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Abstract. The evaluation of option premium is a very delicate issue arising from the
assumptions made under a financial market model, and pricing of a wide range of options
is generally feasible only when numerical methods are involved. This paper is based on
our recent research on numerical pricing of path-dependent multi-asset options and ex-
tends these results also to the case of Asian options with fixed strike. First, we recall
the three-dimensional backward parabolic PDE describing the evolution of European-style
Asian option contracts on two assets, whose payoff depends on the difference of the strike
price and the average value of the basket of two underlying assets during the life of the
option. Further, a suitable transformation of variables respecting this complex form of
a payoff function reduces the problem to a two-dimensional equation belonging to the class
of convection-diffusion problems and the discontinuous Galerkin (DG) method is applied
to it in order to utilize its solving potentials. The whole procedure is accompanied with
theoretical results and differences to the floating strike case are discussed. Finally, reference
numerical experiments on real market data illustrate comprehensive empirical findings on
Asian options.
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1. Introduction

From the financial perspective, one of the most important applications of advanced

mathematics is related to pricing of financial derivatives and especially options due

to their complex payoff functions (see also [19]). The reason is that proper usage
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of advanced mathematical methods, in line with no-arbitrage arguments, can help

market participants to recover correct price of various products, prevent arbitrage

opportunities, increase market balance and finally support economic stability. With-

out knowing efficient mathematical methods to recover no-arbitrage option prices,

the market could not be balanced and price shocks would not be an exception.

Modern option pricing dates back to the seminal papers published in 70’s, [3]

and [23]. Commonly, the starting point for deriving pricing formulas is the construc-

tion of a system of partial differential equations (PDEs) accompanied by boundary

and terminal (or initial) conditions, which arise from the no-arbitrage conditions.

Unfortunately, if the system is too complex, such as for exotic options, it does not

lead to analytical formulas and one should adopt some of the available numerical

approximative techniques. These include, for example, Monte Carlo simulation (see

e.g. [4]), lattices and trees (originally proposed for option pricing in [7]), finite differ-

ence method [30], finite element method [1], or discontinuous Galerkin (DG) method

formulated for the first time in [24]. The latter approach, despite some our recent

research [16], [17], and [18], remains rather unexplored as concerns option pricing

problems and we believe that it might be relevant first of all in case of exotic options

with very complex conditions.

In this paper we therefore extend our previous results on the topic ([19], [20]) and

focus on the pricing of two-asset Asian options with fixed strike using DG method.

There has been substantial research on the pricing of Asian options on one asset,

assuming either fixed strike (see e.g. [2] and [27], where a relevant PDE system

is solved numerically) or floating strike, which can satisfy a one-dimensional PDE

system, similarly to fixed strike options, after numéraire change (see especially [28]

and [29]). Moreover, some equivalence of floating and fixed strike Asian options has

been proved in [15] and further extended in [10]. However, there are hardly any

results on numerical solution of the PDE system for two-asset Asian options, not

speaking of the case when DG method is involved.

We proceed as follows. In Section 2 we first define relevant PDE system, including

its dimensionality reduction and the initial and boundary conditions, followed by

its variational formulation. Next, in Section 3 the DG approximation is developed

and finally, in Section 4, two illustrative examples assuming Asian put option with

fixed strike are provided. The corresponding steps of the whole presented approach

for Asian options with fixed strike are compared to the study of the floating strike

case [19] and mutual differences are discussed.
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2. PDE model for two-asset Asian options with fixed strike

An option is a special type of financial derivative giving its holder a right to

trade an underlying asset S at (European options) or either at or prior to (American

options) its maturity time T . The simplest forms of the right to trade the underlying

asset are the right to buy it (call option) and the right to sell it (put option) for

fixed exercise price K. Due to the simplicity of the payoff function such options are
also called plain-vanilla options. If there are some additional conditions concerning

the option exercising or determining the payoff, we speak of exotic options. A key

feature of options is that the payoff function is nonlinear—any option is striked at

the maturity time only if it brings the holder positive cashflow (compare with other

types of financial derivatives, such as forwards, futures or swaps, which must be

exercised regardless the will of the holder).

In this paper we consider only European-style Asian option contracts on two assets.

Such options exist either as put or call options and their value can be expressed as

a function of the actual time t, the underlying asset prices S1(t), S2(t) and the path-

dependent quantity A(t), which represents in some sense the weighted average of the

underlying asset prices and can be measured either continuously or discretely. For

our purposes we use the continuous arithmetic average defined as

(2.1) A(t) =
1

t

∫ t

0

(α1S1(u) + α2S2(u)) du, α1 > 0, α2 > 0, α1 + α2 = 1.

Let V = V (S1(t), S2(t), A(t), t) denote the value of an arithmetic Asian option with

continuous sampling (2.1), i.e., S1, S2, and A are considered as independent variables.

Using the general framework from the derivation of Black-Scholes model based on

a construction of the risk-free portfolio containing one unit of an option V and −∆1

units of the underlying asset S1 and −∆2 units of the underlying asset S2, application

of the multidimensional Itô’s lemma and elimination of stochastic fluctuations by

delta hedging (i.e., ∆i = ∂V/∂Si), we obtain the three-dimensional PDE model for

pricing Asian option contracts on two assets

(2.2)
∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ̺σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

+ (r − q1)S1
∂V

∂S1
+ (r − q2)S2

∂V

∂S2
+

α1S1 + α2S2 −A

t

∂V

∂A
− rV = 0

for t ∈ (0, T ), S1 > 0, S2 > 0, and A > 0. The detailed derivation of the pricing

equation (2.2) is available in [19].

The value of an option is also influenced by several parameters introduced in (2.2),

namely volatility σi > 0 and dividend yield qi > 0 of the asset Si, risk-free interest
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rate of return r > 0 and correlation ̺ ∈ (−1, 1) between the underlying assets.

For a detailed explanation of these market parameters the reader is referred to the

book [13]. Notice that in this study we assume that these model parameters are

constant over the life of the option to simplify the problem analysis.

Let us note that (2.2) represents a backward linear parabolic PDE degenerated

in variable A as t → 0+, i.e., it tends to the two-factor Black-Scholes equation for

pricing standard basket options with two underlying assets.

R em a r k 2.1. More precisely, neglecting the term (α1S1 + α2S2 −A)t−1∂V/∂A

in (2.2) comes from the following argument. Based on the definition of the aver-

age (2.1), the value of an Asian option V does not depend on the variable A at

t = 0, i.e., ∂V/∂A = 0. Since (α1S1 + α2S2 −A)/t = (dA/dt)(t), it is sufficient to

prove that (dA/dt)(0) is finite. Using a technique similar to that in [19], we put

I(t) =
∫ t

0
(α1S1(u) + α2S2(u)) du. Then

(2.3)
dA

dt
(0) = lim

t→0+

dA

dt
(t) = lim

t→0+

(1

t

dI

dt
(t)− 1

t2
I(t)

)

= lim
t→0+

1

t

(dI

dt
(t)− I(t)− I(0)

t

)

= lim
t→0+

(dI/dt)(t)− (dI/dt)(0)

t

=
d2I

dt2
(0) =

d

dt
(α1S1(t) + α2S2(t))(0) < ∞.

