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ABSTRACT

These years much e�ort has been devoted to improving the ac-

curacy or relevance of the recommendation system. Diversity, a

crucial factor which measures the dissimilarity among the recom-

mended items, received rather little scrutiny. Directly related to user

satisfaction, diversi�cation is usually taken into consideration after

generating the candidate items. However, this decoupled design of

diversi�cation and candidate generation makes the whole system

suboptimal. In this paper, we aim at pushing the diversi�cation to

the upstream candidate generation stage, with the help of Graph

Convolutional Networks (GCN). Although GCN based recommen-

dation algorithms have shown great power in modeling complex

collaborative �ltering e�ect to improve the accuracy of recommen-

dation, how diversity changes is ignored in those advanced works.

We propose to perform rebalanced neighbor discovering, category-

boosted negative sampling and adversarial learning on top of GCN.

We conduct extensive experiments on real-world datasets. Experi-

mental results verify the e�ectiveness of our proposed method on

diversi�cation. Further ablation studies validate that our proposed

method signi�cantly alleviates the accuracy-diversity dilemma.
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1 INTRODUCTION

With the rapid development of the WEB, an intelligent algorithm

called Recommendation System was proposed to overcome the
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information over�ow problem [46]. The success of recommenda-

tion system has been veri�ed in a number of scenarios including

e-commerce [27, 38], online news [57, 58] and multimedia contents

[9]. With the advancement of recommendation algorithms, much

e�ort has been devoted to improving the accuracy of the recom-

mended items. In other words, the accuracy serves as the dominant

target or even the only target inmost of the recent research. Chasing

for higher accuracy, more attributes are incorporated [25, 28, 37, 44],

and more complicated models are proposed [13, 24, 40, 65].

However, an accurate recommendation is not necessarily a satis-

factory one [66]. When users access the web, �nding the exactly

accurate contents is just one of their many needs. For example,

users spend much time in browsing news-feed applications for

discovering something novel [32]. From the angle of user satis-

faction, relevance is never the only rule of thumb. Many factors

other than relevance, also in�uence how users perceive the recom-

mennded contents, such as freshness, diversity, explainability and

so on. Among those metrics a�ecting user satisfaction, diversity

directly determines user engagement in recommendation scenar-

ios [56]. Speci�cally, not only the similarity between the user and

the recommended items matters, but the dissimilarity among the

recommended items re�ects the recommendation e�ect as well.

Without the diversity of the recommended items, users are likely to

be exposed of repetitive items. That is to say, although the informa-

tion overload problem is alleviated, another problem of information

redundancy is brought in by recommendation system [56].

In order to guarantee user satisfaction, three directions of ap-

proaches, namely post-processing, Determinantal Point Process

(DPP) and Learning To Rank (LTR), have been proposed to improve

the diversity of the recommended results [60]. In the early stage of

diversi�ed recommendation, a re-rank or post-processing module

is appended after the generation of recommended candidates. The

order of the items is determined by heuristics to balance between

relevance and diversity. A bunch of solutions in this research line

were proposed [3, 6–8, 41, 48, 69]. Independent with candidate gen-

eration, the re-rank strategy is decoupled from the optimization

of the recommendation model. Thus the diversi�cation signal is

not re�ected in upstream relevance matching models, which in-

creases the risk of the �nal recommendation being suboptimal.

Recently, another direction of research takes advantage of DPP

[11, 19, 21, 22, 55, 56] to replace the heuristics in post-processing

based mothods, but the diversi�cation process of DPP is still con-

ducted after the generation stage. To address this problem, a series

of methods based on LTR [12, 36] were proposed which target on
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directly generating an ordered list of items rather than a candi-

date set. However, it is tricky to construct an appropriate listwise

dataset for such methods. To summarize, existing solutions based

on post-processing or DPP aim to improve the diversity leaving the

matching process untouched. However, the overall performance

of a recommendation system greatly depends on the representa-

tions of users and items learned in the matching process. Thus it

remains uncertain whether the decoupled design diversi�es the

recommendation with acceptable loss in accuracy. In terms of LTR

based methods, practical issues exist because of the di�culty in

collecting feasible datasets.

Since the interactions between users and items can be naturally

represented as a heterogeneous graph (a bipartite of users and

items), a number of graph based recommendation algorithms were

proposed which either utilize rather simple random walk [16, 30]

or more complicated methods like GCN [52–54, 61, 63]. In terms

of the user-item bipartite graph, higher order neighbors of a user

tend to cover more diverse items, because these neighbors contain

not only the given user’s interacted items, but also other similar

users’ preferred items. Therefore, it is advantageous to perform

diversi�cation on a graph, since the high order connectivity makes

diverse items more reachable. Furthermore, performing diversi�ca-

tion in GCN also alleviates the aforementioned problem of existing

works which separate diversi�cation from the upstream relevance

matching model. However, without speci�c designs for diversity,

those high order connections might not be automatically utilized to

�nd items which are not similar to each other. For example, the rec-

ommendation system can easily learn to provide items of the most

interacted categories because they take up the majority of the edges

on the graph. Nevertheless, those GCN based algorithms mainly

focus on improving the accuracy, while ignoring how diversity is

impacted by the much more complicated GCN model.

In our work, we focus on category diversi�cation in recommen-

dation with the help of GCN. We develop rebalanced neighbor

discovering for GCN to make items of disadvantaged categories

more reachable. We make adjustments to the negative sampling

process to boost the probability of sampling similar but negative

items. Furthermore, we employ adversarial learning to distill the im-

plicit category preference in the learned embedding space. Through

these special designs, we push the diversi�cation process upstream

into the matching stage and propose an end-to-end model called

Diversi�ed recommendation with Graph Convolutional Networks

(DGCN). The main contributions of this paper are three-fold:

• We analyze the e�ect of existing diversi�cation algorithms and

propose a novel method to combine diversi�cationwithmatching.

