
DGL-KE: Training Knowledge Graph Embeddings at Scale

Da Zheng
dzzhen@amazon.com

AWS AI

Xiang Song
xiangsx@amazon.com
AWS Shanghai AI Lab

Chao Ma
manchao@amazon.com
AWS Shanghai AI Lab

Zeyuan Tan
zeyut@amazon.com
AWS Shanghai AI Lab

Zihao Ye
yeziha@amazon.com
AWS Shanghai AI Lab

Jin Dong∗

jin.dong@mail.mcgill.ca
McGill University

Hao Xiong
xiongha@amazon.com
AWS Shanghai AI Lab

Zheng Zhang
zhaz@amazon.com

AWS Shanghai AI Lab

George Karypis
gkarypis@amazon.com

AWS AI

ABSTRACT

Knowledge graphs have emerged as a key abstraction for orga-
nizing information in diverse domains and their embeddings are
increasingly used to harness their information in various infor-
mation retrieval and machine learning tasks. However, the ever
growing size of knowledge graphs requires computationally e�-
cient algorithms capable of scaling to graphs with millions of nodes
and billions of edges. This paper presents DGL-KE, an open-source
package to e�ciently compute knowledge graph embeddings. DGL-
KE introduces various novel optimizations that accelerate train-
ing on knowledge graphs with millions of nodes and billions of
edges using multi-processing, multi-GPU, and distributed paral-
lelism. These optimizations are designed to increase data locality,
reduce communication overhead, overlap computations with mem-
ory accesses, and achieve high operation e�ciency. Experiments on
knowledge graphs consisting of over 86M nodes and 338M edges
show that DGL-KE can compute embeddings in 100 minutes on
a EC2 instance with 8 GPUs and 30 minutes on an EC2 cluster
with 4 machines with 48 cores/machine. These results represent a
2× ∼ 5× speedup over the best competing approaches. DGL-KE is
available on https://github.com/awslabs/dgl-ke.

CCS CONCEPTS

• Information systems → Data mining; Retrieval models and

ranking;Web searching and information discovery.

KEYWORDS

knowledge graph embeddings, large scale, distributed training

∗The work was done when the author was working in AWS Shanghai AI Lab as an
intern.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’20, July 25–30, 2020, Virtual Event, China

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8016-4/20/07. . . $15.00
https://doi.org/10.1145/3397271.3401172

ACM Reference Format:

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao
Xiong, Zheng Zhang, and George Karypis. 2020. DGL-KE: Training Knowl-
edge Graph Embeddings at Scale. In Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3397271.3401172

1 INTRODUCTION

Knowledge graphs (KGs) are data structures that store information
about di�erent entities (nodes) and their relations (edges). They
are used to organize information in many domains such as mu-
sic, movies, (e-)commerce, and sciences. A common approach of
using KGs in various information retrieval and machine learning
tasks is to compute knowledge graph embeddings (KGE) [4, 18].
These approaches embed a KG’s entities and relation types into
a d-dimensional space such that the embedding vectors associ-
ated with the entities and the relation types of each edge satisfy a
pre-determined mathematical model. Numerous models for com-
puting knowledge graph embeddings have been developed, such as
TransE [2], TransR [10] and DistMult [20].

As the size of KGs has grown, so has the time required to compute
their embeddings. As a result, a number of approaches and software
packages have been developed that exploit concurrency in order
to accelerate the computations. Among them are GraphVite [21],
which parallelizes the computations using multi-GPU training and
Pytorch-BigGraph (PBG) [9], which uses distributed training to
split the computations across a cluster of machines. However, these
approaches su�er from high data-transfer overheads and low com-
putational e�ciency. As a result, the time required to compute
embeddings for large KGs is high.

In this paper we present various optimizations that accelerate
KGE training on knowledge graphs with millions of nodes and bil-
lions of edges using multi-processing, multi-GPU, and distributed
parallelism. These optimizations are designed to increase data lo-
cality, reduce communication overhead, overlap computations with
memory accesses, and achieve high operation e�ciency.

We introduce novel approaches of decomposing the computa-
tions across di�erent computing units (cores, GPUs, machines) that
enable massive parallelization while reducing write con�icts and
communication overhead. The write con�icts are reduced by par-
titioning the processing associated with di�erent relation types

https://doi.org/10.1145/3397271.3401172
https://doi.org/10.1145/3397271.3401172

across the computing units as well as reducing data communication
on multi-GPU training. The communication overhead is reduced
by using a min-cut-based graph partitioning algorithm (METIS [6])
to distribute the knowledge graph across the machines. For en-
tity embeddings, we introduce massive asynchronicity by having
separate processes to compute the gradients of embeddings inde-
pendently as well as allowing entity embedding updates overlapped
with mini-batch computation. Finally, we use various negative sam-
pling strategies to construct mini-batches with a small number of
embeddings involved in a batch, which reduces data movement
from memory to computing units (e.g., CPUs and GPUs).

We implement an open-source KGE package called DGL-KE
that incorporates all of the optimization strategies to train KG
embeddings on large KGs e�ciently. The package is implemented
with Python on top of Deep Graph Library (DGL) [19] along with
a C++-based distributed key-value store speci�cally designed for
DGL-KE. We rely on DGL to perform graph-related computation,
such as sampling, and rely on existing deep learning frameworks,
such as Pytorch [13] andMXNet [3], to perform tensor computation.
DGL-KE is available at https://github.com/awslabs/dgl-ke.

