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Abstract 11 

Genome-wide association studies have advanced our understanding of complex traits, but 12 

studying how a GWAS variant can affect a specific trait in the human population remains 13 

challenging due to environmental variability. Drosophila melanogaster is in this regard an 14 

excellent model organism for studying the relationship between genetic and phenotypic 15 

variation due to its simple handling, standardized growth conditions, low cost, and short 16 

lifespan. The Drosophila Genetic Reference Panel (DGRP) in particular has been a valuable 17 

tool for studying complex traits, but proper harmonization and indexing of DGRP 18 

phenotyping data is necessary to fully capitalize on this resource. To address this, we 19 

created a web tool called DGRPool (dgrpool.epfl.ch), which aggregates phenotyping data of 20 

935 phenotypes across 125 DGRP studies in a common environment. DGRPool enables 21 

users to download data and run various tools such as genome-wide association analyses 22 

(GWAS) and Phenome-WAS analyses. As a proof-of-concept, DGRPool was used to study 23 

the longevity phenotype and uncovered both established and unexpected correlations with 24 

other phenotypes such as locomotor activity, sleep duration, and oxidative stress resistance. 25 

DGRPool has the potential to facilitate new genetic and molecular insights of complex traits 26 

in Drosophila and serve as a valuable, interactive tool for the scientific community. 27 
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Introduction 33 

Drosophila melanogaster is an excellent model organism for studying genotype-to-34 

phenotype relationships. It is a short-living species and is very easy to maintain in similar 35 

laboratory conditions, which limits confounding factors such as the environment. The 36 

Drosophila Genetic Reference Panel (DGRP) was created in the early 2010s and now 37 

consists of 205 inbred lines that are fully sequenced, of which 192 are still available in the 38 

Bloomington Drosophila Stock Center (https://bdsc.indiana.edu/)1,2. The DGRP has proven 39 

highly valuable to study the genetic basis of complex traits, as illustrated by the many 40 

studies that have used GWAS principles to identify variants that contribute to traits related to 41 

morphology, metabolism, behavior, aging, disease susceptibility etc. (Figure 1A). 42 

Furthermore, since the DGRP lines were inbred for many generations, they are almost fully 43 

homozygous, which simplifies the identification of putatively causal alleles and elucidation of 44 

implicated molecular mechanisms3. Moreover, the fact that the same lines can be studied by 45 

various researchers for diverse traits should leverage these data generation efforts to 46 

uncover unexpected correlations between phenotypes or relationships between genetic 47 

variants and a wide range of traits. 48 

However, there is currently only one major data resource that aims to compile DGRP 49 

information, the DGRP2 website (http://dgrp2.gnets.ncsu.edu/)1,2. This website hosts the 50 

genotyping data, its annotation, and potential covariates, as well as 31 phenotypes from 12 51 

studies (Table 1). The data is primarily hosted as static files, downloadable from the website, 52 

along with limited RNA expression data. In addition, a very important tool, used by the 53 

DGRP community, is the possibility for any user to submit their own phenotype files for 54 

running a GWAS analysis (corrected with known covariates). This is particularly useful, 55 

especially for researchers that do not have the bioinformatics knowledge or capacity to 56 

perform these tasks internally. However, the DGRP2 website has not been updated for an 57 

extended period as the last referenced paper dates back to 2015, and, except for the GWAS 58 

computation, remains thus static. This means that any meta-study, which would aim to 59 

aggregate datasets across available phenotypes, would require hours (if not days) of work to 60 

transform the data into an appropriate and common format. Moreover, the result of such 61 

effort would unlikely become available to the rest of the community, and thus any other 62 

group would need to redo this work in order to gather similar information, while the data of 63 

other phenotyping studies beyond the 12 available would not be easily accessible. 64 

For all these reasons, we decided to create a web application, DGRPool (dgrpool.epfl.ch), 65 

that would both act as a repository of DGRP phenotyping datasets and also as an online tool 66 

for assisting researchers with some basic systems genetics-inspired analyses. Our goal was 67 
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to index all existing literature about DGRP phenotyping data —where possible— in order for 68 

users to quickly search through the website using simple keywords. We manually associated 69 

each study with broad and tailored categories such as “ageing”, “metabolism”, or “olfactory”. 70 