The integrity of our method overcomes the problem of decoupled

structure in existing works.

• Aiming to generate diverse and relevant items, we carefully de-

sign rebalanced neighbor discovering, category-boosted negative

sampling and adversarial learning for GCN. An end-to-end model

is developed for diversi�ed recommendation.

• We utilize real-world datasets to evaluate the e�ectiveness of

our proposed method. Experimental results demonstrate that

diversity of recommendation is validly improved by our method.

Furthermore, we conduct ablation studies to con�rm the impor-

tance of each proposed component.

The remainder of the paper is organized as follows. First, we

introduce a few preliminaries in Section 2. Then we elaborate our

design of DGCN in Section 3 and conduct experiments in Section 4.

After reviewing related work in Section 5, we make some discus-

sions and conclude the paper in Section 6.

2 PRELIMINARIES

2.1 Diversity

As a matter of fact, diversity of recommendation can be either intra-

user level or inter-user level [10]. Intra-user level diversity measures

the dissimilarity of the recommended items of an individual user,

while inter-user level focuses on the provided contents for di�er-

ent users. In this paper, we target on improving intra-user level

diversity1 as most of the related research, and leave inter-user level

diverisity (also known as decentration or long-tail recommendation)

for future work.

Diversity is often mixed up with serendipity or novelty. For

example, suppose 70% of the purchased items for a user are elec-

tronic devices, 20% are clothes and the other 10% are drinks. Then

a recommended list of 10 items including �ve or more electronic

devices, one or two clothes and one or two drinks is a much more

diverse result than recommending ten electronic devices. Moreover,

even though the user did not purchase any books in her interaction

history, she might still have interests in reading, and serendipity

stands for the capability of the recommendation system to provide

items appealing to users but not realized by themselves (books for

the user in this case).

In this paper, we focus on category diversi�cation [69]. When

users browse the recommended items, it is not user-friendly to

provide a large amount of items belonging to the same category.

We utilize three widely adopted metrics for diversity in our experi-

ments:

• coverage: this metric measures the number of recommended

categories. Coverage re�ects the holistic and overall diversity of

a recommendation system.

• entropy: this one focuses on the distribution on di�erent cat-

egories. Using the previous example, the entropy value of four

electronic devices, three clothes and three drinks is higher than

recommending seven electronic devices and three drinks.

• gini index: this index is popularly adopted in economics to

measure the wealth or income inequality, and it was further

adapted and introduced to recommendation by [2]. The number

of items belonging to a speci�c category can be explained as the

wealth of that category.

Note that in terms of coverage and entropy, higher value means

stronger diversity, while for gini index it is the opposite (lower is

better).

2.2 Recommendation Pipeline

As illustrated in Figure 1, a typical pipeline for a recommender

system is composed of three stages: (1) matching (candidate genera-

tion), (2) scoring, and (3) re-ranking. Several hundreds of items are

selected in matching stage from a large item pool. Then, usually

complicated deep learning models are adopted in scoring stage to

1in this paper, diversity refers to intra-user level diversity for simplicity
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Figure 1: A typical recommendation pipeline.
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Figure 2: The accuracy-diversity dilemma.

estimate interaction probability and the top dozens of items are

selected. In re-ranking, selected items are re-arranged to satisfy

additional constraints.

With respect to diversity, it is widely adopted to impose heuris-

tic rules in the re-ranking stage to diversify recommended items.

Di�erent re-ranking methods were proposed to balance between

relevance and diversity [3, 7, 8, 56]. However, diversi�cation in

re-ranking is independent with upstream matching and scoring

models, which makes the whole system suboptimal. Furthermore,

with matching models unaware of diversi�cation signals, the re-

trieved items frommatching can be already redundant, which limits

diversity from the source. In this paper, we aim at pushing diversi-

�cation upwards. Speci�cally, we take diversity into consideration

during matching, and propose an end-to-end method to provide

diverse recommendation.

2.3 Accuracy-Diversity dilemma

Generally, when considering diversity, it is not easy to get rid of

the so called accuracy-diversity dilemma [66], especially in o�ine

evaluations. That is, higher accuracy often means losing diversity

to some extent. We compared several recommendation algorithms

(random, matrix factorization [35] and neural graph collaborative

�ltering [54]), as well as a bunch of diversi�cation algorithms (MMR

[8], DUM [3], PMF+U+V and DPP [20]), utilizing a real world e-

commerce dataset collected from Taobao2, which is the largest e-

commerce platform in China. In order to verify the tradeo� between

the two metrics, we plot the results of these methods in Figure 2

with accuracy and diversity as the two axes.

From Figure 2 we can observe that, with the recommendation al-

gorithm getting more complicated, though more relevant products

are provided, less categories are presented to customers. After in-

troducing these diversi�cation strategies, the diversity indeed gets

promoted, while the accuracy is not guaranteed. Although there

2www.taobao.com

exist certain hyper-parameters in these diversi�cation methods to

balance the bias, later experiments show that it is rather di�cult to

�nd a satisfactory point.

3 METHOD

3.1 Overview

As introduced previously, we incorporate diversi�cation into the

matching process with GCN. We aim at providing items correlated

with users’ interests while dissimilar with each other (diversity).

Figure 3 illustrates the holistic structure of our proposed DGCN.