We experimentally evaluate the performance of DGL-KE on
di�erent knowledge graphs and compare its performance against
GraphVite and Pytorch-BigGraph. Our experiments show that DGL-
KE is able to compute embeddings whose quality is comparable
to that of competing approaches at a fraction of their time. In
particular, on knowledge graph containing over 86M nodes and
338M edges DGL-KE can compute the embeddings in 100 minutes
on a EC2 instance with 8 GPUs and 30 minutes on an EC2 instance
with 4 machines with 48 cores/machine. These results represent
a 5× and 2× speedup over the time required by GraphVite and
Pytorch-BigGraph, respectively.

2 BACKGROUND

De�nitions & Notation. A graph is composed of vertices and
edges G = (V , E), where V is the set of vertices and E is the set of
edges. A knowledge graph (KG) is a special type of a graph whose
vertices and edges have types. It is a �exible data structure that
represents entities and their relations in a dataset. A vertex in a
knowledge graph represents an entity and an edge represents a
relation between two entities. The edges are usually in the form
of triplets (h, r , t), each of which indicates that a pair of entities h
(head) and t (tail) are coupled via a relation r .

Knowledge graph embeddings are low-dimensional representa-
tion of entities and relations. These embeddings carry the infor-
mation of the entities and relations in the knowledge graph and
are widely used in tasks, such as knowledge graph completion and
recommendation. Throughput the paper, we denote the embed-
ding vector of head entity, tail entity and relation with h, t and r,
respectively; all embeddings have the same dimension size of d .

Knowledge Graph Embedding (KGE) Models. KGE models train
entity embeddings and relation embeddings in a knowledge graph.
They de�ne a score function on the triplets and optimize the func-
tion to maximize the scores on triplets that exist in the knowledge
graph and minimize the scores on triplets that do not exist.

Many score functions have been de�ned to train knowledge
graph embeddings [17] and Table 1 lists the ones used by the KGE

Table 1: Knowledge graph models. Mr is a relation-speci�c

projection matrix. TransE uses L1 or L2 norm in its score

function.

Models score function f (h, r, t)

TransE [2] −| |h + r − t | |1/2
TransR [10] −| |Mr h + r −Mrt | |

2
2

DistMult [20] h
⊤diag(r)t

ComplEx [16] Real(h⊤ diag(r)t̄)
RESCAL [12] h

⊤
Mrt

RotatE [15] −| |h ◦ r − t | |2

models in DGL-KE. TransE and TransR are two representative
translational distance models, where we use L1 or L2 to de�ne the
distance. DistMult, ComplEx, and RESCAL are semantic matching
models that exploit similarity-based scoring functions. Some of the
models are much more computationally expensive than other mod-
els. For example, TransR is d times more computationally expensive
than TransE because TransR has additional matrix multiplications
on both head and tail entity embeddings, instead of just element-
wise operations on embeddings in TransE.

To train a KGE model, we de�ne a loss function on a set of
positive and negative samples from a knowledge graph. Two loss
functions are commonly used. The �rst is the a logistic loss given
by

minimize
∑

h,r,t∈D+∪D−

log(1 + exp(−y × f (h, r, t))),

where D+ and D− are the positive and negative sets of triplets,
respectively, and y is is the label of a triplet, +1 for positive and −1
for negative. The second is the pairwise ranking loss given by

minimize
∑

h,r,t∈D+

∑

h′,r′,t′∈D−

max(0,γ − f (h, r, t) + f (h′, r′, t′)).

A common strategy of generating negative samples is to corrupt
a triplet by replacing its head entity or tail entity with entities
sampled from the graph with some heuristics to form a negative
sample (h, r , t ′) or (h′, r , t), where h′ and t ′ denote randomly sam-
pled entities. Potentially, we can corrupt the relation in a triplet. In
this work, we only corrupt entities to generate negative samples.

Mini-batch training and Asynchronous updates. A KGE model is
typically trained in a mini-batch fashion. We �rst sample a mini-
batch of b triplets (h, r , t) that exist in a knowledge graph. The mini-
batch training is sparse because a batch only involves in a small
number of entity embeddings and relation embeddings. We can take
advantage of the sparsity and train KGE models asynchronously
with sparse gradient updates [14]. That is, we sample multiple mini-
batches independently, perform asynchronous stochastic gradient
descent (SGD) on these mini-batches in parallel and only update the
embeddings involved in the mini-batches. This training strategy
maximizes parallelization in mini-batch training but may lead to
con�icts in updating gradients. When two mini-batches run simul-
taneously, they may use the same entity or relation embeddings.
In this case, the gradient of the embeddings is computed based on

the stale information, which results in a slower convergence or not
converging to the same local minimum.

3 METHODS

A naive implementation of KGE training results in low computation-
to-memory density for many KGE models, which prevents us from
using computation resources e�ciently. When performing com-
putation on a batch, we need to move a set of entity and relation
embeddings to computation resources (e.g., CPUs and GPUs) from
local CPU memory or remote machines. For example, for a mini-
batch with b positive triplets, k negative triplets, and d-dimensional
embeddings, both the computational and data movement complex-
ity of TransE is O(bd(k + 1)), resulting in a computational density
of O(1). Given that computations are faster than memory accesses,
reducing data movement is key to achieving e�cient KGE training.

In addition, we need to take advantage of parallel computing
resources. This includes multi-core CPUs, GPUs and a cluster of
machines. Our training algorithmneeds to allowmassive paralleliza-
tion while still minimizing con�icts when updating embeddings in
parallel.

In this work, we implement DGL-KE on top of DGL [19], com-
pletely with Python. It relies on DGL for graph computation, such as
sampling, and relies on deep learning frameworks, such as Pytorch
and MXNet, for tensor operations.

3.1 Overview

DGL-KE provides a uni�ed implementation for e�cient KGE train-
ing on di�erent hardware. It optimizes for three types of hardware
con�gurations: (i) many-core CPU machines, (ii) multi-GPU ma-
chines, and (iii) a cluster of CPU/GPU machines. In each type of the
hardware, DGL-KE parallelizes the training with multiprocessing
to fully utilize the parallel computation power of the hardware.

