i.e., a 

sequence of convolutional, max pooling, activation, and full-connected layers. 

3.5 Proposed Approach-DFU_QUTNet Model  

 An innovative architecture of a deep convolutional neural network called DFU_QUTNet is proposed for improving the 

extraction of major features related to the classification of DFU. It is designed based on the idea of the Directed Acyclic Graph 

(DAG) concept. Two significant issues are considered for using this type of networks. The first issue is that increasing the 

number of convolutional layers to a traditional CNN model in order to enhance the accuracy is good at a limited number of layers 

then increasing more layers which may lead to a decline in performance (ii) A network with a small number of layers and simple 

structure  is sufficient for some applications. However, DFU Classification requires a network with a more complicated structure 

to extract more features in order to discriminate between normal and abnormal classes. Our proposed model has an excellent 

benefit of increasing its width without significantly increasing its computing cost. This is also helping not only to boost the 

details possible to learn but also its accuracy. The general workflow of our classification illustrated in Fig8.  

The DFU_QUTNet structure consists of several layers, which are:  

(1) Input layer: it consists of three channels. Each channel has a size of 224×224 pixels. Initially, the input image is cropped 

into 224×224 patches of two classes of normal class and abnormal class as shown in Fig 5, then these patches are used to 

train the DFU_QUTNet network. 

(2) Convolutional layer: This layer convolves the outcome of the previous layer through learnable filter set [53] since the 

weights identify the convolution filter. All filters are slid throughout the height and width of the input volume to produce 

two-dimensional activation maps of the corresponding filters. Note that each filter has an identical depth as the input [54]. 

In addition, the output size can be manipulated through three hyper-parameters, which are the zero-padding (i.e., padding 

zeros around the input borders for preserving its size), stride (i.e., number of pixels that the filter skips whereas sliding 

across the image), and depth (i.e., it represents the number of filters operated to the input image. These filters identify 

structures, for example, blobs, corners, edges, etc.). In this work, the model consists of 17 convolutional layers with filters 

of the size of 3×3. Each convolutional layer is followed by layers of batch normalization and the Rectified Linear Unit. 

(3) Batch normalization (BN) layer: This layer normalizes each input channel through a mini-batch. It is utilized for speeding 

up CNN's training process, as well as, diminishing the sensitivity of the network initialization [55]. In this work, the batch 

normalization layer is placed between the convolution and ReLU layers. There are 17 batch normalization layers used in 

this work. The batch normalization layer mechanism starts by normalizing the activations of each channel via subtracting 

the mini-batch average and dividing by the standard deviation of the mini-batch. Then, the input is moved the BN layer 

with a learnable offset β and scaled it via a learnable scale factor γ. 
(4) Rectified Linear Unit (ReLU): This layer performs data filtering by employing the function max (0, x) [56], where x is the 

input to the neuron. 

(5) Addition Layer: This layer adds inputs from two or multiple neural network layers. In order to use this layer, all inputs to 

this layer should have the same dimension. 

(6) Average pooling layer: This layer reduces its input size by partitioning it into rectangular pooling areas with different sizes 

such as 2×2, 3×3, etc., then computing the average values of small spatial block [57]. Average pooling gives normalized 

feature information from a block which may contain significant as well as less significant pixel information. Even a block 

may contain only significant pixel information which may denote sharpening features or the block which may contain only 

pixels having less significant characteristics other than sharpening features.  Max polling derives sharpening features which 

may include sharp edges, corners, and lines. In order to avoid losing some features which can be eliminated by the max 

pooling layer, we have applied global average pooling in the last part of the network instead of max pooling. All these 

features both significant and less significant are important to discriminate between classes. 

(7) Dropout Layer-: This layer is used to avoid overfitting and improve performance [58]. In this layer, neurons are randomly 

turned on and off in each layer to prevent overfitting problem. One dropout layer has been employed in the proposed 

method between the fully connected layers with probability p=0.5. 

(8) Fully Connected (FC) layer: this layer connects to all the neurons of the previous layer [57]. This layer combines the 

features for classifying the patches of the feet’s skin into two categories: normal, and abnormal. Two FC layers are utilized 

in our proposed DFU_QUTNet network. 



As shown in Fig. 10, the output layer is located on the top of the last fully connected layer. In this layer, the Softmax 

function is employed for classification as shown in Fig 9. The overall number of DFU_QUTNet layers is 58 as described in Table 

1. The output extracted features by DFU_QUTNet network are utilized for training the KNN classifier (DFU_QUTNet+KNN) 

and the SVM (DFU_QUTNet+SVM) as shown in Fig 9. Note that the KNN classifier categorizes the objects according to the 

nearest training samples in the space of feature. An object is categorized via it's neighbor's majority. Support vector machine 

(SVM) is a margin-based classifier. The idea of this algorithm is to discover the optimal linear partition between two classes so 

that objects are in the maximum distance of that line. Different types of kernels which are linear, polynomial, and radial basis 

function (RBF) that can be employed in SVM. The DFU_QUTNet structure is new which helps to have multi-level feature 

extraction at each step. 