In real-world recommendation scenarios, the interactive behav-

iors between users and items are always the strongest signals with

respect to user preference modeling. Thus we �rst construct a

graph to represent the interactions, which consists of two types of

nodes (users and items), and edges between them stand for those

behaviors. It is worthwhile to state that edges are undirected in

our constructed bipartite graph. We propose rebalanced neighbor

discovering to solve the problem of inconsistency between di�erent

categories. By applying GCN on top of the the sampled sub-graph,

node features propagate back and forth between users and items,

which accurately simulates the collaborative �ltering e�ect. With

the goal of making diverse categories more accessible, we make

adjustments to the negative sampling process, boosting the proba-

bility of selecting similar items. Furthermore, we add an adversarial

task of item category classi�cation to strengthen the diversity.

Our proposed method is featured with the following three spe-

cial designs targeting on diversi�cation: (1) Rebalanced Neighbor

Discovering, (2) Category-Boosted Negative Sampling and (3) Ad-

versarial Learning.

• Rebalanced Neighbor Discovering To discover more diverse

items on the graph, we design a neighbor sampler based on

the distribution of the neighbors. We increase the probability of

selecting items of disadvantaged categories, and limit the e�ect

of those dominant categories. With the guidance of the neighbor

sampler, items of multiple categories are more reachable.

• Category-Boosted Negative Sampling Unlike random nega-

tive sampling, we propose to choose those similar but negative

items with a boosted higher probability. By distorting the distri-

bution of negative samples, representations for users and items

are learned in a �ner level, where the recommendation system

can determinate the user preferences among similar items.

• Adversarial LearningWe leverage the technique of adversarial

learning, playing a min-max game on item category classi�ca-

tion. With an extra adversarial task, we distill users’ category

preferences from item preferences, which makes the learned

embeddings category-free. And consequently, neighbors in this

embedding space will cover more categories.

In the following sections, we �rst introduce the architecture

of the adopted GCN, and then we elaborate on the three special

designs for diversity one after another.

3.2 GCN

Our GCN is composed of an embedding layer and a stack of graph

convolutional layers, where each graph convolutional layer con-

tains a broadcast operation and an aggregation operation.
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Figure 3: Overview of our proposed DGCN.

3.2.1 Embedding Layer. Inspired by representations for words and

phrases [39], the embedding technique has been successfully em-

ployed in recommendation system [24]. In our work, the inputs

of GCN are simply ID features for users and items. Following the

widely adopted embedding strategy, we transform the one-hot ID

feature to a dense vector, thus we have the following embedding

look-up table:

K = [eu1, . . . , euS , ei1, . . . , eiT ], (1)

where" is the number of users, and # is the numberof items. We

represent each node with a separate embedding e ∈ R3 , in which 3

is the embedding size. It is worthwhile to note that the embeddings

are learnable parameters and further fed into GCN for message

passing on the graph. Thus the embedding can be regarded as the

node feature at layer 0, i.e. h0v which will be introduced later.

3.2.2 Graph Convolutional Layer. We perform embedding broad-

cast and aggregation in the graph convolutional layer. In other

words, within a graph convolutional layer, each node broadcasts

its current embedding to all its neighbors and aggregates all the

messages sent to it to update its embedding. In terms of neighbor

aggregation, we utilize average pooling combined with a feature

transform matrix and a nonlinear activation function. Formally, we

denote the feature vector of node E at the :-th layer as hkv , and the

update rules are illustrated as follows:

h
k
GMM ="��# (hk−1j ,∀9 ∈ N (E)),

h
k
v = tanh(Wk

h
k
GMM )

(2)

whereN(E) represents the set for sampled neighbors of node E . As

investigated in [59], adding self loops is of crucial importance in

graph convolutional networks, since it compresses the spectrum

of the normalized Laplacian. Therefore, we also insert node E itself

into N(E). In this way, node embeddings propagate on the graph

in a layer-wise manner.

3.2.3 Interaction Modeling. With respect to interaction modeling

in the matching stage, heavy computation such as the inference

computing of neural networks is impractical due to the large item

pool and the strict latency requirements. For embedding based

matching model, inner product and L2 distance are widely used.

Furthermore, at online serving time, these simple rather e�ective

interaction modeling methods can be greatly accelerated with the

help of nearest neighbor search algorithms. Therefore, we use the

representations of users and items at the last graph convolutional

layer and take inner product of them to estimate the interaction

probability:

?D,8 =< h
Q
u ,h

Q
i >, (3)

where  is the depth of the graph neural networks. During evalua-

tions, top items with respect to ?D,8 are selected as recommended

items for a given user D.

3.2.4 Prevent Overfi�ing. To prevent our model from over�tting,

we perform dropout [49] on the feature level. To be speci�c, we

randomly drop the intermediate node embeddings between consec-

utive graph convolutional layers with probability ? , where ? is a

hyper-parameter in our method.

With great capability in learning representations for graph struc-

tures, GCN has been shown e�ective to capture the collaborative

e�ect on the user-item bipartite graph, which improves the accu-

racy signi�cantly. However, utilizing the high order connectivity

for diversi�cation has received little scrutiny. We then introduce

our special designs for diversity in the proposed DGCN.

3.3 Rebalanced Neighbor Discovering

In the matching stage, usually the recommendation system retrieves

items from a large corpus which is of million-scale or even billion-

scale [63]. Feeding the whole graph consisting of millions of nodes

to a GCN su�ers from highly ine�cient computation and heavy

resources usage. Moreover, it is di�cult to implement mini-batch

training on the whole graph. Thus a neighbor sampler is often

employed to sample a sub-graph from the original large one for e�-

cient training [26]. With the help of the neighbor sampler, inductive

learning on the graph is accomplished and it has been proved scal-

able to billion-scale graphs [63]. Speci�cally, the neighbor sampler

generates a Node Flow, which is a sub-graph with multiple layers,

where edges only exist in consecutive layers.