The last inequality in (2.3) comes from the standard assumptions on a movement of

the prices of the underlying assets under pure diffusion processes, i.e., no jumps are

allowed, see [6].

Since the option price is exactly known at its maturity time T only, the equa-

tion (2.2) is closed by the terminal condition given by the so-called payoff function.

Moreover, according to the way in which the average A is incorporated into the

payoff function, we distinguish four basic types of Asian options, see Table 1. The

classification identifies four subtypes of Asian options in total. An Asian put gives

the holder the right to sell a basket of assets for its average price over some prescribed

period and an Asian call allows him or her to buy it for this average. The floating

strike options have payoff similar to a vanilla option but with the corresponding path-

dependent variable A replacing the exercise price K. On the other hand, the payoff
of a fixed strike option corresponds to a vanilla option with swapping the basket of

the asset prices α1S1 + α2S2 for its average A. Notice that the fixed strike options

are also known as rate options and the floating strike options as average strike ones.

This slight difference in the structural form of the payoff between floating and

fixed strike options has a big impact on their valuation. Whereas Asian options with

floating strike admit several simple ways of similarity reductions, see [21], [30] and
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payoff V0 put call

floating strike (A(T )− α1S1(T )− α2S2(T ))
+ (α1S1(T ) + α2S2(T )−A(T ))+

fixed strike (K −A(T ))+ (A(T )−K)+

Table 1. Payoff functions for four basic types of Asian options, (·)+ = max(·, 0).

our recent paper [19], the pricing of Asian options with the fixed strike is a more

complex issue. Therefore, the rest of the paper is oriented on Asian two-asset basket

options with fixed strike.

Let V0 = V0(S1, S2, A) denote one of the terminal data (put or call) from Table 1

(last row), i.e.,

(2.4) V (S1(T ), S2(T ), A(T ), T ) = V0(S1(T ), S2(T ), A(T )).

Taking the conventional assumptions of frictionless markets into account and the

martingale theory (see [12]), the solution of PDE (2.2) at time t is equivalent to the

expected value of the discounted payoff (2.4), i.e.,

(2.5) V (S1(t), S2(t), A(t), t) = e−r(T−t)
E(V0(S1(T ), S2(T ), A(T )).

Summing up, it is necessary to solve the Cauchy problem given by three-

dimensional PDE (2.2) and terminal data (2.4). The core of this study lies in

a more sophisticated and technically more demanding transformation of variables

which reduces the problem to a two-dimensional equation belonging to the class

of convection-diffusion problems and also overcomes A-degeneracy of the pricing

equation.

2.1. Transformation of variables and reduced problem. The option value V

is defined in a spatial (S1, S2, A)-domain and these three spatial dimensions of the

governing PDE (2.2) increase the complexity of numerical methods incorporated

into the process of pricing of such options. In fact, this undesirable feature can be

eliminated by a suitable transformation of variables leading to the reduced problem

in spatial dimensions decreased by one.

As shown in [19], one possible reduction for floating strike options might be

achieved by introducing the new variable xi = Si/A, i = 1, 2. Unfortunately, we

cannot use this approach in case of fixed strike options, because the assumption of

homogeneity in variable A is not fulfilled for the payoff functions from Table 1 (last

row).

In contrast to this and inspired by [27] for Asian option contract on one asset,

we have proposed a more sophisticated change of variables accompanied with the
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forward time running, t̂ = T − t, i.e.,

(2.6) xi = xi(t̂) =
K −At/T

Si
=

K −A(T − t̂)/T

Si
, i = 1, 2.

This transformation respects the form of a payoff function and converts the space-

time (S1, S2, A, t)-domain, which is a subset of R
3
+ × (0, T ), to the (x, t̂)-domain

with component x = [x1, x2] lying in the first and the third quadrants only, i.e.,

sgn(x1) = sgn(x2). Note that the x-domain can be decomposed into two subdomains,

which have only the origin [0, 0] as their common point.

Using simple calculation

(2.7) K −A = sgn(K −A)

√

|K −A|
S1

√

|K −A|
S2

√

S1

√

S2

= sgn(x1(0))
√

x1(0)x2(0)
√

S1S2 = sgn(x2(0))
√

x1(0)x2(0)
√

S1S2,

we can rewrite the payoff functions from Table 1 (last row) as

(2.8) V0(S1, S2, A) =
√

S1S2 · u0(x), u0(x) :=

{

(−sgn(x1)
√
x1x2)

+ for call,

(sgn(x1)
√
x1x2)

+ for put.

Further, to get a simplified problem defined (in Subsection 2.3) on a simply connected

region, we can use the geometric properties of the x-domain and restrict the studied

option pricing problem only on one of the two possible quadrants. Moreover, in order

to evaluate the option value at maturity, the point [x1(T ), x2(T )] = [K/S1,K/S2]

has to be included in this quadrant. Therefore, we consider x1 > 0 and x2 > 0 for

the rest of the paper. Since u0(x) has zero value for x ∈ R
2
+ for call options and its

support lies in R
2
+ for puts, it is more convenient to value put options only. Thus,

in the following we focus on puts. The treatment for the case of a call option is

explained in Subsection 2.4.

Next the put option price transforms into

(2.9) V (S1, S2, A, t) = e−rt̂
E((K −A)+) =

√

S1S2 · e−rt̂
E(u0(x))

=
√

S1S2 · u(x, t̂).

and its corresponding partial derivatives are calculated by the chain rule as

∂V

∂t
= −

√

S1S2

(∂u

∂t̂
+

A

S1T

∂u

∂x1
+

A

S2T

∂u

∂x2

)

,(2.10)

∂V

∂A
= −

√

S1S2

(T − t̂

S1T

∂u

∂x1
+

T − t̂

S2T

∂u

∂x2

)

,(2.11)

∂V

∂S1
=

1

2

√

S2

S1
u−

√

S2

S1
x1

∂u

∂x1
,

∂V

∂S2
=

1

2

√

S1

S2
u−

√

S1

S2
x2

∂u

∂x2
,(2.12)
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further

∂2V

∂S2
1

= − 1

4S1

√

S2

S1
u+

1

S1

√

S2

S1
x1

∂u

∂x1
+

1

S1

√

S2

S1
x2
1

∂2u

∂x2
1

,(2.13)

∂2V

∂S1∂S2
=

1

4
√
S1S2

u− 1

2
√
S1S2

x1
∂u

∂x1
− 1

2
√
S1S2

x2
∂u

∂x2
(2.14)

+
1√
S1S2

x1x2
∂2u

∂x1∂x2
,

∂2V

∂S2
2

= − 1

4S2

√

S1

S2
u+

1

S2

√

S1

S2
x2

∂u

∂x2
+

1

S2

√

S1

S2
x2
2

∂2u

∂x2
2

.(2.15)

Now, substituting (2.9) and partial derivatives (2.10)–(2.15) into (2.2) and dividing

by the factor
√
S1S2, we obtain the new pricing equation with dimensions reduced

by one, i.e.,

∂u

∂t̂
− 1

2
σ2
1x

2
1

∂2u

∂x2
1

− ̺σ1σ2x1x2
∂2u

∂x1∂x2
− 1

2
σ2
2x

2
2

∂2u

∂x2
2

(2.16)

