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DFUNet: Convolutional Neural Networks for

Diabetic Foot Ulcer Classification
Manu Goyal, Student Member, IEEE, Neil D. Reeves, Adrian K. Davison, Member, IEEE,

Satyan Rajbhandari, Jennifer Spragg, Moi Hoon Yap, Member, IEEE

Abstract—Globally, in 2016, one out of eleven adults suffered
from Diabetes Mellitus. Diabetic Foot Ulcers (DFU) are a major
complication of this disease, which if not managed properly
can lead to amputation. Current clinical approaches to DFU
treatment rely on patient and clinician vigilance, which has
significant limitations such as the high cost involved in the
diagnosis, treatment and lengthy care of the DFU. We collected
an extensive dataset of foot images, which contain DFU from
different patients. In this DFU classification problem, we assessed
the two classes as normal skin (healthy skin) and abnormal skin
(DFU). In this paper, we have proposed the use of machine
learning algorithms to extract the features for DFU and healthy
skin patches to understand the differences in the computer vision
perspective. This experiment is performed to evaluate the skin
conditions of both classes are at high risk of misclassification by
computer vision algorithms. Furthermore, we used Convolutional
Neural Networks for the first time in this binary classification. We
have proposed a novel convolutional neural network architecture,
DFUNet, with better feature extraction to identify the feature
differences between healthy skin and the DFU. Using 10-fold
cross-validation, DFUNet achieved an AUC score of 0.961. This
outperformed both the traditional machine learning and deep
learning classifiers we have tested. Here we present the devel-
opment of a novel and highly sensitive DFUNet for objectively
detecting the presence of DFUs. This novel approach has the
potential to deliver a paradigm shift in diabetic foot care among
diabetic patients, which represent a cost-effective, remote and
convenient healthcare solution.

Index Terms—Diabetic foot ulcers, classification, deep learning,
convolutional neural networks, DFUNet.

I. INTRODUCTION

D IABETES Mellitus (DM) commonly known as Diabetes,

is a lifelong condition resulting from hyperglycemia

(high blood sugar levels), which leads to major life-threatening

complications such as cardiovascular diseases, kidney failure,

blindness and lower limb amputation which is often preceded

by Diabetic Foot Ulcers (DFU) [1]. According to the global

report on diabetes, in 2014, there are 422 million people living

with DM compared to 108 million people in 1980. Among the

adults that are over 18 years of age, the global prevalence has
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gone up from 4.7% in 1980 to 8.5% in 2014 [2]. It is estimated

by the end of 2035, the figure is expected to rise to 600 million

people living with DM worldwide [3]. It is worth mentioning

that about only 20% of these people will be from developed

countries and the rest will be from developing countries due to

poor awareness and limited healthcare facilities [4]. There is

about 15%-25% chance that a diabetic patient will eventually

develop DFU and if proper care is not taken, that may result

in lower limb amputation [5]. Every year, more than 1 million

patients who have diabetes lose part of their leg due to

the failure to recognize and treat DFU appropriately [6]. A

Diabetic patient with a ‘high risk’ foot needs periodic check-

ups of doctors, continuous expensive medication, and hygienic

personal care to avoid the further consequences as discussed

earlier. Hence, it causes a great financial burden on the patients

and their family, especially in developing countries where the

cost of treating this disease can be equivalent to 5.7 years of

annual income [7].

In current clinical practices, the evaluation of DFU com-

prises of various important tasks in early diagnosis, keeping

track of development and number of lengthy actions taken in

the treatment and management of DFU for each particular

case: 1) the medical history of the patient is evaluated;

2) a wound or diabetic foot specialist examines the DFU

thoroughly; 3) additional tests like CT scans, MRI, X-Ray may

be useful to help develop a treatment plan. The patient with

DFU has problem of a swollen leg, although it can be itchy

and painful depending on each case. Usually, the DFU have

irregular structures and uncertain outer boundaries. The visual

appearance of DFU and its surrounding skin depending upon

the various stages i.e. redness, callus formation, blisters, sig-

nificant tissues types like granulation, slough, bleeding, scaly

skin. Hence, the ulcer evaluation with the help of computer

vision algorithms would be based on the exact assessment of

these visual signs as color descriptors and texture features.

The major challenges that are involved with this classifica-

tion task are as follows: 1) large time in collection and expert

labelling of the DFU images 2) high inter-class similarity

between the normal (healthy skin) and abnormal classes (DFU)

and intraclass variations depending upon the classification of

DFU [8], lighting conditions and patient’s ethnicity. In this

work, we propose computer vision algorithms to differentiate

DFU from the healthy skin with traditional machine learning

and deep learning approaches. The key contributions of this

paper include:

1) This paper presents the related computerised

telemedicine systems designed for DFU. We also
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present the DFU dataset of 397 foot images, which

consists of 292 images with DFU and 105 healthy foot

images. The podiatrists delineated the total of 1679 skin

patches with 641 of healthy skin and 1038 of DFU.

We are working with the ethical approval with NHS to

make this dataset available for reproducibility of this

work.

2) To the best of our knowledge, this is the first time,

machine learning algorithms are used to understand

and extract the computer vision features from DFU

and healthy skin patches. We use convolutional Neural

Networks (CNNs) to develop a fully automatic method

to classify the DFU skin against the normal skin. Codes

will be made publicly available after the acceptance of

this work.