Figure 4 serves as a toy example for neighbor discovering. Specif-

ically, during the training process, a mini-batch consists of a certain

number (i.e. batchsize) of users and items, and these user nodes

and item nodes in a single batch form the set of seed nodes. The

neighbor sampler randomly selects their neighbors and extracts the

sub-graph. For GCN deeper than one layer, this neighbor discover-

ing process will repeat recursively, which means the sampled neigh-

bors become seed nodes for the next hop. It is clearly illustrated in

Figure 4 that edges exist in consecutive layers and connected layers

form a block. Graph convolutional operations are performed block

by block, where each graph convolutional layer corresponds with

one block.

However, the above neighbor discovering strategy leaves aside

the problem of diversity. In real-world recommendation scenarios,
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Figure 4: Node Flow generated by the neighbor sampler for

a 2-layer GCN. In this example, node A and node B are the

initial seed nodes. For each node, the neighbor sampler ran-

domly samples two neighbors. The �rst GCN layer performs

convolution in block 1, and all the activated neighbors in

block 1 form the seed nodes for sampling block 2, which cor-

responds to the second GCN layer.

items of distinct categories are supposed to be regarded di�erently

because users perceive them di�erently. In other words, there exist

dominant categories and disadvantaged categories according to

users’ interaction history, where users engage more with items

of dominant categories and spend much less time in disadvan-

taged categories. A diversi�ed recommendation system is capable

of providing items from not only dominant categories but also

disadvantaged categories. From the view of the graph, dominant

categories of a user become the mainstream in the message �ow

on the graph, because they take up most of the in-edges to the

user node. Thus, without distinguishing between dominant cate-

gories and disadvantaged categories in neighbor discovering, the

learned user embeddings are likely to be too close to items embed-

dings of dominant categories, which makes it rather di�cult to

retrieve items from other categories, and thus limits the diveristy

of recommendation.

In our work, we make adjustments to the neighbor discovering

process, with special emphasis on category diversi�cation. Specif-

ically, we boost the probability of sampling items from disadvan-

taged categories and restrict the number of selected items from

dominant categories. The rebalanced neighbor discovering algo-

rithm is illustrated in Algorithm 1 and 2. Due to space limit, we omit

the descriptions for GetNeighbors and SampleWithProbability

in Algorithm 1, which are simple look-up operations in the adja-

cency list and random choice with a given distribution. For a user

node, we �rst conduct histogram of item categories to �nd dom-

inant ones and disadvantaged ones. By taking the inverse of the

histogram, we boost the probability of sampling disadvantaged cat-

egories and lower the priority for dominant categories. A rebalance

weight U is introduced to control the bias. For an item node, we

equally treat all the user nodes linked to it and sample its neighbors

uniformly. Through rebalanced neighbor discovering, items of more

categories are selected, which in turn makes the user embeddings

absorb more diverse item embeddings according to the logic of

GCN. Therefore, items of superior diversity are recommended by

retrieving items from the embedding space with the learned user

embedding as the query vector.

Algorithm 1 Rebalanced Neighbor Discovering

INPUT: Graph G(V, E); GCN depth  ; seed nodes set S; number

of neighbors to sample =; item-category table C; rebalance weight

U

OUTPUT: Node Flow L

1: L ← EmptyList()

2: for : ← 1 C>  do

3: L: ← EmptySet()

4: for all node E ∈ S do

5: N(E) ← GetNeighbors(G, E)

6: if E is a user node then

7: ? ← HistogramAndRebalance(N (E), C, U)

8: else if E is an item node then

9: ? ← UniformDistribution()

10: end if

11: L:E ← SampleWithProbability(N (E), =, ?)

12: L: ← Union(L: ,L:E )

13: end for

14: append set L: to L

15: end for

16: return L

Algorithm 2 HistogramAndRebalance

INPUT: User node D’s neighbors N(D); item-category table C;

rebalance weight U

OUTPUT: Sample probability over node E ’s neighbors ?

1: � ← ComputeCategoryHistogram(N (E), C)

2: for all node 8 ∈ N (D) do

3: ? (8) ← 1/� (C(8))

4: ? (8) ← ? (8)U

5: end for

6: ? ← Normalize(?)

7: return ?

3.4 Category-Boosted Negative Sampling

One of the main challenges for matching is the so called implicit

feedback [45]. That is, only positive samples are accessible to the

recommendation system while negative samples are inferred from

the uninteracted items. This implicit protocol means negative sam-

ples are not necessarily the ones users truly dislike. In practice,

negative instances are generated by randomly sampling from those

uninteracted items. When training recommendation models, each

positive sample is paired with a certain number (i.e. negative sample

rate) of negative samples. By optimizing with pointwise [29] or

pairwise [45] loss function, positive item embeddings are learned

to be close to user embeddings, while negative item embeddings

are pushed o� to the opposite direction.

Several works were proposed to improve the design of the neg-

ative sampler [14, 15], aiming at promoting the recommendation

accuracy. Nevertheless, few works investigate the potential of nega-

tive sampling in diversi�cation. In our work, we propose to choose

those similar but negative items, which means items of the same

category with the positive sample. By sampling negative items from

the positive category, the recommendation model is optimized to
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Algorithm 3 Category-Boosted Negative Sampling

INPUT: Positive samples V ; item set O ; negative sample rate ) ;

item-category table C; similar sampling weight V

OUTPUT: Training samples 


1: 
 ← V

2: for all positive sample (D, 8,True) ∈ V do

3: T ← O \ 8

4: Y ← OC(8) \ 8

5: for C ← 1 C> ) do

6: A ← RandomFloat(0, 1)

7: if A < V then

8: 8C ← Sample(Y)

9: else

10: 8C ← Sample(T )

11: end if

12: 
 ← 
 + (D, 8C , False)

13: end for

14: end for

15: return 


distinguish users’ preference within a category. And those negative

items in the same category are less likely to be retrieved, which

increases the possibility of recommending items from other more

diverse categories. The negative sampling strategy is explained in

Algorithm 3.