+
(

−σ2
1

2
+

̺σ1σ2

2
+ r − q1 +

α1

Tx1
+

α2

Tx2

)

x1
∂u

∂x1

+
(

−σ2
2

2
+

̺σ1σ2

2
+ r − q2 +

α1

Tx1
+

α2

Tx2

)

x2
∂u

∂x2

+
(σ2

1

8
− ̺σ1σ2

4
+

σ2
2

8
+

q1
2

+
q2
2

)

u = 0

for x1 > 0, x2 > 0 and t̂ ∈ (0, T ). For further numerical treatment it is more suitable

to rewrite (2.16) in the nondivergence form as

(2.17)
∂u

∂t̂
−

2
∑

i=1

∂

∂xi
(D(x)∇u)i +

2
∑

i=1

bi(x)
∂u

∂xi
+ cu = 0,

where (D(x)∇u)i denotes the ith component of vector D(x)∇u with the matrix

(2.18) D(x) =

(

d11(x) d12(x)

d21(x) d22(x)

)

=
1

2

(

σ2
1x

2
1 ̺σ1σ2x1x2

̺σ1σ2x1x2 σ2
2x

2
2

)

.

The vector (b1(x), b2(x))
T represents the physical flux with components

(2.19) bi(x) =
(σ2

i

2
+ ̺σ1σ2 + r − qi +

α1

Tx1
+

α2

Tx2

)

xi, i = 1, 2,

and the nonnegative constant

(2.20) c =
σ2
1

8
− ̺σ1σ2

4
+

σ2
2

8
+

q1
2

+
q2
2

stands for the reaction coefficient.
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Finally, notice that this technically more demanding transformation of variables

in comparison with the approach from [19] is balanced by the fact that the trans-

formation (2.6) overcomes the undesirable degeneracy of (2.2) in variable A and

a singularity at t̂ = T is not present either, because the convection and reaction

parts are independent of time compared with [19].

2.2. Comparison to the single-asset case. In this part we theoretically justify

the choice of the change of variables (2.6) by a comparison of the derived pricing

equation (2.17)–(2.20) with PDE models of Asian option contracts on one asset,

well-known from literature, see [9], [27], [28], and [32].

To compare two similar problems but with different dimensions we have to restrict

the more complex problem to the domain of the latter. We start with the reformu-

lation of the equation (2.17)–(2.20) for a domain represented by a general straight

line x2 = kx1 with a positive slope k. Putting

(2.21) z =

√
x1x2√
k

and W (z, t̂) = u(x1, x2, t̂) on x2 = kx1,

we obtain

(2.22)
∂u

∂t̂
=

∂W

∂t̂
,

∂u

∂x1
=

z

2x1

∂W

∂z
,

∂u

∂x2
=

z

2x2

∂W

∂z

∂2u

∂x2
1

=
z2

4x2
1

∂2W

∂z2
− z

4x2
1

∂W

∂z
,

∂2u

∂x2
2

=
z2

4x2
2

∂2W

∂z2
− z

4x2
2

∂W

∂z

∂2u

∂x1∂x2
=

z2

4x1x2

∂2W

∂z2
+

z

4x1x2

∂W

∂z
.

Then substituting (2.21)–(2.22) into equation (2.16) and using the relation x2 = kx1,

the equation (2.16) takes now the one-dimensional form (w.r.t. spatial variable z)

(2.23)
∂W

∂t̂
−
(σ2

1

8
+

̺σ1σ2

4
+

σ2

8

)

z2
∂2W

∂z2

+
((

−σ2
1

8
+

̺σ1σ2

4
− σ2

2

8
+ r − q1

2
− q2

2

)

z +
α1

T
+

α2

kT

)∂W

∂z

+
(σ2

1

8
− ̺σ1σ2

4
+

σ2
2

8
+

q1
2

+
q2
2

)

W = 0

for z > 0 and t̂ ∈ (0, T ). According to (2.8) the corresponding payoff function (for

put options) is

(2.24) W 0(z) = (
√
kz)+.
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Furthermore, to set the well-posed initial boundary-value problem the equation (2.23)

is also completed by appropriate boundary conditions. At z = 0, recalling [27] we

use the homogeneous Dirichlet type of the boundary condition W (0, t̂) = 0. The

boundary condition for z → ∞ is commonly evaluated at a sufficiently large point
zmax ≫ 0. Provided that the physical flux induced by the convection part in (2.23)

is positively oriented along the z-axis one can set the artificial Neumann boundary

condition at the far-field boundary based on the asymptotic behaviour of the Asian

option with fixed strike and thus corresponding to the discounted initial condition

(2.24), i.e.,

(2.25)
∂W

∂z
(zmax, t̂) = e−rt̂

√
k.

Note that for practical computation the positive orientation of the physical flux is

always satisfied. Therefore, the prescribed Neumann boundary condition in the form

(2.25) has sense.

Finally, setting k = 1 (a diagonal line of the first and the third quadrants), we

obtain from (2.6) identical underlying assets S1 = S2 and weights α1 = α2. This

implies a unit correlation factor ̺ = 1 and an equality of volatilities σ1 = σ2 = σ.

Assuming zero dividend yields (q1 = q2 = 0), then (2.23) can be rewritten as

(2.26)
∂W

∂t̂
− σ2

2
z2

∂2W

∂z2
+
(

rz +
1

T

)∂W

∂z
= 0,

which represents a well-known PDE ruling the price of Asian options studied in

several works, e.g. [9], [27] and [32].

2.3. Domain geometry and boundary conditions. Before its numerical treat-

ment the problem (2.17)–(2.20) has to be restricted to a bounded domain Ω× (0, T ).

For this purpose let xmax
i denote the maximal sufficient value of variable xi. Since

x1 6= 0 and x2 6= 0 due to (2.6), the set Ω is newly defined as a convex quadrilateral

with sides Γi, lying on the lines

(2.27) x1 = xmax
1 , x2 = xmax

2 , x2 = k1x1, x2 = k2x1,

with 0 < k1 < k2 < ∞, see Figure 1 with the detailed description of boundary
∂Ω =

4
⋃

i=1

Γi.

R em a r k 2.2. The choice of artificial boundaries as parts of straight lines with

positive slopes (i.e., x2 = k1x1 and x2 = k2x1, k2 > k1) is essential to guarantee the

boundedness of terms x1/x2 and x2/x1 on Ω, appearing in the components of the
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x1

x2

xmax

1

xmax

2

x2=k1x1

x2=k2x1

O

Γ4

Γ3

Γ2

Γ1

Figure 1. The computational domain Ω and appropriate parts of the boundary Γi, i =
1, . . . , 4.

physical flux (2.19). This property is later used for the semidiscrete problem to be

well-posed, specifically the integrals in (3.5). Therefore, if we use the curve boundary

in the vicinity of the point [0, 0], the above conclusions cannot be used generally.