For all hardware con�gurations, the training process starts with
a preprocessing step to partition a knowledge graph and follows
with mini-batch training. The partitioning step assigns a disjoint
set of triplets in a knowledge graph to a process so that the process
performs mini-batch training independently.

The speci�c steps performed during each mini-batch are:

(1) Sample triplets from the local partition that belongs to a
process to form amini-batch and constructs negative samples
for the positive triplets.

(2) Fetch entity and relation embeddings involved in the mini-
batch from the global entity and relation embedding tensors.

(3) Perform forward computation and back-propagation on the
embeddings fetched in the previous step to compute the
gradients of the embeddings.

(4) Apply the gradients to update the embeddings involved in
the mini-batch. This step requires to apply an optimization
algorithm to adjust the gradients and write the gradients
back to the global entity and relation embedding tensors.

KGE training on a knowledge graph involves two types of data:
the knowledge graph structure and the entity and relation embed-
dings. As illustrated in Figure 1, we deploy di�erent data placement
for di�erent hardware con�gurations. In many-core CPU machines,
DGL-KE keeps the knowledge graph structure as well as entity and

relation embeddings in shared CPU memory accessible to all pro-
cesses. A trainer process reads the entity and relation embeddings
from the global embeddings directly through shared memory. In
multi-GPU machines, DGL-KE keeps the knowledge graph struc-
ture and entity embeddings in shared CPU memory because entity
embeddings are too large to �t in GPU memory. It may place rela-
tion embeddings in GPU memory to reduce data communication.
As such, a trainer process reads entity embeddings from CPU mem-
ory and reads relation embeddings directly from GPU memory. In a
cluster of machines, DGL-KE implements a C++-based distributed
key-value store (KVStore) to store both entities and relation embed-
dings. The KVStore partitions the entity embeddings and relation
embeddings automatically and strides them across all KVStore
servers. A trainer process accesses embeddings from distributed
KVStore with the pull and push API. We partition the knowledge
graph structure and each trainer machine stores a partition of the
graph. The graph structure of the partition is shared among all
trainer processes in the machine.

The rest of this section describes various optimization techniques
that we developed in DGL-KE: graph partitioning in the preprocess-
ing step (Section 3.2), negative sampling (Section 3.3), data access
to relation embeddings (Section 3.4), and �nally applying gradients
to the global embeddings (Section 3.5).

3.2 Graph partitioning

In distributed training, we partition the graph structure and embed-
dings and store them across machines. Thus, a machine may need
to read entity and relation embeddings from other machines to
construct mini-batches. The key of optimizing distributed training
is to reduce communication required to retrieve and update entity
and relation embeddings.

To reduce the communication caused by entity embeddings in a
batch, we deploy METIS partitioning [6] on the knowledge graph
in the preprocessing step. For a cluster of P machines, we split
the graph into P partitions so that we assign a METIS partition
(all entities and triplets incident to the entities) to a machine as
shown in Figure 2. With METIS partitioning, the majority of the
triplets are in the diagonal blocks. We co-locate the embeddings of
the entities with the triplets in the diagonal block by specifying a
proper data partitioning in the distributed KVStore. When a trainer
process samples triplets in the local partition, most of the entity
embeddings accessed by the batch fall in the local partition and,
thus, there is little network communication for accessing entity
embeddings.

3.3 Negative sampling

KGE training samples triplets to form a mini-batch and constructs a
large number of negative samples for each triplet. For all hardware,
DGL-KE performs sampling on CPUs and o�oads the sampling
computation to DGL for e�ciency. If we construct negative samples
independently for each triplet, a mini-batch will contain many
entity embeddings, which results in accessing many embeddings.

We deploy joint negative sampling to reduce the number of enti-
ties in a mini-batch (PBG uses a similar strategy). In this approach,
instead of independently corrupting every triplet k times, we group

Figure 1: The optimized data placement of DGL-KE in three di�erent parallel hardware.

Figure 2: Adjacentmatrix of FB15k [2] after applyingMETIS

partitioning, indexed bymachine partition. Note thatmajor-

ity of the edges fall within a partition. As a result, the adja-

cency matrix has majority of non-zeros lying on the diago-

nal blocks.

the triplets into sets of size д and corrupt them together. For exam-
ple, when corrupting the tail entities of a set, we uniformly sample
k entities to replace the tail entities of that set. We corrupt the
head entities in a similar fashion. This negative sampling strategy
introduces two bene�ts. First, it reduces the number of entities in a
mini-batch, resulting in smaller data access. For a d-dimensional
embedding, each mini-batch of size b now only needs to access
O(bd + bkd/д) instead of O(bd(k + 1)) words of memory. When д
grows as large as b, the amount of data accessed by this negative
sampling is about b times smaller (b is usually in the order of 1000).
This bene�t is more signi�cant in multi-GPU training because we
store entity embeddings in CPU memory and send the entity em-
beddings to the GPUs in every mini-batch. Second, it allows us to
replace the original computation with more e�cient tensor oper-
ations. Inside a group of negative samples, head entities and tail
entities are densely connected. We now divide the computation of

a score function on a negative sample into two parts. For exam-
ple, the score function of TransE_l2, −||h + r − t| |2, is divided into
o = h+r and−||o−t′ | |2. The vector o is computed as before because
there are only b pairs of h and r. The computation of −||o − t

′ | |2 is
converted into a generalized matrix multiplication, which can be
performed using highly optimized math libraries.