With each convolution layer, there are more discriminative features. Healthy skin has lower activations because of the lack 

of skin abnormalities as shown in Fig 11. On the other hand, skin with an ulcer has higher activations because of skin 

abnormality as shown in Fig 12 and Fig 13. Our model and pre-trained models have been trained on our dataset for 100 epochs 

until the learning stopped.  

By using same training parameters that were used to train our network and pre-trained networks (GoogleNet[41], 

AlexNet[43], and VGG-16[44]), we trained DFUNet described in [59].DFUNet is the state-of-the-art network in the task of DFU 

classification. We wrote the code for the DFUNet network structure from scratch. The permission to use the DFUNet network 

has been approved by the author of the paper.  

Lastly, the processor properties used in this experiment are Intel (R) Core TM i7-5829K CPU @ 3.30 GHz, the RAM was 

16 GB and the GPU was 8 GB. Matlab2018 was used to implement the experiments. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Transfer Learning Steps 

 

 



 
Fig.8 Illustration of our classification pipeline 

 

 

Fig.9 Overview of the network training steps 



 

 
Fig.10 DFU_QUTNet architecture  

 

 

 

 



Table1 DFU_QUTNet architecture, Conv refers to convolutional layers, BN refers Batch Normalization layer, ReLU refers Rectified Linear 

Unit, drop refers dropout layer, FC refers fully connected layer. 

Name of layer Kernel size and stride Activations 

Input layer  - 224×224×3 

Conv1, BN1, ReLU1 Conv1: Kernel size=3×3, stride=1 224×224×32 

Conv2, BN2, ReLU2 Conv2: Kernel size=3×3, stride=2 112×112×32 

Conv3, BN3 Conv3: Kernel size=3×3, stride=1 112×112×32 

Conv4, BN4, ReLU4 Conv4: Kernel size=3×3, stride=2 112×112×32 

Conv5, BN5 Conv5: Kernel size=3×3, stride=1 112×112×32 

Add1 Addition of two inputs 112×112×32 

ReLU3 Activation Function 112×112×32 

Conv6, BN6, ReLU6 Conv6: Kernel size=3×3, stride=2 56×56×64 

Conv7, BN7 Conv7: Kernel size=3×3, stride=1 56×56×64 

Conv8, BN8, ReLU8 Conv8: Kernel size=3×3, stride=2 56×56×64 

Conv9, BN9 Conv9: Kernel size=3×3, stride=1 56×56×64 

Add2 Addition of two inputs 56×56×64 

ReLU7 Activation Function 56×56×64 

Conv10, BN10, ReLU10 Conv10: Kernel size=3×3, stride=2 28×28×128 

Conv11, BN11 Conv11: Kernel size=3×3, stride=1 28×28×128 

Conv12, BN12, ReLU12 Conv12: Kernel size=3×3, stride=2 28×28×128 

Conv13, BN13 Conv13: Kernel size=3×3, stride=1 28×28×128 

Add3 Addition of two inputs 28×28×128 

ReLU11 Activation Function 28×28×128 

Conv14, BN14, ReLU14 Conv14: Kernel size=3×3, stride=2 14×14×256 

Conv15, BN15 Conv15: Kernel size=3×3, stride=1 14×14×256 

Conv16, BN16, ReLU16 Conv16: Kernel size=3×3, stride=2 14×14×256 

Conv17, BN17 Conv17: Kernel size=3×3, stride=1 14×14×256 

Add4 Addition of two inputs 14×14×256 

ReLU15 Activation Function 14×14×256 

Average Pooling Layer Kernel size=8×8, stride=1,  7×7×256 

FC1 100 fully connected 1×1×100 

Drop1 Dropout layer with learning rate:0.5 1×1×100 

FC2 2 fully connected 1×1×2 

Softmax layer 0=Normal, 1=Abnormal(DFU) 1×1×2 

 

 
Fig. 11 Some learnable filters from the first convolutional layer for normal skin 



 

Fig. 12 Some learnable filters from the first convolutional layer for abnormal skin 

 

 

Fig. 13 Some learnable filters from the second convolutional layer for abnormal skin 

 

 

 