3) Development of a novel CNN architecture called DFU-

Net, which is fine-tuned to process the input data more

effectively and efficiently than other comparative state-

of-the-art CNNs architecture. CNNs require substantial

data to produce very accurate results, but with the help

of large filter size of DFUNet in parallel convolution

blocks, it can produce good results on small dataset such

as Facial Skin dataset.

II. RELATED WORK

The proliferation of information and communication tech-

nologies present both challenges and opportunities in terms of

the development of new age healthcare systems. There are

a number of telemedicine systems that are currently being

developed a) to improve the current healthcare systems and

also, decrease the cost of medical facilities; b) to improve

the reach of medical facilities i.e. frequent remote assessment

of patients with the help of communication devices; c) to

provide the automated solutions to deal with the shortage of

expert medical professionals for these chronic diseases [9].

Over the years, researchers and doctors have developed key

telemedicine systems to monitor diabetes [10], [11]. However,

there are very few intelligent systems developed for assessment

of diabetic foot pathologies which can be categorized into non-

automated and automated telemedicine systems.

A. Telemedicine Systems for DFU

With the rapid growth in mobile telecommunications, re-

mote communication is made possible with the help of stan-

dalone devices like smart-phones, laptops and Internet. Nowa-

days, a pocket size smart-phone with the advanced mobile

operating system has the capability of a personal computer

that can capture and send high-resolution pictures and also,

audio and video communication with the help of advanced

mobile internet like 4G. In the non-automated category, the

common telemedicine systems based on these devices that are

mostly set-up in the remote location for assessment of patients

a) video conferencing [12]; b) three-dimensional (3D) wound

imaging [13]; c) digital photography [14]; d) optical scanner

[15]. However, there is still need of specialized medical

professionals on the other side for completing the assessment

of the patient. Though these systems provide promising results,

there is an urgent need of intelligent systems which can

automatically detect the DFU pathologies remotely.

The use of automated telemedicine systems for DFU is still

in its infancy. Notably, Liu et al. [16], [17] in 2015 developed

an intelligent telemedicine system for detection of diabetic

foot complications with the help of spectral imaging, infra-

red thermal images and 3D surface reconstruction. However,

to implement this system, there is a requirement of several

expensive devices and specialist training to use these devices.

Wang et. al. [18] have used an image capture box to capture

image data and determined the area of DFU using cascaded

two staged Support Vector Machine based classification. They

proposed the use of a super-pixel technique for segmentation

and extracted the number of features to perform two staged

classification. Although this system reported a promising re-

sult, it has not been validated on a large dataset. Also, the

image capture box is very impractical for data collection as

there is a need for contact of the patient’s feet and box surface

which would not be allowed in a healthcare setting because

of concerns regarding infection control. In other significant

work, Manu et al. [19] perform the segmentation of DFU and

surrounding skin on the full foot images.

Additionally, computer methods based on manually engi-

neered features or image processing approaches were imple-

mented for tissue classification and segmentation of related

skin lesion such as the wound. The conventional machine

learning for classification task was performed by extracting

various features such as texture descriptors and color descrip-

tors on small delineated patches of wound images, followed

by machine learning algorithms to classify them into normal

and abnormal skin patches [20], [21], [22], [23], [24]. As

in many computer vision systems, the hand-crafted features

are affected by lighting conditions and skin color depending

upon the ethnicity group of the patient. In general, virtually

all the skin lesions related to both wound and ulcer are now

termed as wound. In medical perspective, both wound and

ulcer are considered differently as the wound is caused by

an external problem whereas, ulcer are caused by an internal

problem. Also, there are differences in appearance of the skin

lesion of wound and ulcer, the cause (aetiology), the way the

body responds (physiology) and disease processes (pathology)

[25]. Hence, in this present study, only DFU are considered

to determine how they are different from the normal healthy

skin at the same place of appearance.

B. Computer Vision and Deep Learning

In recent years, there has been a rapid development in

the area of computer vision, especially towards the difficult

and important issues like understanding images of different

domains such as spectral, medical, object and face detection,

multi-class and label classification [26], [27], [28], [29], [30],

[31], [32]. The conventional computer vision and machine

learning algorithms were very limited in their ability to process

the extensive image data, provide the representations of data

with multiple levels of abstraction, and require a lot of manual

tuning for each input image. Deep convolutional networks as a

recent machine learning algorithm comes out as an important
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technique to solve these kinds of computer vision problems

[33], [34]. Deep convolutional networks obtain the multiple

levels of representation methods by simple non-linear modules

which transform the simple feature representation into the

more advanced abstract representations for classification. Deep

convolutional networks use images as input and start to learn

features such as edges at specific directions and positions from

the array of pixel values. At the higher level, it combines

these edges to learn more important abstract features such as

components of desirable objects and finally, these components

are connected with each other to form final objects [33].

Supervised learning is one of the most common forms

of machine learning. It is essential for the training of the

network as the system learn the classification tasks from an

extensive collection of images that are labelled differently

for each category. Without training, it is not possible for the

machine to detect the desired class by giving the highest

score of all classes [35], [36], [37]. During the training stage,

different images are processed by the machine to produce the

output vector of scores for all classes for each image and

then, the error is measured in respect of output scores versus

the expected score until the desirable score for each class is

obtained. After training, a validation set of data or images is

used to fine tune the hyper-parameters of networks like setting

the weights for each layer and the number of convolutional and

pooling layers. Lastly, the system is tested with real-world test

data without any expected outcome to check the performance

of the system.