The second advantage of the quadrilateral domain is its simple connection to the

single-asset case from Subsection 2.2 for easy setting of boundary conditions in (2.28).

For the particular situation x ∈ Γ1 ∪ Γ4 we simply prescribe Dirichlet boundary

conditions

(2.28) u(x, t̂) = u1(x, t̂) on Γ1, u(x, t̂) = u4(x, t̂) on Γ4,

where u1 and u2 are the solutions of (2.23)–(2.25) with k = k1 and k = k2, respec-

tively. On the far-field boundary, similarly to (2.25), Neumann boundary conditions

are reformulated as

(2.29)
∂u

∂x1
(x, t̂) = e−rt̂ 1

2

√

x2

x1
,

∂u

∂x2
(x, t̂) = e−rt̂ 1

2

√

x1

x2
, x ∈ Γ2 ∪ Γ3.

Again, note that the couple (2.29) is correctly set if b1(x) > 0 on Γ2 and b2(x) > 0

on Γ3, which is commonly fulfilled in practice by virtue of (2.19) and constant market

parameters considered.

Finally, let us denote by (OPP) the option pricing problem for Asian two-asset

basket option with fixed strike formulated as the initial-boundary value problem for

unknown function u(x, t̂) : Ω× (0, T ) → R governed by (2.17)–(2.20) with (2.8) and

(2.28)–(2.29).
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2.4. Put-call parity for Asian options with fixed strike. One of the most

important symmetry results in financial option pricing is the so-called put-call parity.

This parity establishes the relationship between the price of a call option and put

option, both with the identical underlying assets Si, strike priceK and expiry T . Such
parity relationship is very useful for transferring the prices of one type of option to

another and also simplify the analysis and implementation of numerical schemes.

This is especially advantageous for Asian options with fixed strike.

Assuming the forward time running t̂ and let VC(t̂) and VP (t̂) be the values of the

corresponding call option and put option, respectively. At t̂ = 0 (at an expiration

date), these values are given by payoff functions from Table 1 (last row) and their

difference is

(2.30) VC(0)− VP (0) = (A−K)+ − (K −A)+ = (A−K)+ − (A−K)− = A−K.

Taking into account the risk-neutral expectations, the difference (2.30) at t̂ = T

(today) has the form

(2.31) VC(T )− VP (T ) = e−rT
E(A−K) = e−rT

E(A) − e−rTK.

Using the definition of A from (2.1) and the martingale theory (see [12]), we can

write

(2.32) E(A) = E

(

1

T

∫ T

0

(α1S1(u) + α2S2(u)) du

)

=
α1

T
E

(
∫ T

0

S1(u) du

)

+
α2

T
E

(
∫ T

0

S2(u) du

)

=
α1

(r − q1)T
(e(r−q1)T − 1)Sref

1 +
α2

(r − q2)T
(e(r−q2)T − 1)Sref

2 ,

where Sref
1 and Sref

2 are the actual values of the underlying assets. Finally, (2.31)

and (2.32) yield the put-call parity relationship

(2.33) VC(S
ref
1 , Sref

2 , Aref , T ;K, r, q1, q2)− VP (S
ref
1 , Sref

2 , Aref , T ;K, r, q1, q2)

=
α1

(r − q1)T
(e−q1T − e−rT )Sref

1 +
α2

(r − q2)T
(e−q2T − e−rT )Sref

2 − e−rTK.

Note that the afore-mentioned procedure can be easily generalized for option con-

tracts on more than two assets.

We use the established parity (2.33) in this study to evaluate the prices of call op-

tions provided the put option prices are known. Therefore, without loss of generality

we can focus on put options only.
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2.5. Variational problem. In order to define the concept of the weak solution

to (OPP), it is necessary to introduce the well-known Lebesgue spaces L2(Ω) with

the induced norm ‖·‖ = (·, ·)1/2 by the standard scalar product (·, ·) and L∞(Ω) with

the norm ‖·‖∞ = ess sup
Ω

|·|. Moreover, we need the (nonweighted) Sobolev space

(2.34) V (Ω) ≡ H1(Ω) := {v ∈ L2(Ω): ∇v ∈ (L2(Ω))2}

with a scalar product (u, v)V = (u, v) + (∇u,∇v) and induced norm ‖·‖V = (·, ·)1/2V .

Furthermore, in consistency with the prescribed Dirichlet boundary conditions (2.28)

on Γ1∪Γ4 and to deal with them, we define the space V0 := {v ∈ V (Ω): v|Γ1∪Γ4
= 0}.

The variational formulation of (OPP) is standardly derived in three steps. First

we multiply the equation (2.17) by an arbitrary test function v ∈ V0 and afterwards

perform the integration by parts in two dimensions on the second order term. Lastly

we use (2.29) and then we obtain

(2.35)
(∂u

∂t̂
, v
)

+ (Lu, v) = (f(t̂), v)ΓN
∀ v ∈ V0, a.e. t̂ ∈ (0, T ),

with the mapping (L·, ·) : V × V → R defined via the bilinear form

(2.36) (Lu, v) =
∫

Ω

D(x)∇u · ∇v dx+
2

∑

i=1

∫

Ω

bi(x)
∂u

∂xi
v dx+

∫

Ω

cuv dx

and the right-hand side f(t̂) : V → R as

(2.37) (f(t̂), v)ΓN
=

∫

Γ2

g2(x, t̂)v dS +

∫

Γ3

g3(x, t̂)v dS

=
1

2

∫

Γ2

(

d11(x)e
−rt̂

√

x2

x1
+ d12(x)e

−rt̂

√

x1

x2

)

v dS

+
1

2

∫

Γ3

(

d21(x)e
−rt̂

√

x2

x1
+ d22(x)e

−rt̂

√

x1

x2

)

v dS.

Obviously, g2(t̂) ∈ L2(Γ2) and g3(t̂) ∈ L2(Γ3) for fixed t̂ ∈ [0, T ].

R em a r k 2.3. The difference in the definition of the operator L compared to
approach [19] lies in its time independence and domain in the nonweighted Sobolev

space H1(Ω). This domain arises from the new condition ∇u ∈ (L2(Ω))2 in order

for all integrals in (2.36) to be well-posed. More precisely, the convection term in

(2.36) is defined correctly provided that bi(x) ∈ L∞(Ω). Since k1 6 x2/x1 6 k2 from

(2.27), this holds true. On the other hand, to work with the weighted Sobolev space,

for which xi∂u/∂xi ∈ L2(Ω), is inapplicable because bi(x)/xi /∈ L∞(Ω).
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R em a r k 2.4. Since D(x) is zero at point [0, 0], the diffusion part of operator L is
not strictly elliptic in V (Ω) and the usual arguments for the existence and uniqueness

of the weak solution do not apply.

The standard way in the Black-Scholes framework to get around the degeneracy

from Remark 2.4 is to turn spatial variables into logarithmic scale using transfor-

mation yi = lnxi, see [30]. The disadvantage of this approach is that we obtain the

problem defined on the unbounded domain (−∞, lnxmax
1 )× (−∞, lnxmax

2 ) which has

to be restricted to a bounded one again in order to solve an initial boundary value

problem.