A hyper-parameter V is introduced to manage the proportion of

samples from similar items. With more similar but negative items in

training samples, the representations of user and items are learned

in a �ner level, which empowers the recommendation system to

capture users’ interests from more diverse categories. As illustrated

in Figure 5, items from positive categories are sampled more as

negative instances, which increases the possibility for positive items

from negative categories to be recommended and thus more diverse

candidates are generated.

3.5 Adversarial Learning

With respect to model training, most recommendation models are

trained with a single target concerning accuracy. Though the multi-

task framework has been applied in recommendation for multi-

behavior modeling [18], relevance of the results still served as the

core goal and diversity of recommendation was ignored. With only

one optimization object of accuracy, users’ category preference is

implicitly learned from users’ item preference. Taking the same ex-

ample utilized in Section 2, the recommendation systemmight learn

the user’s interests on the whole category (i.e. electronic devices),

while fails to distinguish between the user’s speci�c preference on

di�erent electronic devices.

Without distillation of the implicit category preference captured

in the recommendation model, more items of the positive categories

will be recommended, which limits the chance for more diverse

items to be exposed to users. Inspired by the progress made in

generative models [23, 42], we propose to add an extra adversarial

task of item category classi�cation to achieve the goal of distillation

and further enhance the diversity. Speci�cally, we augment the

recommendation model with a classi�er based on the learned item

items of negative categories

items of positive categories

positive items

Figure 5: An illustration of the sample space. Negative in-

stances are sampled fromoutside positive items.Wepropose

category-boosted negative sampling which boosts the prob-

ability of sampling from items of positive categories (the

light green area).

embeddings. We hope the classi�er to predict the category of the

item from the item embedding as accurate as possible, and expect

the recommendation model to generate item embeddings which

best fool the classi�er.

In our experiments, we adopt a fully connected layer as the clas-

si�er and use cross entropy loss for optimization. With respect to

recommendation, we use log loss [29] which is shown e�ective in

experiments. Take a single training sample (D, 8,~, 2) as an exam-

ple, where ~ is either 0 or 1 represents the user-item interaction

groundtruth and 2 is item 8’s corresponding category. The loss

function for recommendation is formulated as follows:

~̂ = < h
Q
u ,h

Q
i >,

!A (D, 8,~) = − [~ · logf (~̂) + (1 − ~) · logf (1 − ~̂)],
(4)

where ℎ D and ℎ 
8
are the representations learned by GCN (at the

last layer). The loss function for item category classi�cation is:

2̂ =]h
Q
i

!2 (8, 2) = − 2̂ [2] + log (
∑

9

4G? (2̂ [ 9])) (5)

Under the setting of adversarial learning, the object for the item

category classi�er is to minimize !2 , and the object for the recom-

mendation model is to minimize !A − W!2 , where W is introduced to

balance the main task and the additional adversarial task.

With respect to the classi�er, the classi�cation loss is minimized

by �nding clusters of item embeddings. While for the recommen-

dation model, the classi�cation loss is reversed which pushes item

embeddings of the same category far from each other and not to

form clusters. Meanwhile, the main task of minimizing the recom-

mendation loss forces the learned embedding space to retain user

preference semantics.

In terms of implementation, adversarial learning can be elegantly

accomplished by inserting a Gradient Reversal Layer (GRL) in the

middle of the back propagation process, which was �rst introduced

in Domain Adaptation Networks (DAN) [17]. We adopt this strat-

egy in our work. Using the same notations of the previous section,

we expect the classi�er to minimize !2 , while force the GCN to

maximize !2 . As illustrated in Figure 6, we insert a GRL in between

of the learned item embeddings from GCN and the fully connected

classi�er. During the back propagation process, the gradients for

minimizing the classi�cation loss �ow backward through the clas-

si�er, and after the GRL, the gradients will be reversed, which

further �ow to GCN. That is, we perform gradient descent on the

parameters of the classi�er, while perform gradient ascent on the

parameters of GCN, with respect to !2 . For !A , gradient descent
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Figure 6: Implementaion of adversarial learning. Gradients

are shown in boxes.

is applied to GCN. Through this subtle design, we successfully

implement the adversarial learning task.

With the help of adversarial learning, the learned representations

of users and items to great extent reserve the item-level interests

while squeeze out the category-level interests. Therefore, positive

items fromnegative categories are drawn near to users, and negative

items from positive categories are pushed away. Consequently,

neighbors in the embedding space will cover items of more diverse

categories.

4 EXPERIMENTS

In this section, we conduct experiments to answer the following

research questions:

• RQ1: How does the proposed method perform compared with

other diversi�ed recommendation algorithms?

• RQ2: What is the e�ect of each proposed component in DGCN?

• RQ3: How to perform trade-o� between accuracy and diversity

using DGCN?

4.1 Experimental Settings

4.1.1 Datasets and Evaluation Protocols. To evaluate the perfor-

mance of our proposed method, we utilize three real-world datasets:

Taobao, Beibei and Million Song Dataset (MSD). The three datasets

vary in scale and density. Basic statistics of the datasets are sum-

marized in Table 1.

• Taobao: This dataset [67, 68] contains the behaviors of users

on taobao.com including click, purchase, adding item to shop-

ping cart and item favoring during November 25 to December

03, 2017, which was provided by Alimama3. We regard all the

aforementioned behaviors as positive samples and randomly se-

lect about 10% users with uniform probability. We adopt 10-core

settings which means only retaining users and items with at least

10 interactions.