The remainder of the paper is structured as follows. Section

III describes the methodology that we used to design classifiers

based on CML and CNNs and provides details of our proposed

DFUNet. In Section IV, performance of various classifiers

is tested with evaluation metrics like Sensitivity, Specificity,

Precision, F-Measure, and Area Under the receiver operating

characteristic Curve (AUC). In Section V, the conclusion and

future scope of our work are discussed.

III. METHODOLOGY

This section describes the proposed dataset containing ex-

amples of DFU of various patients. This includes expert

labelling of the different regions as normal and abnormal skin

patches. In addition, the feature descriptors used in experi-

ments are detailed, including for CML, the CNNs architecture

of LeNet, AlexNet, and GoogLeNet. Finally, we propose our

own CNN architecture, DFUNet, to improve the way DFU are

classified.

A. DFU Dataset

The first challenge was to collect a dataset of standardized

color images of DFU from various patients to train the various

deep learning model. We utilized an extensive database of 292

images of patient’s foot with DFU over the previous five years

at the Lancashire Teaching Hospitals, obtaining ethical ap-

proval from all relevant bodies and patient’s written informed

consent. Also, we collected 105 images of the healthy foot

to get the more cases for normal healthy class. Approval

was obtained from the NHS Research Ethics Committee to

use these images for this research. These DFU images were

captured with Nikon D3300. Whenever possible, the images

were acquired with close-ups of the full foot with the distance

of around 30-40 cm with the parallel orientation to the plane

of an ulcer. The use of flash as the primary light source was

avoided and instead, adequate room lights are used to get

the consistent colors in images. To ensure the close-range

focus and avoiding the blurriness in images from the close

distance, a Nikon AF-S DX Micro NIKKOR 40mm f/2.8G

lens was used. We also included another test case that is

captured by IPad with the help of FootSnap application to

show the robustness of algorithms over heterogeneous capture

setup [38]. It consists of 20 abnormal skin patches and 32

normal skin patches in this heterogeneous test case.

B. Expert Labelling of Images

With the available annotator from Hewitt et al. [39], for

each full image of a foot with ulcers (as illustrated in Fig. 1),

the medical experts delineated the Region Of Interest (ROI)

which is an important region around the ulcer comprises of

significant tissues of both normal and abnormal skin. The

ground truth labels are delineated by medical professionals

in the form of both normal and abnormal skin patches from

the ROI region. In the collection of ground truth patches, the

experts only collected both classes of patches from ROI region

that helped with more robust classification of the patches

rather than involving the whole foot as a region. For each

delineated abnormal region, the ground truth of the type of

the abnormality was labelled and exported to an Extensible

Markup Language (XML) file. For the annotation of 397-

foot images with both ulcer and non-ulcer, there is a total of

292 ROI (Only for the foot images with ulcers). From these

annotations, we produce a total of 1679 skin patches with 641

of normal and 1038 of abnormal class. Finally, we divided

the dataset into training set of 1423 patches, validation set of

84 patches and testing set of 172 patches. The annotator tool

which can delineate the image into different types of patches

is shown in Fig. 1.

C. Data Augmentation of Training Patches

Deep networks require a lot of training image data because

of the enormous number of parameters, especially weights

associated with convolutional layers needed to be tuned by

learning algorithms. Hence, we used data augmentation to

improve the performance of the deep learning methods. We

used the combination of various image processing techniques

like rotation, flipping, contrast enhancement, using different

color space, and random scaling to perform data augmentation.

The rotation is performed by rotating the image by the angle

of 90�, 180�, 270�. Then, three types of flipping (horizontal

flip, vertical flip and horizontal+vertical flip) performed on

the original patches. The four color space that are used for

data augmentation are Ycbcr, NTSC, HSV and L*a*b. In

the contrast enhancement, we used the three functions called

adjust image intensity value, enhanced contrast using his-

togram equalization, and contrast-limited adaptive histogram

equalization. We produced the two times cropped patches with
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Fig. 1. An example of delineating the different regions from the whole foot image to produce abnormal and normal skin patches with the help of annotator
software [39].

the help of random offset and random orientation from the

original dataset of skin patches. With these techniques, we

increase the number of training and validation patches by 15

times i.e. 21,345 patches for training and 1260 patches for

validation.

D. Pre-processing of Training Patches

Since, we obtained a large number of training data with

the help of data augmentation, it is essential to perform

pre-processing on these patches. We used the zero-centre

technique for pre-processing of these obtained patches, and

then performed the normalization of every pixel.

E. Conventional Machine Learning

We investigate the use of human design features with CML

on DFU and healthy skin classification. From our observation

on the differences between DFU and healthy skin, the color

and texture feature descriptors were the visual cues for classi-

fication. For this 2-class classification problem, the sequential

minimal optimization (SMO) [40] was selected as SVM based

machine learning classifier.

1) Feature Descriptors: We resize the patches of the whole

dataset to 256×256 to extract the uniform color and texture

feature descriptors. The three color space that we have used:

RGB, HSV and L*u*v.

Local Binary Patterns (LBP) [41] is one of the most popular

texture descriptors for the classification. In our case, the LBP

features are extracted to recognize the sudden change in texture

in an abnormal region of the foot for detection of DFU.

Histogram of Oriented Gradients (HOG) [42] is a manually

designed feature which converts the pixel based representation

into the gradient-based. In the context of this classification,

HOG can be useful in terms of image gradients at an abnormal

Fig. 2. The output of healthy and diabetic ulcer skin from the first convolution
layer of LeNet highlight discriminative features.

location in an image which gives you the intensity change in

that location. As the gradient is a vector quantity, it has both

the magnitude and direction.