We also deploy non-uniform negative sampling with a probabil-
ity proportional to the degree of each entity (PBG uses a similar
strategy). On a large knowledge graph, uniform negative sampling
results in easy negative samples [8]. One way of constructing harder
negative samples is to corrupt a triplet with entities sampled pro-
portional to the entity degree. In order to do this e�ciently, instead
of sampling entities from the entire graph, we construct negative
samples with the entities that are already in the mini-batch. This is
done by uniformly sampling some of the mini-batch’s triplets and
connecting the sampled head (tail) entities with the tail (head) enti-
ties of the mini-batch’s triplets to construct the negative samples.
Note that this uniform triplet sampling approach leads to an entity
sampling approach that is proportional to the entity degree in the
mini-batch. In practice, we combine these negative samples with
uniformly negative samples to form the full set of negative samples
for a mini-batch.

In the distributed training, we sample entities from the local
METIS partition to corrupt triplets in a mini-batch to minimize
the communication caused by negative samples. This ensures that
negative samples do not increase network communication. It in
general results in harder negative samples. The corrupted head/tail
entities sampled from the local METIS partition are topologically
closer to the tail/head entities of the triplets in the batch.

3.4 Relation partitioning

Both GraphVite and PBG treat relation embeddings as dense model
weights. As a result, for each mini-batch they incur the cost of
retrieving them and updating them. If the number of relations in
the knowledge graph is small, this is close to optimal and does not
impact the performance. However, when the knowledge graph has a
large number of relations (greater than the mini-batch size; ≈ 1000),

the number of distinct relations in each mini-batch will be a subset
of them and as such, treating them as dense model weights will
result in unnecessary data access/transfer overheads. To address
this limitation, DGL-KE performs sparse relation embedding reads
and sparse gradient updates on relation embeddings. This signi�-
cantly reduces the amount of data transferred in multi-processing,
multi-GPU, and distributed training.

To further reduce data access to relation embeddings in a mini-
batch, DGL-KE decomposes computations among computing units
by introducing a novel relation partitioning approach. This parti-
tioning tries (i) to equally distribute triplets and relations among
partitions and (ii) to minimize the number of distinct relations as-
signed to each partition as a result of (i). The �rst goal ensures
that the computational and memory requirements are balanced
across the computing units, whereas the second goal ensures to
minimize the relation data that needs to be transferred. In order
to derive such a relation partitioning, we use the following fast
greedy algorithm. We sort the relations based on their frequency in
a decreasing order. We iterate over the sorted relations and greedily
assign a relation to the partition with the smallest number of triplets
so far. This strategy usually results in balanced partitioning while
ensuring that each relation belongs to only one partition. However,
the above algorithmwill fail to produce a balance partitioning when
the knowledge graph contains very frequent relations. In such cases,
the number of triplets for those relations may exceed the partition
size. To avoid load imbalance, we equally split the most frequent
relations across all partitions. After relation partitioning, we assign
a relation partition to a computing unit. This ensures that the ma-
jority of relation embeddings are updated by only one process at
a time. This optimization applies to many-CPU-core training and
multi-GPU training.

A potential drawback of relation partitioning is that it restricts
the relations that may appear inside a mini-batch. This reduces the
randomization of stochastic gradient descent, which can impact the
quality of the embeddings. To tackle this problem, we introduce
randomization in the partitioning algorithm and at the start of each
epoch we compute a somewhat di�erent relation partitioning.

When we use relation partitioning in multi-GPU training, we
store all relation embeddings on GPUs and update relation embed-
dings in GPUs locally. This is particularly important for KGEmodels
with large model weights on relations, such as TransR and RESCAL.
Take TransR for an example. It has an entity projection matrix on
each relation, which is much larger than a relation embedding. Mov-
ing them to CPU is the bottleneck of the entire computation. If we
keep all of these projection matrices in GPUs, the communication
overhead drops fromO(bd2) toO(bd), which is signi�cantly smaller
than the naive solution, usually in the order of 100 times smaller.

3.5 Overlap gradient update with batch
processing

In multi-GPU training, some of the steps in a mini-batch compu-
tation run on CPUs while the others run on GPUs. When we run
them in serial, the GPU remains idle when the CPU writes the gra-
dients. To avoid GPU idling, we overlap entity embedding update
with the batch computation in the next mini-batch. This allows
us to overlap the computation in CPUs and GPUs. Note that even

though this approach can potentially increase the staleness of the
embeddings used in a mini-batch, the likelihood of that happening
is small for knowledge graphs with a su�ciently large number of
entities relative to the number of training processes.

To perform this optimization, we split the gradient updates into
two parts: one involving relation embeddings, which are updated
by the trainer process, and the other involving the entity embed-
dings, which are o�-loaded to a dedicated gradient update process
for each trainer process. Once the trainer process �nishes writing
the relation gradients, it proceeds to the next mini-batch, without
having to wait for the writing of the entity gradients to �nish. Our
experiments show that overlapping gradient updates provide 40%
speedup for most of the KGE models on Freebase.

3.6 Other optimizations

Periodic synchronization among processes. When training KGE
models with multiprocessing completely independently, di�erent
processes may run at a di�erent rate, which results in inconsistent
model accuracy. We observe that the trained embeddings some-
times have much worse accuracy at some runs. As such, we add a
synchronization barrier among all training processes after a certain
number of batches to ensure that all processes train roughly at the
same rate. Our observation is that the model can be trained stably
if processes synchronize after every few thousand batches.