One simple possibility is to set a new domain (ln ε, lnxmax
1 ) × (ln ε, lnxmax

2 ) for

sufficiently small but fixed ε > 0. Actually, this restriction is equivalent to the

treatment of (OPP) on Ωε := Ω\Bε(0), where Bε(0) = {[x1, x2] ∈ R
2 : x2

1+x2
2 < ε2}.

Concerning the new domain Ωε we have also the new boundary

(2.38) ∂Ωε = Γ0,ε ∪ Γ1,ε ∪ Γ2 ∪ Γ3 ∪ Γ4,ε,

where Γ1,ε = Γ1 \Bε(0), Γ4,ε = Γ4 \Bε(0) and Γ0,ε = {[x1, x2] ∈ Ω: x2
1 + x2

2 = ε2}.
Thus we reformulate the Dirichlet boundary conditions (2.28) as

(2.39) u(x, t̂) = ε

√

x2

x1
on Γ0,ε,

u(x, t̂) = u1,ε(x, t̂) on Γ1,ε, u(x, t̂) = u4,ε(x, t̂) on Γ4,ε,

where u1,ε(x, t̂) and u2,ε(x, t̂) are solutions of (2.23)–(2.25) on (ε, z
max) with Dirichlet

boundary condition W (ε, t̂) =
√
kε at the left endpoint for k = k1 and k = k2,

respectively. Finally, we denote by (OPP)ε the original option pricing problem (OPP)

restricted to Ωε with the swapped Dirichlet boundary conditions (2.28) for (2.39).

In a similar way to V0, we also introduce a new space

(2.40) V0,ε = {v ∈ V (Ωε) : v|Γ0,ε∪Γ1,ε∪Γ4,ε
= 0}

with seminorm |v|V = ‖∇v‖ as a norm on V0,ε, see the Friedrichs inequality [25].

Using the same technique as in (2.35), we conclude that the operator L defined
on V0,ε changes only the domains in the volume integrals for Ωε and the right-hand

side f(t̂) remains unchanged.

R em a r k 2.5. Now, since bi(x)/xi ∈ L∞(Ωε), one can argue that it is also

possible to use the framework of a weighted Sobolev space, cf. Remark 2.3, but this

treatment will not allow us to later define the semidiscrete and discrete solutions on

the whole domain Ω, see Subsections 3.2–3.3.
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Finally, taking Remarks 2.3–2.4 into account we can proceed to the variational

formulation of (OPP)ε and present the abstract theory of parabolic equations giving

the existence and uniqueness of such a weak solution.

Definition 2.1. Assume that there exists a function uD ∈ C0([0, T ];L2(Ωε)) ∩
L2(0, T ;V (Ωε) with traces from (2.39) and ∂uD/∂t̂ ∈ L2(0, T ;V ′

0,ε). The variational

formulation of (OPP)ε is as follows: Find u ∈ C0([0, T ];L2(Ωε)) ∩ L2(0, T ;V (Ωε))

such that u − uD ∈ C0([0, T ];L2(Ωε)) ∩ L2(0, T ;V0,ε) and ∂u/∂t̂ ∈ L2(0, T ;V ′
0,ε)

satisfies

(u(0), v) = (u0, v) ∀ v ∈ V ε
0 ,(2.41)

(∂u

∂t̂
(t̂), v

)

+ (Lu(t̂), v) = (f(t̂), v)ΓN
∀ v ∈ V ε

0 , a.e. t̂ ∈ (0, T ).(2.42)

where u(t̂) denotes such function on Ωε that u(t̂)(x), x ∈ Ωε.

Theorem 2.1. Problem (2.41)–(2.42) has a unique weak solution.

P r o o f. Since the proof procedure is similar to the approach from [19], Theo-

rem 2.1, with respect to the nonweighted space V (Ωε) = H1(Ωε) it is enough to list

several results (inequalities) guaranteeing that there exist three positive constants

cL 6 CL, Cf , and a constant λ > 0 such that for all u, v ∈ V0,ε, t̂ ∈ [0, T ],

|(Lu, v)| 6 CL|u|V |v|V ,(2.43)

(Lu, u) > cL|u|2V − λ‖u‖2,(2.44)

(f(t̂), v)ΓN
6 Cf |v|V .(2.45)

First, assuming invariable model parameters there exist two positive constants

0 < Dmin 6 Dmax such that the matrix D(x) satisfies for all ζ ∈ R
2, ζ 6= 0,

(2.46) Dmin|ζ|2 6 ζTD(x)ζ 6 Dmax|ζ|2 ∀x ∈ Ωε.

Next, one can easily estimate analogously to [19], Lemma 2.3,

∣

∣

∣

∣

∫

Ωε

D(x)∇u · ∇v dx+

∫

Ωε

cuv dx

∣

∣

∣

∣

6 Dmax|u|V |v|V + c‖u‖‖v‖,(2.47)

∣

∣

∣

∣

2
∑

i=1

∫

Ωε

bi(x)
∂u

∂xi
v dx

∣

∣

∣

∣

6 Cb|u|V ‖v‖, Cb > 0.(2.48)

Then (2.47)–(2.48) together with the relation ‖·‖2V = ‖·‖2+ |·|2V and the norm equiv-
alence give (2.43), i.e., the boundedness of the mapping (L·, ·).
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Secondly, we proceed as in [19], Lemma 2.4, and prove estimates

∣

∣

∣

∣

∫

Ωε

D(x)∇u · ∇u dx

∣

∣

∣

∣

> Dmin|u|2V ,(2.49)

∣

∣

∣

∣

2
∑

i=1

∫

Ωε

bi(x, t̂)
∂u

∂xi
u dx

∣

∣

∣

∣

6
Dmin

2
|u|2V + CY ‖u‖2, CY > 0,(2.50)

which imply the G̊arding inequality (2.44), i.e., a sufficient condition for the strong

ellipticity of the operator L.
Further, from (2.37) one can easily deduce that f(t̂), t̂ ∈ [0, T ], is a continuous

linear functional on V0,ε, see the following sequence of inequalities

(2.51) (f(t̂), v)ΓN
6 ‖f(t̂)‖L2(Γ2∪Γ3)‖v‖L2(Γ2∪Γ3) 6 ‖f(t̂)‖L2(Γ2∪Γ3)Cγ‖v‖V ,

where Cγ is the continuity constant of the trace mapping [22]. Using norm equiva-

lence one concludes that estimate (2.45) holds.

The rest of the proof is based on the main theorem on first-order linear evolution

equations, see [31]. Since V (Ωε) is densely embedded in L2(Ωε) (see [22]), these

spaces form a Gelfand triple (V (Ωε), L
2(Ω), V (Ωε)

′). This fact together with esti-

mates (2.43)–(2.45) guarantees the fulfillment of the assumptions, which allow us to

apply the abstract theory of variational parabolic problems and prove the existence

of a unique weak solution of problem (OPP)ε. �

3. Discontinuous Galerkin method

In a wide class of pricing problems resulting in a solution of partial differential

equations, numerical methods are rather popular, especially if there exist no analyt-

ical pricing formulae in general. As was shown in Section 2, the pricing equation has

a convection-diffusion character, which is very often the reason of many numerical

difficulties, e.g., occurrence of spurious oscillations in discrete solutions. Therefore,

the DG method is applied to problem (OPP) in order to utilize the potential of

this method for solving such problems and enable better resolving of discrete option

prices with respect to computational meshes as well as polynomial approximation de-

grees. This technique is based on piecewise polynomial, but generally discontinuous,

approximation of the pth order describing a global solution on the whole domain, for

a survey see [8] and [26].