F. Convolutional Neural Networks

For comparison with the traditional features, deep learning,

specifically convolutional neural networks, have been used

to classify between healthy foot skin and skin with diabetic

ulcerations. The first architecture we used was LeNet [43]

running for 60 epochs, a learning rate of 0.01 with a step-

down policy and step size of 33%, and gamma is set to 0.1.

This network was originally used for recognizing digits and

zip codes. These simple structures are easily recognized, even

in hand-written datasets such as MNIST [44].

Using LeNet represents these structures much better than

traditional features, even on a relatively small training set of

1423 patches and validation of 84 patches.

The input was 28×28 patches of skin in grayscale split into

abnormal and normal skin samples. At the first convolution

layer shown in Fig. 2, the kernels and activations already

show the effectiveness of CNNs when highlighting important

features.
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We used the Caffe [45] framework to implement LeNet

[43], and used the Adaptive Moment Estimation (Adam) [46]

method for stochastic optimisation. This solver combines the

advantages found in AdaGrad [47], which works well with

sparse gradients, and RMSProp [48], which works well in

an online setting. Adam is intended for large datasets and

variability in parameters. However, the results in Table IV

show that smaller datasets work as effectively.

We also used popular CNN model AlexNet for classification

of abnormal (DFU) and normal (healthy skin) classes. This

network was originally used for classification of 1000 different

objects of classes on ImageNet dataset. It emerged as the

winner of ImageNet ILSVRC-2012 competition in classifica-

tion category by achieving 99% confidence. There are few

adjustments made in original network to work well for our

2-class classification problem. Also, a pre-trained model was

used for better convergence of weights to achieve better results

[34]. To train the model on Caffe framework, we used the same

parameters as in LeNet i.e. 60 epochs, a learning rate of 0.01,

and gamma of 0.1.

Another state-of-the-art CNN architecture that we used is

GoogLeNet [27], a 22 layers deep network, with a similar

experimental setting as of LeNet and AlexNet. Szegedy et al.

[27] introduced a new module called inception to GoogLenet.

This acts as a multiple convolution filter inputs, which are

processed on the same input and also does pooling at the same

time. All the outcomes are then merged into single feature

layer. This layer allows the model to take advantage of multi-

level feature extraction from each input. Again, a transfer

learning approach using pre-trained models to improve the

performance.

G. Proposed Method - Diabetic Foot Ulcer Network

Since, this experiment focuses on the types of skin lesion

which are at high risk of being misclassified by computer

vision algorithms. ResNet [49], DenseNet [50], Inception

[27] frameworks are very deep and computational intensive

networks to work on this basic binary classification problem.

The traditional CNNs such as AlexNet [34], [33] use only

single type of convolutional filters popularly ranging from

1×1 to 7×7 on the input data. To improve the extraction of

important features for DFU classification, we propose a new

Diabetic Foot Ulcer Network (DFUNet) architecture which is

combination of important aspect of CNNs architecture - depth

and parallel convolution layer. For DFUNet, we significantly

decreased the depth of the network, but, we increased the size

of filters in the parallel convolutional blocks to learn more

features maps. DFUNet combines two types of convolutional

layers i.e. traditional convolution layers at the starting of the

network which use single convolutional layers followed by

parallel convolutional layers, which use multiple convolutional

layers for extraction of concatenated features from the same

input. Detecting changes in healthy skin is a clear computer

vision problem similar to malignant skin lesions, so the DFU-

Net is designed around convolutions to finding discriminative

features for learning.

Healthy skin tends to exhibit smooth textures and DFU have

many distinct features including long edges, sharp changes

in intensity or color and quick changes between surrounding

healthy skin and the DFU itself. DFUNet, summarised in

Fig. 3, is split into three main sections: the initialisation

layers inspired by GoogLeNet, parallel convolution layers to

discriminate the DFU more efficiently than previous network

layers and lastly, both fully-connected layers and a softmax-

based output classifier. The detailed layers of the general

DFUNet architecture are provided in the Table I.

The parameters used for training with DFUNet are 60

epochs, a batch size of 8, the Adam solver with a learning

rate of 0.001. A step-down policy is used where the learning

rate reduces with a step of 33% and gamma is set to 0.1.

The Configuration of GPU Machine for Experiments is: (1)

Hardware: CPU - Intel i7-6700 @ 4.00Ghz, GPU - NVIDIA

TITAN X 12GB, RAM - 32GB DDR4 (2) Software: Caffe .

1) Input Data: The DFU training and validation images are

input as 256×256 patches from areas of the feet containing

DFU and healthy skin. An example of the regions of a foot

cropped is shown in Fig. 4. We used the centre crop of size

224×224 and mirror as data parameters. Initial traditional

convolutional block consists of single convolution filters at

each step to reduce the computational cost on feature maps.

Inspired by the GoogLeNet [27] input stem, the input to DFU-

Net, begins by initial convolutions, pooling and normalisation

layers in a traditional CNNs structure from layer 1 to layer

5 in Table I. Doing this step also ensures that the larger raw

input image dimensionality is reduced before moving on to

subsequent layers.

2) Parallel Convolutions: The idea behind using the paral-

lel convolutional layer is basically concatenation of multiple

convolution filter inputs to allow the multiple-level feature

extraction and cover more spread out clusters from same input.