Distributed Key-Value store. In DGL-KE, we implement a KVS-
tore for model synchronization with e�cient C++ back-end. It uses
three optimizations speci�cally for distributed KGE training. First,
because relations in knowledge graphs may have a long-tail distri-
bution, it reshu�es relation embeddings to avoid single hot-point
of KVStore. Second, DGL-KE uses shared-memory access instead
of network communication if the worker processes and KVStore
processes are on the same machine. This optimization signi�cantly
reduces networking overhead especially with METIS partitioning.
Third, it launches multiple KVStore servers in a single machine
to parallelize the computation in KVStore. All KVStore servers in-
side a machine access embeddings via shared-memory. Finally, we
overlap gradient communication and local gradient computation
in KVStore.

4 RELATED WORK

A few packages have been developed to compute embeddings of
knowledge graphs e�ciently and scale to large knowledge graphs.

OpenKE [5] is one of the �rst packages for training knowledge
graph embeddings and provides a large list of models. However, it
is implemented entirely in Python and cannot scale to large graphs.

Pytorch-BigGraph (PBG) [9] is developed with an emphasis on
scalability and distributed training on a cluster of machines. The
package does not support GPU training. Although PBG and DGL-
KE share similar negative sampling strategies, PBG applies di�erent
strategies for distributed training. It randomly divides the adjacency
matrix of a graph into 2D blocks and assigns blocks to each machine
based on a schedule that avoids con�icts with respect to the entity
embeddings. It treats entity embeddings as sparse model weights
and relation embeddings as dense model weights. The random 2D
partitioning along with the use of dense model weights for relation

Table 2: Evaluation hardware con�guration.

EC2 Type Hardware Con�g Eval Section

r5dn.24xlarge 2x24 cores, 700GB RAM, 100Gbps network sec 6.2, 6.3
p3.16xlarge 2x16 cores, 500GB RAM, 8 V100 GPUs sec 6.1

Table 3: Knowledge graph datasets.

Dataset # Vertices # Edges #Relations Systems

FB15k [2] 14,951 592,213 1345 DGL-KE, GraphVite
WN18 [2] 40,943 151,442 18 DGL-KE, GraphVite
Freebase [1] 86,054,151 338,586,276 14,824 DGL-KE, PBG

embeddings results in a large amount of communication, especially
for knowledge graphs with many relations.

GraphVite [21] focuses on multi-GPU training and does not sup-
port distributed training. When it trains a large knowledge graph, it
keeps embeddings on CPUmemory. It constructs a subgraph, moves
all data in the subgraph to GPU memory and performs many mini-
batch training steps on the subgraph. This method reduces data
movement between CPUs and GPUs at the cost of increasing the
staleness of the embeddings, which results in slower convergence.

5 EXPERIMENTAL METHODOLOGY

DGL-KE is implemented in Python and relies on PyTorch for tensor
operations, as is the case in PBG, whereas GraphVite is done mostly
in C++ with a Python wrapper. We report DGL-KE performance in
two broad sections: (i) on multi-GPU in section 6.1, many-core CPU
in section 6.2 and distributed training in Section 6.3, (ii) against
GraphVite [21] and PBG [9] in Section 6.4 on identical hardware.

5.1 Hardware platform

We conduct our evaluation on EC2 CPU and GPU instances; see
Table 2 for machine con�gurations.

5.2 Datasets

We use three datasets to evaluate and compare the performance of
DGL-KE against that of GraphVite and PBG. Table 3 shows various
statistics for these datasets. FB15k and Freebase were derived from
the Freebased Knowledge Graph [1], whereas WN18 was derived
from WordNet [11]. The FB15k and WN18 datasets are standard
benchmarks for evaluating KGE methods. The Freebase dataset
corresponds to complete Freebase Knowledge Graph. All datasets
are downloaded from [7].

5.3 Evaluation methodology

We evaluate the performance of the di�erent KGE models using a
link (relation)-prediction task. We split each dataset into training,
validation, and test subsets. For FB15k andWN18, we used the same
splits used in previous evaluations [15] (available in [7]). Freebase
is split with 5% of the triplets for validation, 5% for test, and the
remaining 90% for training.

We perform the link-prediction task using two di�erent proto-
cols. The �rst, used for FB15k and WN18, works as follows. For
each triplet (h, r , t) in the validation/test set, referred to as positive

triplet, we generate all possible triplets of the form (h′, r , t) and
(h, r , t ′) by corrupting the head and tail entities, and then remove
any triplets that already exist in the dataset. The remaining triplets
form the negative triplets. The second protocol, used for Freebase,
is similar to the �rst one with the following two di�erences: (i) we
use only 2000 negative triplets; 1000 sampled uniformly from the
entire set of negative samples and 1000 sampled proportionally to
the degree of the corrupted entities; and (ii) we do not remove from
the 2000 negative triplets any triplets that are in the dataset. The
reason for the second protocol is due to the size of Freebase, which
makes the �rst protocol computationally expensive.

We assess the performance by using the standard metrics [9]
of Hit@k (for k ∈ {1, 3, 10}), Mean Rank (MR), and Mean Recipro-
cal Rank (MRR). All these metrics are derived by comparing how
the score of a positive triplet relates to the scores of its associated
negative triplets. For a positive triplet i , let Si be the list of triplets
containing i and its associated negative triplets ordered in a decreas-
ing score order, and let ranki be the position of i in Si . Hit@k is
the average number of times positive triplets are among the k high-
est ranked triplets; MR is the average rank of the positive triplets,
whereas MRR is the average reciprocal rank of the positive triplets.
Mathematically, they are de�ned as

Hit@k =
1

Q

Q∑

i=1

✶ranki ≤k ,

MR =
1

Q

Q∑

i=1

ranki ,

and

MRR =
1

Q

Q∑

i=1

1

ranki
,

whereQ is the total number of positive triplets and ✶ranki ≤k is 1 if
ranki ≤ k , otherwise it is 0. Note that Hit@k and MRR are between
0 and 1, whereas MR ranges from 1 to the

∑Q
i |Si |.