In what follows we mention the routine steps, from a triangulation of Ω and

a construction of the finite dimensional space Sp
h, over the space semidiscretization
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and time discretization to the final form of the numerical scheme for pricing Asian

options with fixed strike.

3.1. Finite-dimensional space of discontinuous functions. Let Th =

{K}K∈Th
, h = max

K∈Th

diam(K), represent a triangulation of Ω into a finite num-

ber of elements K. We do not put any conforming properties on the triangulation Th
as in the finite element method, e.g. [5]. Therefore, by Fh we denote the set

of all open edges and parts of edges (resulting from hanging nodes) of all ele-

ments K ∈ Th. According to their position, we distinguish sets of inner edges FI
h ,

boundary edges of Dirichlet type FD
h , and boundary edges of Neumann type FN

h .

Obviously, Fh = FI
h ∪ FD

h ∪ FN
h . For shorter notation we put FID

h ≡ FI
h ∪ FD

h and

FDN
h ≡ FD

h ∪ FN
h .

Secondly, for each Γ ∈ Fh, we define a unit normal vector ~nΓ with the following

orientation. For Γ ⊂ ∂Ω, ~nΓ is oriented as the outward normal to ∂Ω. If Γ ∈ FI
h ,

then Γ ⊂ K+ ∩K− and we set ~nΓ to be the outward normal to K+ lying in K−.

The approximate solution of the problem (OPP) is sought in the finite dimensional

space of discontinuous piecewise polynomial functions, defined over the triangula-

tion Th as

(3.1) Sp
h ≡ Sp

h(Ω, Th) = {v ∈ L2(Ω): v|K ∈ Pp(K) ∀K ∈ Th},

where Pp(K) denotes the space of all polynomials of order less than or equal to p

defined on K. For each function v ∈ Sp
h restricted to Γ ∈ FI

h , we distinguish

two traces v|+Γ = (v|K+
)|Γ and v|−Γ = (v|K

−

)|Γ. Moreover, [v]Γ = v|+Γ − v|−Γ and
〈v〉Γ = 1

2 (v|
+
Γ + v|−Γ ) denote the jump and the mean value of the function v over the

edge Γ, respectively. For Γ ⊂ ∂Ω, we simply put 〈v〉Γ = [v]Γ = v|+Γ .

3.2. Space semidiscretization. We recall the DG framework for the space

semidiscrete formulation of (OPP). The complete derivation for Asian option con-

tract with the floating strike on two underlying assets can be found in [19]. Here we

apply this approach to the case of options with the fixed strike and introduce the

semi-discrete solution uh(t̂) ∈ Sp
h represented by the system of ordinary differential

equations (ODEs)

(3.2)
d

dt̂
(uh(t̂), vh) + Ch(uh(t̂), vh) = lh(vh)(t̂) ∀ vh ∈ Sp

h, ∀ t̂ ∈ (0, T ),

where the form Ch(·, ·) stands for the semi-discrete variant of the operator L
from (2.36) accompanied with penalties and stabilizations, and the right-hand
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side form lh(·) enforces the fulfilment of boundary conditions. More precisely, one
can easily decompose Ch into

(3.3) Ch(u, v) = ah(u, v) + bh(u, v) + (γu, v) + Jh(u, v),

where

ah(u, v) =
∑

K∈Th

∫

K

D(x)∇u · ∇v dx−
∑

Γ∈FID
h

∫

Γ

〈D(x)∇u · ~nΓ〉 [v] dS(3.4)

+
∑

Γ∈FID
h

∫

Γ

〈D(x)∇v · ~nΓ〉[u] dS,

bh(u, v) = −
∑

K∈Th

∫

K

(b1(x), b2(x))u · ∇v dx(3.5)

+
∑

Γ∈FI
h

∫

Γ

H(u|+Γ , u|−Γ , ~nΓ)[v]Γ dS

+
∑

Γ∈FDN
h

∫

Γ

H(u|+Γ , u∗|Γ, ~nΓ)[v]Γ dS,

γ(x) = − 2r +
3

2
q1 +

3

2
q2 −

α1

Tx1
− α2

Tx2
− 3

8
σ2
1 −

9

4
̺σ1σ2 −

3

8
σ2
2 ,(3.6)

Jh(u, v) =
min2(σ1, σ2)

2

∑

Γ∈FID
h

∫

Γ

1

|Γ| [u][v] dS, |Γ| = meas1(Γ).(3.7)

Notice that term (3.4) contains the so-called nonsymmetric variant of interior

penalty Galerkin stabilization (cf. [16]) and the concept of the upwinding is used in

the treatment of the numerical flux H in (3.5), i.e.,

(3.8) H(u|+Γ , u|−Γ , ~nΓ) =























2
∑

i=1

bi(x)ni · u|+Γ , if cs > 0,

2
∑

i=1

bi(x)ni · u|−Γ , if cs 6 0,

~nΓ = (n1, n2)
T,

where the characteristic speed cs =
2
∑

i=1

bi(x)ni and the function u∗ on boundary

edges Γ ⊂ ∂Ω is given by (2.28), if Γ ∈ FD
h , and extrapolated from interior of Ω, i.e.,

u∗ = u|+Γ , if Γ ∈ FN
h . This extrapolation is meaningful provided that

2
∑

i=1

bi(x)ni > 0

on each Γ ∈ FN
h , which is commonly valid in practice due to (2.19) and the market

parameters considered.
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Finally, the right-hand side form lh contains terms arising from the boundary

conditions, i.e.,

(3.9) lh(v)(t̂) =
∑

Γ∈FD
h

∫

Γ

D(x)∇v · ~nΓu
∗(t̂) dS

+
min2(σ1, σ2)

2

∑

Γ∈FD
h

∫

Γ

1

|Γ|u
∗(t̂)v dS

+
∑

Γ∈F
N
h

Γ⊂Γ2

∫

Γ

g2(t̂)v dS +
∑

Γ∈F
N
h

Γ⊂Γ3

∫

Γ

g3(t̂)v dS,

where u∗ is given by (2.28) and g2, g3 by (2.37).

Now, we are ready to define the semidiscrete solution of problem (OPP) and prove

its existence and uniqueness.

Definition 3.1. We say that uh is a semidiscrete solution of problem (OPP), if

uh ∈ C1(0, T ;Sp
h) and the following conditions are satisfied:

(uh(0), vh) = (u0, vh) ∀ vh ∈ Sp
h,(3.10)

(∂uh(t̂)

∂t̂
, vh

)

+ Ch(uh(t̂), v) = lh(vh)(t̂) ∀ vh ∈ Sp
h, ∀ t̂ ∈ (0, T ).(3.11)

Theorem 3.1. Problem (3.10)–(3.11) has a unique semidiscrete solution.