The design of the convolutions is weighted towards creating

as discriminative features as possible to highlight any DFUs

in an image. Three sizes of convolution kernels are used

in the parallel convolutional layers of DFUNet throughout:

5×5, 3×3 and 1×1. 1×1 convolution layer is used in the

parallel convolutions to reduce the dimensionality of your

input to large convolutions such as 3×3 and 5×5, thus keeping

computations reasonable. These are processed in parallel to

each other and finally concatenated. The core of DFUNet is

the three parallel convolutions and is shown in Fig. 5. The

parallel convolutional layers are key innovation in methods

appears to be in the architecture of the DFUNet. As this is

the one of the most significant innovation, the DFUNet is

experimented with different variants of these parallel sections

to get the optimal architecture. We investigated the different

sizes of filters in the parallel convolutions by making 5 variants

to get the best variant based on the performance metrics in the

Table II. We created these five variants to test the hypothesis

whether increasing the size of filters improves the performance

of DFUNet or not. These variants are experimented on the

DFU dataset and the results are provided below in the Table

III.

Each convolution provides additional discriminative power.

Lower activations are present in healthy skin samples shown

in Fig. 6 due to the absence of skin abnormalities. Higher

activations are present in skin with an ulcer as shown in Fig.
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Fig. 3. An overview of the proposed DFUNet architecture. The proposed DFU architectures consists of Input Data block which consists of training and
validation data, Traditional Convolution block consist of single convolutional layers, Parallel Convolution block to extract concatenated features with the help
of different convolutions, Fully Connected layers which acts as neural network and finally, Output Classifier to produce the prediction of class label

TABLE I
COMPLETE DESCRIPTION OF NETWORK ARCHITECTURE OF DFUNET. CONV. REFERS TO CONVOLUTIONAL LAYER, MAX-POOL. REFERS TO

MAX-POOLING LAYERS. THERE ARE VARIATIONS IN FILTER SIZE OF THE PARALLEL CONVOLUTION BLOCKS OF DIFFERENT VARIANT OF DFUNET.

Layer no. Layer type Filter size Stride No. of filters FC units Input Output

Layer 1 Conv. 7×7 2×2 64 - 3×224×224 64×112×112

Layer 2 Max-pool. 3×3 2×2 - - 64×112×112 64×56×56

Layer 3 Conv. 1×1 1×1 64 - 64×56×56 64×56×56

Layer 4 Conv. 3×3 1×1 192 - 64×56×56 192×56×56

Layer 5 Max-pool. 3×3 2×2 - - 192×56×56 192×28×28

Layer 6 Parallel conv. 1×1,3×3,5×5 1×1 32⊕64⊕128 - 192×28×28 224×28×28

Layer 7 Max-pool. 3×3 2×2 - - 224×28×28 224×14×14

Layer 8 Parallel conv. 1×1,3×3,5×5 1×1 32⊕64⊕128 - 224×14×14 224×14×14

Layer 9 Parallel conv. 1×1,3×3,5×5 1×1 32⊕64⊕128 - 224×14×14 224×14×14

Layer 10 Max-pool. 3×3 2×2 - - 224×14×14 224×7×7

Layer 11 Parallel conv. 1×1,3×3,5×5 1×1 32⊕64⊕128 - 224×7×7 224×7×7

Layer 12 Max-pool. 7×7 1×1 - - 224×7×7 224×1×1

Layer 13 Fully conn. - - - 1000

Layer 14 Fully conn. - - - No. of Classes

Fig. 4. Healthy and ulcer patches taken from feet for training in the CNN.

TABLE II
THE DESCRIPTIONS OF FILTER SIZE IN PARALLEL CONVOLUTIONAL

BLOCKS OF DIFFERENT VARIANTS OF DFUNET. CONV. REFERS TO

CONVOLUTIONAL LAYER AND VAR. REFERS TO VARIANT.

Layers No. DFUNet Var. 1 DFUNet Var. 2 DFUNet Var. 3 DFUNet Var. 4 DFUNet Var. 5

1st Parallel Conv. 128⊕256⊕512 192⊕256⊕512 128⊕128⊕128 192⊕192⊕192 256⊕256⊕256

2nd Parallel Conv. 128⊕256⊕512 192⊕256⊕512 128⊕128⊕128 256⊕256⊕256 256⊕256⊕256

3rd Parallel Conv. 128⊕256⊕512 192⊕256⊕512 256⊕256⊕256 256⊕256⊕256 512⊕512⊕512

4th Parallel Conv. 128⊕256⊕512 192⊕256⊕512 256⊕256⊕256 512⊕512⊕512 512⊕512⊕512

Fig. 5. The structure of parallel convolution block in which three types of
convolutional filters are used, concatenation layers to concatenate the features
of each convolutional filters, and finally pass it local response norm layer.

7 due to skin abnormality.

Each convolution layer uses a Rectified Linear Unit (ReLU)

which is defined as

f(x) = max(0, x) (1)

where the function thresholds the activations at zero. As we

use a ReLU for each convolution, they include unbounded

activations, so we use local response normalisation (LRN)

to normalise these activations after each concatenation of

convolutional layers. It is also proven helpful in avoiding the
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Fig. 6. The convolution activation produced by the kernels of first convo-
lutional layer on healthy skin raw input, to highlight the features learned by
convolutional layer.