• Beibei: This dataset [18] is collected from one of the largest

e-commerce platforms4 in China which records the purchase

behaviors during July 1 to July 31, 2017. We also utilize the 10-

core settings to guarantee the data quality.

• MSD: This dataset [5] contains the listening history for 1M users,

and is has been utilized to evaluate diversi�ed music recommen-

dation algorithms [11]. We extract a subset of the dataset and

use 10-core settings to �lter out inactive entities.

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
4https://www.beibei.com

Table 1: Statistics of the datasets.

dataset users items categories interactions

Taobao 82633 136710 3108 4230631

Beibei 19140 17196 110 265110

MSD 65269 40109 15 2423262

For each dataset, we �rst rank the records according to times-

tamps, thenwe select the early 60% as training set.We divide the last

40% into two halves. The �rst 20% used for validation and hyper-

parameter search, and we reserve the last 20% for performance

comparison. To measure the top-K recommendation performance

of our proposed method in consideration of both accuracy and

diversity, we utilize a bunch of metrics including recall, hit ratio,

coverage, entropy and gini index, while the �rst two metrics are

about accuracy and the last three concerns diversity.

4.1.2 Baselines. To verify the e�ectiveness of our proposed DGCN,

we compare the performance with several diversi�cation methods

as follows:

• MMR [8]: Maximal Marginal Relevance (MMR) is a pioneer work

for diversi�cation in search engines and is further adapted to

recommendation systems [69]. Thismethod re-ranks the contents

based on greedy algorithms to minimize redundancy.

• DUM [3]: This method is also a greedy approach for diversi�ca-

tion which aims at maximizing the utility of the items subject to

the increase in their diversity.

• PMF+U+V [48]: This work formalizes the problem as a combina-

tion of three aspects: the relevance of the items, the coverage of

the user’s interest, and the diversity between them. Two hyper-

parameters (U and V) are introduced to balance the three parts.

• DPP [11]: Sourced from mathematics and quantum physics, De-

terminantal Point Process (DPP) is recently leveraged in machine

learning research, serving as an parametric model to provide

a diverse subset of items from a larger pool of retrieved items.

Several methods [11, 19, 21, 22, 55] were proposed to accelerate

the computation of DPP.

4.1.3 Parameter Se�ings. We adopt log loss [29] for all methods

and �x the embedding size as 32. The AMSGrad [43] variant of

Adam [33] is utilized for optimization. The negative sample rate is

set to 4. We train each model until convergence and utilize the early

stopping technique to avoid over�tting. We perform grid search

to �nd the best hyper-parameters. Results are averaged over all

the users. We implement our proposed method with PyTorch5, and

codes are available at https://github.com/tsinghua-�b-lab/DGCN.

4.1.4 Evaluations. Since our work directly uses inner product to

estimate the interaction probability, maximum inner product search

can be easily integrated into the system, and we use Faiss [31] to

generate candidates for evaluation which greatly reduces the time

cost. During evaluation, we construct a search index (IndexFlatIP6

for e�cient nearest neighbor search based on inner product) in

5https://pytorch.org
6https://github.com/facebookresearch/faiss

https://github.com/tsinghua-fib-lab/DGCN
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Table 2: Overall Performance on Taobao dataset and Beibei dataset. (TopK = 300)

dataset Taobao Beibei

metrics recall hit ratio coverage entropy gini index recall hit ratio coverage entropy gini index

MMR 0.0544 0.0453 74.5460 3.4931 0.5825 0.1097 0.1036 77.016 4.0184 0.4373

DUM 0.0495 0.0497 126.6621 4.1051 0.4587 0.0746 0.0724 84.3044 4.0389 0.4599

PMF + U + V 0.0473 0.0435 125.5600 4.3725 0.4648 0.1092 0.1054 73.4675 3.7528 0.5127

DPP 0.0633 0.0485 79.1154 3.3904 0.6096 0.0751 0.0745 69.3416 3.7545 0.5078

DGCN 0.0776 0.0783 84.6685 3.5779 0.5583 0.1212 0.1278 71.8546 3.7149 0.5279

Faiss using the learned item embeddings, and feed the user embed-

dings to the search index as query vectors. Items of the maximum

inner products with the query vector will be retrieved, and recom-

mendation metrics are further calculated based on the retrieved

items. Moreover,evaluations are conducted in batch style and on

GPUs for further acceleration. With the help of e�cient nearest

neighbor search, we successfully reduce the time cost for evaluation

to a few seconds.

4.2 Overall Performance (RQ1)

We compare our proposed method with several baseline algorithms

introduced previously. For each baseline method, we tuned it to

be on par with our proposed method in one aspect (accuracy or

diversity), and compared the e�ects of the other aspect, on account

of the aforementioned accuracy-diversity tradeo�. Since we incor-

porate diversi�cation into the matching stage, we use relatively

high values of topK (300) to measure the performance of matching.

Results on the Taobao and Beibei datasets are illustrated in Table 2.

From the results, we have several observations:

• The accuracy-diversity tradeo� exists widely. In our exper-

iments, three of the baseline methods (MMR, DUM, PMF+U+V)

are based on greedy algorithms, and the other one (DPP) is based

on a probability model. Comparing across di�erent methods,

generally more diverse methods provide less relevant items. For

example, PMF+U+V achieves much more diverse results than

DPP on Taobao dataset with over 50% relative improvement in

terms of coverage, but the accuracy of PMF+U+V is much inferior

to DPP. Similarly, DUM achieves the most diverse results on both

datasets, however, the relevance of the recommended items by

DUM is greatly damaged by diversi�cation.