P r o o f. Since problem (3.11) represents a system of ODEs, the proof follows the

standard knowledge from the theory of differential equations, see e.g. [11]. Assuming

uh ∈ C1(0, T ;Sp
h), the existence of the solution is ensured by the boundedness of

the bilinear form Ch(·, ·) on Sp
h × Sp

h and the regularity of functions u
∗, g2, and g3

occurring in the form lh. Moreover, the uniqueness of the solution arises from Lip-

schitz continuity of the right-hand side of the given system of ODEs, especially the

assumption of Lipschitz continuity of the numerical flux H has to be taken into ac-

count. The analogous proof with lh ≡ 0 can be found in [19], Theorem 3.1. �

3.3. Time discretization. Our aim is to present the high-order scheme also with

respect to the time coordinate t̂. Therefore, we introduce the numerical scheme for

the time discretization based on the trapezoidal rule and giving the second order con-

vergence in time. Actually, it is the average of forward and backward Euler scheme in

time, well-known as the Crank-Nicolson method, which is practically unconditionally

stable without any restrictive condition on the length of the time step. However, to

624



avoid nonphysical oscillations in the discrete solution the choice of the time step has

to depend on the mesh size h, see Section 4 for practical setting.

Consequently, using the bilinearity of Ch we define the discrete solution of problem
(OPP) in the following way. The existence of a unique discrete solution is also proven.

Definition 3.2. Let 0 = t̂0 < t̂1 < . . . < t̂s = T be a partition of the interval

[0, T ] with constant time step τ = T/s. We define the discrete solution of problem

(OPP) as functions uk
h ≈ uh(t̂k), t̂k ∈ [0, T ], k = 0, . . . , s−1, satisfying the conditions

u0
h is the S

p
h-approximation of u

0,(3.12)

(uk+1
h , vh) +

τ

2
Ch(uk+1

h , vh)(3.13)

= (uk
h, vh)−

τ

2
Ch(uk

h, vh) +
τ

2
(lh(vh)(t̂k+1) + lh(vh)(t̂k)) ∀ vh ∈ Sp

h.

Theorem 3.2. Problem (3.12)–(3.13) has a unique discrete solution.

P r o o f. The proof follows the steps from [19], Theorem 3.2, where an implicit

Euler scheme is considered. The essential ingredient of the proof is the ellipticity of

the form (·, ·) + τ
2Ch(·, ·) of the left-hand side of (3.13). This property comes from

upper estimates for the form bh and taking sufficiently small τ > 0. Hence, the

discrete problem has a unique solution. �

3.4. Numerical scheme. The discrete problem (3.13) is equivalent to a system

of linear algebraic equations at each time level t̂k and can always be expressed in

a matrix form, cf. [17] and [18]. Indeed, setting the vector of real coefficients Uk =

{ξkj }DOF
j=1 ∈ R

DOF such that

(3.14) uk
h(x) =

DOF
∑

j=1

ξkj vj(x), x ∈ Ω, Sp
h = span(v1, . . . , vDOF),

where DOF denotes the number of degrees of freedom (corresponding to the dimen-

sion of Sp
h), one can rewrite (3.13) as

(3.15)
(

M+
τ

2
C

)

Uk+1 =
(

M− τ

2
C

)

Uk +
τ

2
(Fk+1 + Fk),

where the matrixM is related to the mass matrix, the matrix C to the form Ch and
the vector Fk represents the right-hand side form lh(t̂k). Finally, let us mention that

the DG solution uk+1
h at each time level is uniquely determined by the solution vector

Uk+1, which is usually computed by a suitable sparse solver. Since the system matrix

in (3.15) is nonsymmetric due to (3.4) and (3.5), GMRES solver is used in the forth-
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coming numerical experiments. Because of the relatively small number of degrees of

freedom in practical computations (i.e., DOF < 105), no preconditioner is employed.

The treatment in nonweighted function spaces allows us to use standard techniques

for the theoretical analysis of the presented numerical scheme. We recall the derived

error estimates for the scalar linear convection-diffusion equations, which include the

studied problem (OPP), cf. [8], [26] and references cited therein.

In the case of sufficiently regular data and using the nonsymmetric discretization

of diffusion terms (3.4) and with the interior and boundary penalty (3.7) together

with the Crank-Nicolson method, a priori error estimates guarantee an O(hp + τ2)

convergence rate in the L∞(L2)-norm and the energy norm for pth degree polynomial

approximation over a polygonal space-time domain of mesh size h and equidistant

time stepping τ .

These theoretical results are confirmed by the observed experimental order of

convergence in the energy norm. And therewithal, a better behaviour of the experi-

mental L2-order of convergence is signalized, which is expected to be asymptotically

O(hp+1) for odd polynomial order p, see book [8]. The second-order accuracy in time

with respect to both types of norms is preserved.

4. Numerical examples

The numerical experiments presented in this section demonstrate the potency of

the DG method in problems arising from the PDE approach applied to the option

valuation. Throughout this section, we numerically price Asian basket put options

with fixed strike. In the first experiment we numerically justify the derived numerical

scheme on reference option prices while the second example provides experimental

insight into the mutual comparison of Asian options with floating as well as fixed

strikes on real market data. The whole implementation of the proposed numerical

scheme is done in the solver Freefem++, for more details see [14].

4.1. Comparison to one-dimensional case. As the first numerical experiment

we consider the reference model problem for fixed strike Asian call with only one

underlying asset, frequently presented in vast literature, such as [9], [28], and [32].

In these works an experiment with model parameters r = 0.15, Sref = 100.0 and

T = 1.0 is reported as the most difficult case. Moreover, the impact of different

volatilities σ and strikes K is investigated. To be consistent with the aforementioned
one-dimensional case we assume that

q1 = q2 = 0, α1 = α2 = 0.5,(4.1)

Sref
1 = Sref

2 = Aref = 100.0, ̺ = 1.0,
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where the unit correlation parameter ̺ corresponds to a perfect positive linear rela-

tionship between the two underlying assets S1 and S2 with volatilities of the same

value σ. This is necessary to be able to compare the two-factor case with the one-

factor one.

In order to obtain reliable comparison we employ piecewise quadratic approxima-

tions and similar mesh size h ≈ 0.02 with xmax
1 = xmax

2 = 2.0 and the same time step

τ = 1/400 are used, as in [28]. The boundaries Γ1 and Γ4 are specified by k1 = 1/10

and k2 = 10 in (2.27). Moreover, we add an artificial edge lying on x2 = x1 to the

triangulation to get a 2D mesh consistent with the diagonal cut to which the solution

is restricted for easy comparison with 1D results.

In fact, we compute the discrete price of a put option, which is evaluated at the

reference node for maturity T according to the relation (2.9) as

(4.2) VP (S
ref
1 , Sref

2 , Aref , T ) =
√

Sref
1 Sref

2 · uh(K/Sref
1 ,K/Sref

2 , T ).