5.4 Software environment

We run Ubuntu 18.04 on all EC2 instances, where the Python ver-
sion is 3.6.8 and Pytorch version is 1.3.1. On GPU instances, the
CUDAversion is 10.0.When comparing the performance of DGL-KE
against that of GraphVite and PBG, we use GraphVite v0.2.1 down-
loaded from Github on November 12 2019 and PBG downloaded
from their Github repository on October 15 2019. All frameworks
use the same Pytorch version.

5.5 Hyperparameters

For the FB15k and WN18 and all methods (DGL-KE and GraphVite)
we perform an extensive hyper-parameter search 1 and report the
results that achieve the best performance in terms of MRR, as we
believe it is a good measure to assess the overall performance of
the methods. Due to the size of Freebase, we only report results
for a single set of hyper-parameter values that perform the best on
FB15k.

1The hyperparameters used for di�erent settings can be found here to reproduce the
results: https://github.com/awslabs/dgl-ke/tree/master/examples

Figure 3: The e�ect of negative sampling in GPU training on

FB15k.

Table 4: The performance of KGE models on Freebase with

and without degree-based negative sampling with eight

GPUs.

TransE ComplEx DistMult
with w/o with w/o with w/o

Hit@10 0.834 0.783 0.777 0.638 0.742 0.731
Hit@3 0.773 0.675 0.741 0.564 0.698 0.697
Hit@1 0.689 0.527 0.677 0.485 0.639 0.652
MR 41.16 43.99 108.43 162.74 123.10 128.91
MRR 0.743 0.619 0.716 0.539 0.678 0.682

To ensure that the accuracy results are comparable, all methods
use exactly the same test set and evaluation protocols described in
the previous section.

6 RESULTS

6.1 Multi-GPU training

A multi-GPU machine has massive computation power but rela-
tively low communication bandwidth between CPUmemory, which
makes the various optimizations described in Sections 3.3–3.6 rele-
vant. A detailed evaluation of these optimizations follows.

6.1.1 Negative sampling. Joint negative sampling shown in Sec-
tion 3.3 has two e�ects: (i) enable more e�cient tensor operators
and (ii) reduce data movement in multi-GPU training. Figure 3
shows the result. To illustrate the speedup of using more e�cient
tensor operators, we run the TransE model on FB15k with all data
in a single GPU. Joint negative sampling gives about 4× speedup.
To illustrate the speedup of reducing data movement, we run the
TransE model on FB15k in 8 GPUs, where entity embeddings are
stored in CPU memory. Join negative sampling gets much larger
speedup, e.g., about 40×, because naive sampling requires swapping
many more entity embeddings between CPU and GPU than joint
negative sampling and data communication is the bottleneck.

6.1.2 Degree-based negatvie sampling. Although degree-based neg-
ative sampling does not speed up training, it improves the model
accuracy (Table 4) on Freebase. This suggests that non-uniform
negative sampling to generate “hard” negative samples is e�ective,
especially on large knowledge graphs.

Figure 4: Speedup of di�erent optimizations on multi-GPU.

6.1.3 Overlap gradient update with batch computation. This tech-
nique overlaps the computation of GPUs and CPUs to speed up
the training. Figure 4 shows the speedup of using this technique
(comparing sync and async) on FB15k and Freebase. It has limited
speedup on small knowledge graphs for some models, but it has
roughly 40% speedup on Freebase for almost all models. The ef-
fectiveness of this optimization depends on the computation time
in CPUs and GPUs. Large knowledge graphs, such as Freebase,
require hundreds of GBytes to store entity embeddings and su�ers
from slow random memory access in entity embedding update. In
this case, overlapping the CPU/GPU computation has signi�cant
bene�t.

6.1.4 Relation partitioning. After relation partitioning, we pin rela-
tion embeddings (and projection matrices) in each partition inside a
GPU, which reduces data movement between CPUs and GPUs. The
speedup is highly related to the model size and the number of rela-
tions in the dataset. Figure 4 shows the speedup of using relation
partitioning in multi-GPU training (comparing async and async +
rel_part bar) on FB15k and Freebase. Relation partitioning has sig-
ni�cant speedup on TransR because the relation-speci�c projection
matrices result in a large amount of data communication between
CPU and GPU. Even for models with only relation embeddings,
relation partitioning in general gets over 10% speedup.

6.1.5 Overall speed and accuracy. After deploying all of the opti-
mizations, we measure the speedup of DGL-KE with multiple GPUs
on both FB15k and Freebase. Figure 5 shows that DGL-KE accel-
erates training almost linearly with multiple GPUs. On Freebase,
DGL-KE further speeds up by running 16 processes on 8 GPUs. By
running two processes on each GPU, we better utilize the computa-
tion in GPUs and PCIe buses by overlapping computation and data
communication between CPUs and GPUs.

With all these techniques, we train KGE models e�ciently. For
small knowledge graphs, such as FB15k, DGL-KE trains most of
KGE models, even as complex as RotatE and TransR, within a few
minutes. For large knowledge graphs, such as Freebase, DGL-KE
trains many of KGE models around one or two hours and trains

(a) Training on FB15k

(b) Training on Freebase

Figure 5: Speedup of multi-GPU training.

Figure 6: Speedup of many-core training.

more complex models within a reasonable time. For example, we
train TransR in about 8 hours using 8 GPUs.

With a maximum speedup of 11× against single-GPU training,
we sacri�ce little on accuracy. Table 5 and Table 6 shows the accu-
racy of DGL-KE with 1 and 8 GPUs on FB15k and Freebase. The
1GPU columns shows the baseline accuracy and the Fastest shows
the accuracy with the fastest con�guration on 8 GPUs, which is
one process per GPU for FB15k and two processes per GPU for
Freebase. In all experiments, the number of epochs is the same for
both settings. Here, we only show TransR with 8 GPUs on Freebase
because training TransR on one GPU takes a very long time.