Fig. 7. The convolution activation produced by the kernels of first convolu-
tional layer on DFU skin patch, to highlight the discriminative features learned
by convolutional layer.

over-fitting problem faced by CNNs methods. Let, a i
x,y

be

the source output of kernel i applied at position (x,y). Then,

regularized output b i
x,y

of kernel i applied at position (x,y) is

computed by

b i
x,y

= a i
x,y

(k + α

min(N�1,i+n
2
)X

max(0,i�n
2
)

(a j

x,y
)2)β (2)

where N is total number of kernels, n is the size of the

normalization neighbourhood and α,β,k,(n) are the hyper-

parameters.

Further, to reduce dimensionality, a max pooling layer is

included after the first and the third parallel convolutions.

3) Fully Connected Layers and Output Classifier: The final

section is the softmax output of class probabilities and is a

measure of how close the parameters are with respect to the

ground truth labels of the training and validation data. The 2-

class outputs of the DFU is healthy skin and DFU. It is formed

from an average pooling layer followed by two fully connected

(FC) layers with outputs of 100 for the first and 2 for the

second. It is worth mentioning, the computation complexity of

DFUNet is further reduced for the 2-class problem by using

only 100 neurons rather than 1000 in first FC layer and last

FC layer is adjusted as 2. This modification in FC layers helps

in faster processing time in both training and testing phase of

the DFUNet. The softmax function (cross-entropy regime) is

the final layer and is defined as

fj(z) =
ezjP
k e

zk
(3)

where fj is the j-th element of the vector of class scores f and

z is a vector of arbitrary real-valued scores that are squashed

to a vector of values between zero and one that sum to one.

The loss function is defined so that having good predictions

during training is equivalent to having a small loss. The final

layers including fully connected layers which work as regular

neural network which have connections to all activations in

the previous layer, and softmax classifier, to predict the class

label as either normal skin or DFU.

IV. RESULTS AND DISCUSSION

The DFU dataset was split into the 85% training, 5%

validation and 10% testing sets and we adopted the 10-fold

cross-validation technique. Hence, for training, validation, and

testing set using the proposed DFUNet architecture, we used

approximately 1423 patches (including 882 abnormal cases),

84 patches (including 52 abnormal cases), and 172 patches

(104 abnormal cases) respectively from the 397 original foot

images. As mentioned previously, we used both CML mod-

els and CNNs models to do the classification task. LeNet

was the only architecture that worked on 28×28 gray scale

patches rather than 256×256 RGB images as input used by

GoogLeNet, AlexNet, DFUNet and CML. It was included

to show how the basic deep learning works on this new

classification problem.

In Table IV, we report Sensitivity, Specificity, Precision,

Accuracy, F-Measure and Area under curve of ROC (AUC)

as our evaluation metrics. In medical imaging, Sensitivity

and Specificity are considered reliable evaluation metrics for

classifier completeness.

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

FP + TN
(5)

Precision =
TP

TP + FP
(6)

Accuracy =
TP + FN

TP + TN + FP + FN
(7)

F −Measure =
2 ∗ TP

2 ∗ TP + FP + FN
(8)

In Table III, we report the performance measures of various

DFUNet variants with different parameters as explained in

the architecture of DFUNet in the previous section. There

was not much gap in performances between all the models.

But, overall, the DFUNet variant 5 performed best in every

evaluation metrics except Precision in which DFUNet variant

1 performed the best. It also proved the earlier hypothesis cor-

rect as increasing the size of filters in the parallel convolution
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Fig. 8. The ROC curve for all DFUNet models as mentioned in Table III,
DFUNet var. 5 performed best with an AUC score of 0.961. Var. refers to
variant.

layers improved the performance of DFUNet. Hence, DFUNet

variant 5 which uses the much larger filter sizes than other

variants in last two parallel convolutional layers produced

better results. Hence, with best results achieved by DFUNet

variant, we used it as a proposed DFUNet to compare the

performance with other traditional machine learning and deep

learning models. ROC curve for all the variants is illustrated

by Fig. 8.

There are three CML models and three CNNs models used

for classification. In CML, we used the combination of LBP,

HOG and Colour descriptors (RGB, HSV and L*u*v) as feature

vectors and then, we trained an SMO for our classification

problem. For each CNN, LeNet, AlexNet, GoogLeNet and our

proposed DFUNet are the chosen architectures used for classi-

fication. Each classifier performed well for Sensitivity with less

than 1.4% margin between the highest result (DFUNet) and

the lowest result (LBP + HOG). There is a more significant

gap of 7.7% in Specificity for the CML models performance

measure, with results ranging from 0.835 to 0.845.

For the CNNs approaches, LeNet achieved the lowest score

of 0.81 for Specificity, whereas the AlexNet, GoogLeNet

and DFUNet performed best in this category, with 0.892,

0.912, and 0.908 respectively. AUC is considered to be a

viable performance measure for the different machine learning

approaches for classification, with DFUNet and GoogLeNet

achieving 0.961 and 0.960 respectively.

Overall, we showed that using CNNs can outperform the

more traditional CML features by a large margin. All CNN

architectures achieved higher results than any of the CML

results in most cases. GoogLeNet and DFUNet were the

best performers for various evaluation metrics among all the

classifiers. The ROC curve for all the models is demonstrated

by the Fig. 9. The details of AUC performance for each method

is described in Table IV.

We received better results than GoogLeNet on various evalu-

ation metrics. The reason behind using the DFUNet rather than

conventional CNNs architecture ,in particular, GoogLeNet is
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ROC Curves for DFU Classification

Proposed DFUNet

GoogLeNet

AlexNet

LeNet

LBP+HOG+Color Descriptors

LBP+HOG

LBP

Fig. 9. ROC curve for all the models including CML and CNNs mentioned
in Table IV in which our proposed DFUNet method achieved the best AUC
score.

to speed up the best results with the help of lesser layers i.e.