Then the value of the corresponding call option is given by put-call parity (2.33). The

discrete solution uh at maturity is depicted in Figure 2 (left) and the transformed

call option values VC along the diagonal cut in Figure 2 (right).
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Figure 2. The case σ1 = σ2 = 0.20: The piecewise quadratic DG discrete solution uh at
maturity on mesh #Th ≈ 1 500 (left) and the corresponding diagonal cut of the
transformed call option (right).

The comparative results evaluated at the reference nodes with different volatilities

and strikes are presented in Table 2. One can easily observe that the DG approach

for piecewise quadratic approximations gives fairly the same results as the finite

difference method in [28] and [32]. In particular, our results are mostly only slightly

above those presented in [28], though we can observe some impact of various input

parameters. This fact is also illustrated in Figure 2 (right), since the difference is
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more apparent in the right corner of the cut. However, since each resulting price

obtained via the DG approach falls within the range specified in [27], it should also

fulfil the no-arbitrage conditions. Note finally that changing the domain Ω by putting

k1 ≪ 1/10 and k2 ≫ 10 does not improve the results significantly.

put call ref. call values bounds [27]

σ K DG(P2) [28] [32] lower upper
95 0.0115 11.1056 11.094 11.094 11.094 11.114

0.05 100 0.0044 6.7949 6.795 6.793 6.794 6.810

105 0.2604 2.7474 2.744 2.744 2.744 2.761
90 0.0093 15.4069 15.399 15.399 15.399 15.445

0.10 100 0.2493 7.0400 7.029 7.030 7.028 7.066

110 3.2581 1.4416 1.415 1.410 1.413 1.451
90 0.2541 15.6517 15.643 15.643 15.641 15.748

0.20 100 1.6223 8.4129 8.412 8.409 8.408 8.515

110 5.3771 3.5610 3.560 3.554 3.554 3.661
90 1.1174 16.5150 16.516 16.514 16.512 16.732

0.30 100 3.4232 10.2138 10.215 10.210 10.208 10.429

110 7.5458 5.7293 5.736 5.729 5.728 5.948

Table 2. Comparison of DG discrete option prices w.r.t. different methods for fixed strike
Asian call.

4.2. Comparison with floating strike case. As the second numerical experi-

ment we consider reference benchmark on real market data from [19]. Our aim is to

investigate the behaviour of Asian basket put option with fixed strike written on two

underlying assets and compare the results with the case of the option with floating

strike, namely the sensitivity to volatilities and correlation factors.

The financial background of this experiment was specified in more detail in [19].

Here we only recall that the underlying assets are represented by the exchange rates

of EUR and USD, both with respect to GBP, and the structure of the basket is fixed

(60% EUR and 40% USD) in the respective currencies for the prescribed period of

one month. The fixed model parameters are set up as

(4.3) T = 30/365, r = 0.0, q1 = q2 = 0.0, α1 = 0.6, α2 = 0.4,

and the reference node [Sref
1 , Sref

2 , Aref ] is given by the closing values of both the

underlying assets and their weighted average

(4.4) Sref
1 = 0.83, Sref

2 = 0.75, Aref = α1S
ref
1 + α2S

ref
2 = 0.798.

In order to realize the comparison between fixed and floating strike options the strike

has to be chosen as K = Aref . Note that the choice of r = q1 = q2 = 0 is not quite

628



realistic from a financial viewpoint, if the underlying assets are linked to exchange

rates, but for easier capture of the impact of the volatilities and the correlation factor

on the result, these zero values are reasonable.

The numerical experiments are carried out for the piecewise quadratic DG ap-

proximations on adaptively refined and sufficiently large computational domain Ω in

order to well resolve the solution in the whole domain and to suppress the asymptotic

treatment of boundary conditions on the far-field boundary, respectively. Here it is

sufficient to put xmax
i ≈ 2K/Sref

i , k1 = 1/100, and k2 = 100. Finally, the time step

is chosen proportional to one calendar day, i.e., τ = 1/365.

We start with the experimental findings on the sensitivity of the option prices

to the volatilities of both the underlying assets for a fixed correlation ̺ = 0.45.

To capture various market conditions we consider 5 values of σi ∈ {0.05, 0.10, 0.15,
0.20, 0.25} for each underlying asset and compute discrete DG solutions using piece-
wise quadratic approximations. The obtained results (in thousandths) evaluated at

the reference node after 30 days are presented in Table 3 along with the floating

strike option values from [19].

Since the weight of the first underlying asset is higher (α1 = 0.6), the impact of its

volatility on the option price is higher as well. These empirical findings are common

to both types of options with fixed and floating strike. However, one can observe

that the option values for fixed strike are several times higher than the values for

floating strike, which reflects a realistic expectation on options with fixed strike. On

the other hand, the growth of these values with increasing volatilities σ1 and σ2 is

slower than in the case of floating strikes. This different behaviour of the two types

of Asian options are given by the different character of the convection parts in the

governing equations in the vicinity of a reference point, cf. [19].

σ1
σ2 0.05 0.10 0.15 0.20 0.25

0.05 20.7915 20.9361 21.0410 21.1797 21.3557
(2.25641) (3.06311) (3.95030) (4.87346) (5.81509)

0.10 21.0058 21.1463 21.2779 21.4435 21.6440
(3.79658) (4.49091) (5.27593) (6.11722) (6.99444)

0.15 21.3020 21.4464 21.6032 21.7945 22.0198
(5.39115) (6.02129) (6.73512) (7.50910) (8.32639)

0.20 21.6881 21.8397 22.0209 22.2367 22.4861
(7.00067) (7.59162) (8.25682) (8.97995) (9.74803)

0.25 22.1628 22.3263 22.5315 22.7710 23.0434
(8.61628) (9.18118) (9.81180) (10.4964) (11.2250)

Table 3. Discrete option values for P2 approximations: Comparison between fixed strike
options and floating strike options from [19] (values in brackets).

629



The second important factor is the dependence between the two foreign exchange

rates, which is represented by the correlation coefficient ̺. Figure 3 records the

relation between the option price and the correlation, which is positive and almost

linear for both types of options and corresponds to the well-known basket option

behaviour, though fixed strike option is again less sensitive to the parameter changes.
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Figure 3. Comparison of the dependence of option values for particular risk sources given
by correlation ̺ for floating (bottom) and fixed (top) strike Asian basket puts
with fixed σ1 = 0.1 and σ2 = 0.15.

5. Conclusion

Obviously, the most straightforward way to option pricing is the usage of a closed-

form formula. However, in many cases the option payoff function is too complex

so that the relevant PDE system cannot be solved analytically or by some suitable

transformation and it is inevitable to apply some of the numerical approximative

techniques. In this contribution we have extended our previous results on the DG

approach to Asian basket options [19] by considering the case of fixed strike. We

have proposed a numerical scheme that leads to the option price and compared it

to the case of floating strike, including experimental study assuming Asian put on

two foreign exchange rates, including the sensitivity analysis. It follows that the

proposed procedure seems to be sufficiently robust with respect to various options as

well as market conditions and is comparable to other numerical approaches, at least

in terms of the pricing error. Notwithstanding, it would be interesting to consider

some advanced processes (see e.g. [6]) or at least dependence structures.
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