Figure 7: The runtime of DGL-KE distributed training for

TransE on Freebase.

6.2 Many-core training

Many of the techniques illustrated in multi-GPU training can also
be applied to multi-core training. Figure 6 shows that DGL-KE
speeds up well on an r5dn instance with 48 CPU cores. The training
accuracy of TransE and DistMult with 48 CPU cores is shown in
Table 7 (column labeled “Single”).

6.3 Distributed training

In distributed training, we use 4 r5dn.24xlarge EC2 instances as
our cluster environment. In this section, we compare the single-
machine training with distributed training for TransE using both
random partitioning and METIS partitioning on Freebase.

METIS partitioning on distributed training gets nearly 3.5×

speedup compared with the single-machine baseline (Figure 7) with-
out sacri�cing any model accuracy (Table 7). The training speed of
using METIS partitioning gets about 20% speedup over random par-
titioning because METIS partitioning leads to much lower overhead
than random partitioning.

6.4 Overall performance

We evaluate DGL-KE on the datasets in Table 3 and compare with
two existing packages: GraphVite and PBG on both CPUs and GPUs.
Because GraphVite and PBG only provide a subset of the models in
DGL-KE, we only compare with them with the models available in
these two packages.

6.4.1 Comparison with GraphVite. DGL-KE is consistently faster
than GraphVite on both FB15k and WN18 (Figure 9 and Figure 10)
when training all KGE models to reach similar accuracy. Due to
the space limit, we only show the accuracy comparison on FB15k

Table 5: The overall performance of DGL-KE after various optimizations with 8 GPUs on FB15k.

TransE_l1 DistMult ComplEx RotatE TransR
1GPU Fastest 1GPU Fastest 1GPU Fastest 1GPU Fastest 1GPU Fastest

Hit@10 0.860 0.857 0.884 0.879 0.892 0.884 0.885 0.874 0.820 0.815
Hit@3 0.775 0.765 0.806 0.796 0.838 0.823 0.819 0.804 0.742 0.738
Hit@1 0.553 0.536 0.636 0.614 0.724 0.698 0.665 0.647 0.596 0.593
MR 44.58 45.83 60.61 63.32 60.55 66.19 39.78 41.69 60.48 65.48
MRR 0.676 0.664 0.732 0.716 0.789 0.769 0.752 0.736 0.682 0.679

Table 6: The overall performance of DGL-KE after various optimizations with 8 GPUs on Freebase.

TransE_l2 DistMult ComplEx RotatE TransR
1GPU Fastest 1GPU Fastest 1GPU Fastest 1GPU Fastest 1GPU Fastest

Hit@10 0.865 0.822 0.839 0.837 0.837 0.830 0.750 0.730 N/A 0.765
Hit@3 0.823 0.759 0.813 0.810 0.812 0.803 0.718 0.697 N/A 0.723
Hit@1 0.771 0.669 0.785 0.780 0.785 0.773 0.668 0.653 N/A 0.545
MR 31.64 38.44 44.93 48.58 47.79 51.40 187.7 197.51 N/A 103.06
MRR 0.806 0.726 0.805 0.801 0.804 0.794 0.699 0.682 N/A 0.642

Table 7: The accuracy of random partitioning and METIS

partitioning for distributed training on Freebase.

TransE DistMult
Single Random METIS Single Random METIS

Hit@10 0.796 0.790 0.790 0.751 0.739 0.731
Hit@3 0.734 0.735 0.726 0.712 0.709 0.700
Hit@1 0.634 0.689 0.634 0.696 0.619 0.612
MR 54.51 64.05 34.59 123.1 128.23 136.19
MRR 0.696 0.726 0.692 0.68 0.692 0.691

Figure 8: The runtime of PBG and DGL-KE on Freebase

withmulti-CPU training on a singlemachine. Both run nine

epochs.

Figure 9: The runtime of GraphVate and DGL-KE on FB15k.

Figure 10: The runtime of GraphVate andDGL-KE onWN18.

(Table 8) 2. We conduct this experiment on a p3.16xlarge instance.
For most of the models, DGL-KE is 5× faster than GraphVite. This
is mainly due to DGL-KE converges faster than GraphVite. In all
cases, DGL-KE only needs less than 100 epochs to converge but
GraphVite needs thousands of epochs. When evaluating GraphVite,
we use the recommended con�guration by the package for each
algorithm when running on 1 GPU and 4 GPUs, while having some
hyperparameter tuning for 8 GPUs to get compatible results with 1
GPU runs. When evaluating DGL-KE, we use the same dimension
size of entity and relation embedding as GraphVite, but tune hyper-
parameters such as learning rate, negative sample size and batch
size, for better accuracy.

6.4.2 Comparison with PBG. We compare DGL-KE with PBG on
an r5dn.24xlarge EC2 instance. In this experiment, we run nine
epochs on both PBG and DGL-KE and compare the total training
time (seconds). As we can see, DGL-KE runs 2.5x-2.7x times faster
than PBG when training KGE models on Freebase (Figure 8) with
multi-CPU training on a single machine. There are many factors
that contribute to the slower training speed in PBG. One of the
major factors is that PBG handles relation embeddings as dense
model weights. As such, the computation in a batch involves in

2More complete results are shown in our arxiv version: https://arxiv.org/abs/2004.08532

Table 8: The accurancy of DGL-KE and GraphVite on FB15k

with 1, 4 and 8 GPUs.