14 layers architecture compared to the 22 layers architecture

of GoogLeNet. We also reduce the number of neurons in the

FC layers to improve processing time of DFUNet according

to the 2-class problem. With the 10-fold cross validation,

on the same machine configuration and input batch size on

Caffe framework, DFUNet took an average of 3 minutes 32

seconds where as GoogLeNet took average of 16 minutes 27

seconds to train a model with the same amount of training

and validation data. For testing, DFUNet took an average of

49 seconds whereas GoogLeNet took an average of 72 seconds

to classify the same test data. Therefore, we demonstrated how

reducing the number of layers using the bespoke architecture

of DFUNet markedly reduced processing time, while also

achieving higher sensitivity and specificity with introduction

of parallel convolution layers with increased number of filter

input.

Our proposed DFUNet has highest performance measures

in Sensitivity, with a score of 0.934, F-measure with 0.939 and

AUC with 0.962. Whereas, GoogLeNet has highest score in

Specificity and Precision due to it’s robust nature of being able

to find more subtle changes using the inception architecture

[27].

With data augmentation technique, these patches were made

15 times for both training and validation. But, when we tested

the data augmentation training in our experiment, there was no

differences found in performance metrics with all the models.

Hence, we did not include the data augmentation results in

Table III and Table IV as it did not improve the results. The

main reasons behind the failure of data augmentation were

overall performance metrics recorded without data augmen-

tation was quite high and there was only small number of

misclassification cases which were not corrected even with

models trained with data augmentation. For example, we found

in evaluations, some ulcer conditions with similar skin tone

and ulcers of small size shown in second row in Fig. 10 have

too subtle features to be detected as ulcer regardless of any pre-
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TABLE III
THE PERFORMANCE MEASURES OF VARIOUS VARIANTS OF THE DFUNET ON DFU DATASET. WHERE S.E. IS STANDARD ERROR OF AUC AND C.I. IS

CONFIDENCE INTERVAL OF AUC CURVE

Sensitivity Specificity Precision Accuracy F-Measure AUC Score S.E. 95% C.I.

DFUNet Var. 1 0.923±0.029 0.910±0.037 0.946±0.021 0.918±0.017 0.934±0.017 0.957 0.0049 0.9481 - 0.9673

DFUNet Var. 2 0.928±0.034 0.905±0.036 0.942±0.028 0.919±0.024 0.935±0.020 0.959 0.0046 0.9499 - 0.9678

DFUNet Var. 3 0.928±0.032 0.906±0.036 0.942±0.028 0.921±0.027 0.935±0.019 0.960 0.0045 0.9518 - 0.9694

DFUNet Var. 4 0.927±0.023 0.900±0.038 0.938±0.030 0.917±0.019 0.933 ± 0.017 0.958 0.0046 0.9496 - 0.9675

DFUNet Var. 5 0.934±0.033 0.911±0.044 0.945±0.032 0.925±0.029 0.939±0.024 0.961 0.0044 0.9520 - 0.9695

TABLE IV
THE PERFORMANCE MEASURES OF BINARY CLASSIFICATION TASK BY BOTH TRADITIONAL MACHINE LEARNING AND CNNS INCLUDING OUR PROPOSED

METHOD DFUNET. OVERALL, OUR PROPOSED DFUNET ACHIEVED THE BEST RESULTS. WHERE S.E. IS STANDARD ERROR OF AUC AND C.I. IS

CONFIDENCE INTERVAL OF AUC CURVE

Sensitivity Specificity Precision Accuracy F-Measure AUC Score S.E. 95% C.I.

LBP 0.919±0.029 0.764±0.052 0.878±0.038 0.865±0.038 0.898±0.033 0.932 0.0061 0.9202 - 0.9443

LBP + HOG 0.881±0.022 0.841±0.032 0.906±0.027 0.866±0.042 0.893±0.022 0.931 0.0060 0.9190 - 0.9427

LBP + HOG + Colour Descriptors 0.902±0.027 0.845±0.027 0.904±0.025 0.880±0.034 0.904±0.024 0.943 0.0054 0.9324 - 0.9537

LeNet (CNN)[43] 0.912±0.026 0.810±0.063 0.871±0.038 0.872±0.041 0.893±0.019 0.929 0.0050 0.9405 - 0.9603

Alexnet (CNN)[34] 0.895±0.024 0.886±0.029 0.933±0.032 0.893±0.021 0.914±0.022 0.950 0.0050 0.9405 - 0.9603

GoogLeNet (CNN)[27] 0.905±0.027 0.912±0.052 0.949±0.038 0.907±0.022 0.927±0.019 0.960 0.0045 0.9514 - 0.9690

Proposed DFUNet 0.934±0.033 0.911±0.044 0.945±0.032 0.925±0.029 0.939±0.024 0.961 0.0044 0.9520 - 0.9695

processing with data-augmentation. Hence, we did not use data

augmentation to produce final results as the training with data

augmentation become more computational expensive because

of 15 times more data than the normal dataset. Also, the focus

of this work is to determine the skin lesions are at high risk

to be detected as misclassification.

There is no evidence of an influence of factors such as

lighting conditions and skin tone due to patient’s ethnicity

on DFU classification. As ulcer and surrounding skin has

quite distinctive texture and color features from the normal

healthy skin irrespective of above-mentioned factors. In our

experiments, these factors result in very few misclassified

instances in testing set when there is very high red skin tone

as shown in Fig. 10.