4 Experimental Results   

As mentioned above, we divided our dataset to the training phase and test phase. We implemented several experiments on our 

challenging dataset to evaluate the classification performance of our network and fine-tuned networks that we have used. Our 

model and fine-tuned models effectiveness are measured by a F1-score. F1- scores convey the balance between the precision (P) 

and the recall(R) (Eq3). Recall and Precision are two basic parameters for the assessment of the proposed approach, which are 

calculated (Eq 1,2):                                                                                 
                                                                 

                                                                       
 

Where TP (True Positive) is the number of images that the Network correctly identifies as relevant.TN (True Negative) is the 

number of images the Network correctly identifies as irrelevant. FP (False Positive) is the number of images the Network falsely 

identifies as relevant.FN (False Negative) is the number of relevant images that the Network fails to identify. 

Table 2  DFU_QUTNet with different classifiers 

classifier Precision (%) Recall (%) F1-Score (%) 

DFU_QUTNet 94.2 92.6 93.4 

DFU_QUTNet+KNN 93.8 92.7 93.2 

DFU_QUTNet+SVM 95.4 93.6 94.5 

 

Table 2 reported the measurements of our proposed DFU_QUTNet with different classifiers. DFU_QUTNet with SVM has 

the highest measures in precision, recall, and F1-score with 95.4%, 93.6%, and 94.5% respectively. DFU_QUTNet with KNN 

achieved the lowest scores of 93.8% for precision and 93.2% for the F1-score while the recall score is 92.7% which is higher than 

the recall score of  DFU_QUTNet using softmax.  DFU_QUTNet using softmax achieved 94.2%, 92.6%, 93.4% for precision, 

recall, and F1-score respectively.  
Table 3 Comparison of  DFU_QUTNet with state-of-the-art Networks for classification 

Network Precision (%) Recall (%) F1-Score (%) 

AlexNet[43] 91.1 87.2 89.1 

VGG16[44] 92.3 89.7 90.9 

GoogleNet[41] 95.6 90.5 92.9 

Proposed DFU_QUTNet+SVM        95.4 93.6 94.5 

 

For the sake of comparison, we have trained and tested three state-of-the-art networks on our dataset and compared them to 

our proposed DFU_QUTNet as reported in Table3. AlexNet achieved the lowest scores with 91.1% for precision, 87.2% for 

recall and 89.1 for F1-score. Our proposed DFU_QUTNet with SVM has the highest evaluation performance in the recall, with a 

score of 93.6% and F1-score with 94.5%, whereas, GoogleNet has the highest score in precision with 95.6%. We also compared 

our proposed model to DFUNet as reported in Table4. Our proposed model outperformed DFUNet network in all evaluation 

measurements. DFU_QUTNet without any other classifiers is still superior to the state-of-the-art Networks. 

Due to the type of structure that our model is designed for, it has the ability to find more subtle changes and discriminate 

between two classes of normal and abnormal. It also handled many hard cases such as small sizes of DFU, skin wrinkles and 

patches with a toe.  

Table4: Competitive results of  DFU_QUTNet+SVM classification with DFUNet Network 

Network Precision (%) Recall (%) F1-Score (%) 

DFUNet [59] 93.8 92.5 93.1 

Proposed DFU_QUTNet+SVM 95.4 93.6 94.5 

 

 

 



5 Conclusions and Future Work 

A novel CNN model, DFU_QUTNet, for automated classification of DFU into two classes: normal (healthy skin) and abnormal 

(DFU) is proposed in this paper. The architecture of DFU_QUTNet is designed based on the idea of increasing the width. It has 

the great advantage of boosting its width without drastically boosting its computational cost. We collected a large dataset of total 

754-feet of patients with DFU and healthy skin. The dataset has been labeled into two classes normal and abnormal by an expert. 

Our proposed DFU_QUTNet model has been trained on our dataset. Features extracted by our proposed model were used to train 

the SVM and KNN classifiers. We compared the performance of our network with state-of-the-art CNN networks (GoogleNet, 

AlexNet, and VGG16). These CNN networks were trained on a large dataset of the ImageNet dataset. After the fine-tuning 

process, we re-trained them on our dataset with transferring the previous learning of these deep learning networks. The 

comparison shows that the proposed framework, DFU_QUTNet with SVM, has higher F1-Score of 94.5% than the state-of-the-

practice methods. The proposed DFU_QUTNet network is not limited to the DFU classification task only. For instance, we aim 

to fine-tune DFU_QUTNet model to classify seven classes of skin cancer. Since DFU_QUTNet network extracted significant 

features to differentiate between classes of normal and abnormal, we also aim to employ DFU_QUTNet network in the task of 

DFU detection. 
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