TransE
DGL-KE GraphVite

1 GPU 4 GPU 8 GPU 1 GPU 4 GPU 8 GPU

Hit@10 0.873 0.866 0.863 0.869 0.873 0.872
Hit@3 0.801 0.791 0.789 0.793 0.791 0.781
Hit@1 0.612 0.613 0.611 0.606 0.586 0.373
MR 40.84 44.52 45.12 37.81 38.89 40.63
MRR 0.717 0.713 0.711 0.711 0.700 0.588

DistMult
DGL-KE GraphVite

1 GPU 4 GPU 8 GPU 1 GPU 4 GPU 8 GPU

Hit@10 0.895 0.890 0.882 0.892 0.876 0.873
Hit@3 0.835 0.825 0.806 0.834 0.814 0.800
Hit@1 0.702 0.680 0.645 0.715 0.697 0.646
MR 44.50 51.79 56.54 40.51 69.15 60.11
MRR 0.777 0.762 0.736 0.783 0.765 0.733

ComplEx
DGL-KE GraphVite

1 GPU 4 GPU 8 GPU 1 GPU 4 GPU 8 GPU

Hit@10 0.892 0.881 0.879 0.867 0.830 0.810
Hit@3 0.839 0.824 0.816 0.788 0.742 0.718
Hit@1 0.735 0.705 0.694 0.643 0.591 0.572
MR 50.47 68.17 70.13 58.68 153.4 145.6
MRR 0.795 0.773 0.764 0.727 0.679 0.660

RotatE
DGL-KE GraphVite

1 GPU 4 GPU 8 GPU 1 GPU 4 GPU 8 GPU

Hit@10 0.888 0.883 0.881 0.875 0.892 0.887
Hit@3 0.820 0.813 0.812 0.814 0.830 0.823
Hit@1 0.647 0.640 0.648 0.691 0.688 0.646
MR 34.38 35.47 35.71 41.75 35.87 43.26
MRR 0.744 0.737 0.740 0.762 0.768 0.743

all relation embeddings in the graph, which is 10 times more than
necessary on Freebase. In contrast, DGL-KE reduces the number of
relation embeddings involved in a batch and signi�cantly reduces
the amount of computation and data movement.

7 CONCLUSIONS

We develop an e�cient package called DGL-KE to train knowl-
edge graph embeddings at a large scale. It implements a number of
optimization techniques to improve locality, reduce data communi-
cation, while harnessing parallel computing capacity. As a result,
DGL-KE signi�cantly outperforms the state-of-the-art packages for
knowledge graph embeddings on a variety of hardware, including
many-core CPU, multi-GPU as well as cluster of machines. Our
experiments show that DGL-KE scales well with machine resources
almost linearly while achieving very high model accuracy. DGL-KE
is available at https://github.com/awslabs/dgl-ke.

8 ACKNOWLEDGMENTS

We thank the RotatE authors for making their knowledge graph
embedding package KnowledgeGraphEmbedding open-source. The
initial version of DGL-KE was built based on their package.

REFERENCES
[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: A collaboratively created graph database for structuring human knowledge.
In Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’08, 2008.

[2] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, JasonWeston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances
in Neural Information Processing Systems 26. 2013.

[3] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A �exible and e�cient machine
learning library for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.

[4] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018.

[5] Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.
OpenKE: An open toolkit for knowledge embedding. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations,
Brussels, Belgium, November 2018.

[6] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1), December 1998.

[7] Knowledge graph datasets in OpenKE, 2019 (accessed August 3, 2019).
[8] Bhushan Kotnis and Vivi Nastase. Analysis of the impact of negative sampling on
link prediction in knowledge graphs, 2017.

[9] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alexander Peysakhovich. Pytorch-biggraph: A large-scale graph embedding
system. CoRR, abs/1903.12287, 2019.

[10] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity
and relation embeddings for knowledge graph completion. In Proceedings of the
Twenty-Ninth AAAI Conference on Arti�cial Intelligence, 2015.

[11] George A. Miller. Wordnet: A lexical database for english. Communications of
the ACM, 38(11), 1995.

[12] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML’11, 2011.

[13] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic di�erentiation in PyTorch. In NIPS Autodi� Workshop, 2017.

[14] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in Neural
Information Processing Systems 24. 2011.

[15] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge
graph embedding by relational rotation in complex space. CoRR, abs/1902.10197,
2019.

[16] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. CoRR, abs/1606.06357,
2016.

[17] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering,
29(12), Dec 2017.

[18] QuanWang, ZhendongMao, BinWang, and Li Guo. Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743, 2017.

[19] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin
Lin, Junbo Zhao, Jinyang Li, Alexander Smola, and Zheng Zhang. Deep graph library:
Towards e�cient and scalable deep learning on graphs, 2019.

[20] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Em-
bedding entities and relations for learning and inference in knowledge bases. In
Proceedings of the International Conference on Learning Representations (ICLR) 2015,
May 2015.

[21] Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian Tang. Graphvite: A high-
performance CPU-GPU hybrid system for node embedding. CoRR, abs/1903.00757,
2019.

	Abstract
	1 Introduction
	2 Background
	3 Methods
	3.1 Overview
	3.2 Graph partitioning
	3.3 Negative sampling
	3.4 Relation partitioning
	3.5 Overlap gradient update with batch processing
	3.6 Other optimizations

	4 Related Work
	5 Experimental Methodology
	5.1 Hardware platform
	5.2 Datasets
	5.3 Evaluation methodology
	5.4 Software environment
	5.5 Hyperparameters

	6 Results
	6.1 Multi-GPU training
	6.2 Many-core training
	6.3 Distributed training
	6.4 Overall performance

	7 Conclusions
	8 Acknowledgments
	References