• It is more di�cult to balance the two aspects for greedy

algorithms. Although there exist certain hyper-parameters in

greedy algorithms to balance the weight for accuracy and diver-

sity, the slope or exchange rate of the two aspects tends to be

rather large. In other words, greedy algorithms turn out to be

more aggressive on diversi�cation which makes the accuracy

unacceptable. DUM is such an example which usually generates

highly diverse results with relatively poor relevance.

• OurproposedDGCNachieves a better overall performance.

Generally, DGCN generates more diverse items with reasonable

relevance. Compared with DPP, our method attains a better per-

formance with respect to both diversity and accuracy on two

datasets. In comparison with MMR, our method outperforms on

both diversity and accuracy on Taobao dataset, and performs

roughly the same with respect to diversity on Beibei dataset, but
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Figure 7: Accuracy-diversity curve of DPP and DGCN on

MSD dataset.

with better relevance. Though DUM provides extremely diverse

items on two datasets, the relevance of the recommended con-

tents is not quali�ed enough compared with our method. As for

PMF+U+V , our method attains much better accuracy on both

datasets, and achieves comparable diversity on Beibei dataset.

To illustrate that our proposed DGCN attains a better overall

performance considering both accuracy and diversity, we further

conduct experiments on the benchmark MSD dataset, and plot the

whole accuracy-diversity curve against the state-of-the-art DPP

approach [11]. We tune the tradeo� parameters of DPP and DGCN

to obtain recommended items with di�erent accuracy and diver-

sity. Figure 7 demonstrates the results on the MSD dataset. We can

observe that the accuracy-diversity curve of the proposed DGCN

is closer to the top-right corner than DPP. In other words, con-

ditioned on equal accuracy, DGCN achieves better diversity than

DPP. Meanwhile, with comparable diversity, the proposed DGCN

can provide much more accurate recommendation. Therefore, the

proposed DGCN achieves better overall performance compared

with DPP.

4.3 Study on DGCN (RQ2)

In this section, we conduct ablation studies on each of our pro-

posed components in DGCN. We compare the performance of our

proposed method with and without the special design on rebal-

anced neighbor discovering, category-boosted negative sampling

and adversarial learning. Table 3 illustrates the results of GCN with-

out diversi�caiton, GCN with only one diversi�cation component
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Table 3: Ablation study on Taobao dataset.

method recall coverage

DPP 0.0633 79.1154

GCN 0.1013 61.9111

Rebalance Neighbor Sampling 0.0939 71.2528

Boost Negative Sampling 0.0954 76.7391

Adversarial Learning 0.0846 79.0722

DGCN 0.0776 84.6685

and GCN with all the three components (DGCN). We also com-

pare the results with DPP, which is widely adopted for diversi�ed

recommendation.

From the results we can observe that each component alone

contributes to improve diversity, and combining the three special

designs achieves the most diverse recommendation. Speci�cally, a

single GCN without diversi�cation signi�cantly outperforms DPP

with respect to accuracy, however, it sacri�ces the diversity which

can lead to suboptimal user satisfaction. After we incorporate rebal-

anced neighbor discovering or category-boosted negative sampling,

the diversity of our model gets promoted e�ectively and the model

still maintains a relatively high accuracy. Moreover, combining

adversarial learning with GCN achieves comparable diversity with

DPP, and the recommended items are much more relevant to users’

interests. According to the results in Table 3, our proposed DGCN

provides the most diverse contents. In summary, without losing

the superior capability of GCN, our proposed DGCN is featured

of three special designs for diversi�cation on top of GCN, which

greatly improves the diversity and also guarantees the relevance of

the recommended items.

We employ adversarial learning to distill users’ category pref-

erences from item preferences, aiming to make the learned repre-

sentations to some extent category-free, which in turn increases

the probability of recommending items from more diverse cate-

gories. We add an adversarial task of item category classi�cation

to ful�ll this job. The object of the classi�er is to maximize the

accuracy of predicting items’ categories according the learned item

embeddings, while the recommendation model aims to fool the

classi�er as much as possible. In our experiments, we accomplish

the task of adversarial training by inserting a Gradient Reversal

Layer (GRL). We compare the performance of our model with and

without inserting the GRL. Results are shown in Table 4. Without

adversarial learning, the learned item embeddings form clusters

where items of the same category are near in the embedding space,

which is veri�ed by the high category classi�cation accuracy. Most

importantly, the diversity of recommendation is rather poor, lead-

ing to the problem of information redundancy. After inserting the

GRL to perform adversarial learning on category classi�cation, we

distill the category information in the embedding space. Thus it be-

comes much di�cult to predict the category from item embeddings.

According to the results, the accuracy of category classi�cation

drops drastically from 25% to 6%, which veri�es the e�ect of the

distillation process. Most importantly, with the help of adversarial

learning, the recommendation diversity improves signi�cantly with

a rather acceptable accuracy.

Table 4: Ablation study of adversarial learning on Taobao

dataset.

method RS acc RS diversity Classi�er acc

GCN w/o GRL 0.1041 55.6591 25%

GCN w/ GRL 0.0739 80.4894 6%

4.4 Trade-o� between Accuracy and Diversity
(RQ3)

In the proposed framework, we introduce two hyper-parameters,

U and V , to control the strength of rebalanced neighbor discover-

ing and category-boosted negative sampling. We now investigate

whether these two hyper-parameters can be used to perform trade-

o� between accuracy and diversity.

4.4.1 Rebalanced Neighbor Discovering. We conduct experi-

ments to study the e�ect of rebalanced neighbor discovering. Re-

sults of di�erent values of U are illustrated in Figure 8. In neighbor

discovering, we boost the probability of sampling from those disad-

vantaged categories, while limit the chances of those dominant cat-

egories. With larger U , we impose stronger boost on disadvantaged

categories and perform more forceful rebalance across categories.