A. Experimental Analysis and Discussion

Diagnosis and detection of DFU by the computerized

method has been an emerging research area with the evolution

of computer vision, especially deep learning methods. This

preliminary experiment of binary classification of DFU and

healthy skin is performed to learn the distinctive features

of both types of skin lesions. Also, the main motivation of

this experiment to find the type of skin lesions which are

at high risk of being misclassified by algorithms. In this

experiment, we proposed a new lightweight deep learning

architecture which can classify DFU and healthy skin lesions

with high accuracy. There are a few examples of correctly

and incorrectly classified cases in both abnormal and normal

classes by DFUNet as illustrated in Fig. 10. The computer

vision algorithms struggle to classify the very subtle DFU

with similar skin tone correctly. They are detected as normal

with high percentage as illustrated by example 1 and 2 of

misclassification cases of abnormal class in Fig. 10. Also,

DFU that are very small in size is misclassified as normal

as shown by example 3 and 4 of misclassification cases of

abnormal class Fig. 10. In normal skin, the patches with toe,

highly wrinkled skin, and very high red tone skin are classified

wrongly by the proposed method as illustrated by the examples

of misclassified cases of normal classes in Fig. 10.

V. PERFORMANCE EVALUATION ON HETEROGENEOUS

TEST CASE

Since, DFU dataset is captured with the same DSLR camera

as mentioned in above section. With computer vision tech-

niques, it is preferable to have heterogeneous capture to form

dataset. But, strict medical ethical approval does not allow to

use different cameras to capture the pictures of DFU in the

healthcare setting. Hence, we collected another heterogeneous

dataset of standardized DFU images with the help of FootSnap

application. These images are captured with the help of IPad

camera. We tested our algorithm on this heterogeneous dataset

and received good performance with Sensitivity score of 0.929,

F-measure with 0.931, Specificity of 0.908, Precision with

0.942 and AUC with 0.950 score.

VI. PERFORMANCE EVALUATION ON FACIAL SKIN

DATASET

Since, DFUNet performed well on the classification of DFU

skin patches, to test the robustness of DFUNet on other skin

lesion datasets, we run the experiment of 3-class classification

of facial skin patches i.e. normal, spot and wrinkles as shown

in the Fig. 11. It is worth mentioning, there is no public
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Fig. 10. Few examples of accurate and inaccurate classified cases for both abnormal and normal classes with DFUNet.

Normal Spot Wrinkle

Fig. 11. The examples of three classes in facial skin dataset.

skin lesion dataset available for research without prior written

consent. In this derma dataset, we delineated the equal number

of skin patches i.e. 110 patches for each class. We used

only two best performing CNN architectures in Table. IV

i.e. GoogLeNet and DFUNet for this experiment. With the

same experimental settings, DFUNet outperforms GoogLeNet

in each evaluation metrics for 10-fold cross-validation data

as shown in Table V. This is due to the deep learning models

does not work well with smaller dataset even with full training

[37]. But, DFUNet uses larger filter sizes in the later parallel

convolution layers to extract more multiple features which help

DFUNet outperforms GoogLeNet in this experiment.

VII. CONCLUSION AND FUTURE WORK

In this work, we trained various classifiers based on tra-

ditional machine learning algorithms, CNNs and proposed a

new CNN architecture, DFUNet on DFU classification which

discriminates the DFU skin from healthy skin. With high-

performance measures in classification, DFUNet allows the

TABLE V
FACIAL SKIN CLASSIFICATION TASK WITH THREE CLASSES AS NORMAL

SKIN, SPOT, WRINKLE. THE PROPOSED DFUNET OUTPERFORMED

GOOGLENET IN EVERY PERFORMANCE METRICS ON THIS DATASET.

Sensitivity Specificity Precision Accuracy F-Measure MCC

GoogLenet 0.783 0.882 0.784 0.846 0.784 0.665

Proposed DFUNet 0.867 0.930 0.867 0.907 0.867 0.796

accurate automated detection of DFU in foot images and make

it an innovative technique for DFU evaluation and medical

treatment. For the detection of DFU, it is vital to understand

the difference between DFU and healthy skin to know the

features differences between these two classes in computer

vision perspective. This work has a potential for technology

that may transform the detection and treatment of diabetic foot

ulcers and lead to a paradigm shift in the clinical care of the

diabetic foot. This work has formed the basis to achieve future

targets that include: 1) developing the automatic annotator

that can automatically delineate and classify the foot images

without the help of clinicians; 2) developing the automatic

ulcer detection, recognition and segmentation with the help

of these classifiers; 3) implementing the method to determine

the various pathologies of DFU as multi-class classification

similar to the Texas classification and other grading scales;

4) implementing the various user-friendly software tools in-

cluding mobile applications for ulcer recognition [51]. Since

DFUNet worked well for DFU classification, this proposed

framework will likely be used for classifying the other skin

lesions such as wound classification, infections like chicken
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pox or shingles, other skin lesions like moles and freckles,

spotting marks and pimples [52] against the normal skin.

For classification, DFUNet is a light-weight CNN framework

that is used for DFU dataset consists of two classes (ulcer

and normal skin) and facial skin dataset consists of three

classes (spot, wrinkles and normal skin), it will be further

tested in the future to include many more classes. Therefore,

we demonstrated how reducing the number of layers and

number of neurons in FC layers using the bespoke architecture

of DFUNet markedly reduced processing time, while also

achieving higher sensitivity and specificity.
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