As shown in Figure 8, the diversity of recommendation increases

constantly with the growth of U . Moreover, the accuracy also gets

promoted at relatively lower U and �nally drops when U becomes

to large, which contradicts the previously introduced accuracy-

diversity tradeo�. This phenomenon of attaining improvements in

both accuracy and diversity has also been observed in related diver-

si�cation literatures [11, 56], which validates that diversi�cation

serves as an e�ective strategy to enhance user satisfaction.

4.4.2 Category-BoostedNegative Sampling. Experiments are

conducted over di�erent values of V . In our work, we make adjust-

ments to the negative sampling process, where we aim to �nd

thosesimilar but negative items. Speci�cally, we sample from pos-

itive categories with probability V which is much larger than the

probability by random sampling. By selecting more negative items

from positive categories, the learned representations capture users’

interest across categories and items of more diverse categories are

recommended. Figure 9 illustrates the performance on di�erent

V with respect to accuracy and diversity. Similar to the previous

experiments on neighbor discovering, the diversity of recommen-

dation improves as we increase the probability of sampling from

similar items. In addition, the accuracy is rather stable on small V

and decreases when it gets too large. Through category-boosted

negative sampling, our proposed DGCN provides more diverse

items and guarantees the relevance of the recommended contents.

In summary, we conduct extensive experiments to evaluate our

proposed DGCN with special emphasis on diversi�cation. Over-

all performance on real-world datasets con�rms the e�ectiveness

of our method on improving diversity. Ablation studies of DGCN

verify the function of each component. Further experiments demon-

strate that trade-o� between accuracy and diversity can be smoothly

performed by tuning the introduced hyper-parameters.
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Figure 9: Performance on di�erent V .

5 RELATED WORK

Diversi�ed Recommendation Research on diversi�cation in rec-

ommendation was �rst introduced by Ziegler et al. [69], which

leveraged a greedy algorithm [8] from the �eld of information

retrieval. After that, a series of post processing methods were pro-

posed to diversify the recommendation results. Qin et al. [41] tack-

led the problem by performing a linear combination of the rating

function and a entropy regularizer. Ashkan et al. [3] replaced the

weighted sum object in greedy solutions with multiplication, thus

removed a tuned parameter for balancing utility and diversity. Sha

et al. [48] developed a framework combining relevance, coverage

of user interests and diversity. Two hyper-parameters, U and V ,

were introduced to balance the object. Other than reranking based

methods, a series of solutions called learning to rank (LTR) were

proposed to generate the recommended list directly. Cheng et al.

[12] developed a learning-based diversi�cation method by cou-

pling the recommendation model with a structural SVM [51]. Li

et al.[36] proposed a ranking model and utilized a score function

with the form of the product of the estimated interaction proba-

bility and category preference. Factorized category features were

leveraged for optimization. Recently, Determinantal Point Process

(DPP) was introduced to recommendation to generate diverse items.

Several algorithms [11, 19, 21, 22, 55, 56] were proposed to reduce

the heavy computation of DPP with the help of EM algorithms,

greedy algorithms or tensor factorization. Unlike existing works

that mainly perform diversi�cation after matching, our proposed

method combines diversi�cation and matching with an end-to-end

GCN model.

GCN based Recommendation In recent years, Graph Convolu-

tional Networks (GCN) has made great progress in network rep-

resentation learning tasks including node classi�cation and link

prediction [26, 34, 62]. Several works [4, 52–54, 63, 64] have taken

advantage of GCN to learn more robust latent representations for

users and items in recommendation systems. With more advanced

capacity in learning graph representations, GCN has also been

shown e�ective and e�cient to be deployed in web-scale recom-

mendation applications [63]. By applying GCN [34] on the user-

item interaction bipartite graph, Berg et al. [4] transformed the

matrix completion task in recommendation to link prediction on

the graph. Ying et al. [63] further extended the inductive learning

idea introduced in [26] to practical recommendation scenario, and

proposed a scalable algorithm called PinSage. Both o�ine and on-

line evaluations con�rm the e�ectiveness of GCN in modeling user

preference. Wang et al. [54] developed a framework which per-

forms embedding propagation on the user-item integration graph

based on GCN to model the high-order connectivity. Experimental

results illustrated that the accuracy of recommendation has been

successfully improved by utilizing GCN to perform representation

learning. However, how diversity is impacted by the complicated

GCNmodel remains uncertain. In our work, we focus on diversi�ed

recommendation with the help of GCN.

6 CONCLUSION

In this work, we investigated existing diversi�cation solutions and

pointed out the challenge that the decoupled design of diversi�ca-

tion and matching could lead to suboptimal performance. Based on

our analysis, we aimed to push the diversi�cation process upwards

into the matching stage, and proposed an end-to-end diversi�ed

recommendation model based on GCN with several special designs

on diversity. We conducted extensive experiments on real-world

datasets. Experimental results validated the e�ectiveness of our

proposed method on improving diversity. Further ablation studies

con�rmed that our proposed DGCN provides diverse and relevant

contents to meet users’ needs.

Although the accuracy-diversity tradeo� still exists in our pro-

posed method, it has been shown that improving the diversity does

not necessarily lead to inferior accuracy [11, 50, 56]. Especially

in online scenarios, promoting the diversity of the recommended

contents yields substantial increases in user engagement [56]. The

con�ict of diversity and accuracy to some extent results from the

di�erences between o�ine evaluation and online evaluation, as well

as the causality of the system [47], which we believe are quite inter-

esting and important research questions. One step further, distinct

users might regard diversity di�erently, and the diversi�cation pro-

cess might also be personalized (i.e. personalized personalization)

[1], which is also a promising future direction.
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