We specifically spent important time curating the datasets to avoid any errors or 71 

misrepresentations of datasets. To avoid the “maintenance issue” that is common to online 72 

tools, and keep the data up to date, we implemented specific curators tools, to help maintain 73 

the web application in the future. These tools allow any user to submit a novel dataset, which 74 

is then attributed to a curator, in order to manually format and validate all phenotyping data 75 

and metadata associated with the study. Importantly, any user can become a curator, as 76 

advertised on the main page of the resource, since we strongly believe that such a 77 

community-run resource architecture is most optimal to keep a web tool state-of-the-art and 78 

allow crowd-based curation work4. 79 

In addition, we set out to build important tools for the DGRP community such that DGRPool 80 

would not only be a static repository for downloading phenotyping data but could also be 81 

used as an interactive data analysis tool. For example, users can correlate phenotypes 82 

together, from the same study or across studies. We also implemented an automated GWAS 83 

analysis (using PLINK2, and known covariates) which we pre-calculated on all the 84 

phenotyping data that are currently available. Using this data, users can simply browse 85 

through their genes or variants of interest and directly find related phenotypes. A PheWAS 86 

page also allows exploration of each variant’s impact across multiple phenotypes. Moreover, 87 

these tools are applicable to user-submitted phenotypes, so that anyone can upload their 88 

own phenotypes to search the DGRPool database for correlated phenotypes or to run 89 

GWAS analyses. 90 

Our goal is to ensure that DGRP phenotyping data is findable, accessible, interoperable, and 91 

reusable (FAIR)5 to fully leverage the opportunities that stem from this unique genotyping-92 

phenotyping resource. To this end, we made user access our priority, both for removing the 93 

bottleneck of data harmonization, and also to allow for better, more reproducible research. 94 

To showcase the potential of our tool in facilitating new biological discoveries, we conducted 95 

a proof-of-concept study focusing on the longevity phenotype, a well-studied trait in 96 

Drosophila research with clear relevance to human longevity6. By leveraging the data 97 

harmonization and curation efforts in DGRPool, we identified multiple phenotypes that are 98 

significantly associated with longevity across 18 different studies, such as oxidative stress 99 

resistance7, sleep duration8,9, desiccation survival10,11, and starvation resistance10,12,13. 100 

Interestingly, we also observed correlations between shorter lifespan and certain 101 

phenotypes, such as locomotor activity14 and food intake15,16. These results validate prior 102 
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knowledge and illustrate how our tool can provide novel biological insights with just a few 103 

clicks. Therefore, we firmly believe that tools such as DGRPool —which ultimately could 104 

become entirely community-driven— are essential not only for catalyzing novel research, but 105 

also for leveraging the diversity and richfulness of existing datasets. 106 

Results 107 

A thousand phenotypes across 125 studies 108 

To start our data collection, we searched for DGRP studies that reference any phenotyping 109 

data and in parallel implemented diverse tools to automatically aggregate these data and 110 

their associated metadata from the journals hosting the datasets. However, we quickly 111 

realized that it was difficult to automate the entire process. Specifically, the import of 112 

phenotyping data proved challenging since i) datasets tended to be hosted in very different 113 

formats such as Excel files or PDF, ii) data was stored within the journal’s supplementary 114 

section, or in external repositories such as Figshare; and iii) the format of the phenotyping 115 

data differed from one publication to another. Because of these challenges, we implemented 116 

a curation page to manually review, edit, and correct datasets that were automatically 117 

aggregated, aiming to prevent errors in the imported datasets. In addition, this allows the 118 

curator to add relevant remarks or comments on the study under review, thus providing 119 

enhanced context for future analyses of these datasets. 120 

In line with the community-resourcing philosophy of DGRPool, we created a specific 121 

“curator” role that any logged-in user can claim, again with the underlying rationale of 122 

assuring long-term sustainability of our web application. With this role, the user has access 123 

to additional functionalities on the DGRPool website, including the modification of any 124 

metadata attached to a study (title, authors, description, categories), and the submission or 125 

modification of attached phenotypes (see Supp. Figure S1). Although this may entail a 126 

considerable amount of time, we assert that this approach is the most effective means of 127 

furnishing high-quality data. Consistent with this philosophy, we have incorporated a 128 

functionality on the homepage which empowers any user to submit a DOI as a 129 

recommendation for a study that could be absent from the DGRPool repository. If the DOI is 130 

not in the database, it triggers the same automated scripts that were originally used to 131 

incorporate the 125 studies. The corresponding study is then created on DGRPool, and its 132 

metadata (authors, links, …) are automatically imported. Once a study has been created, 133 

one of three possible labels can be assigned to describe the state of curation of a study: 1) 134 

Submitted (default), when no curator is yet assigned to the study, 2) Under curation, when 135 

a curator is assigned, and 3) Curated when all phenotyping data and metadata have been 136 
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curated, and the study received final approval by the curator. At this time, DGRPool hosts 137 

125 studies, including 41 that have already been fully curated, 81 still under curation, and 3 138 

under a submitted status given that the latter were used to test DGRPool’s DOI feature. All 139 

metadata of these three studies were correctly imported into DGRPool, but not the 140 

associated phenotypes, which is also the case for a portion of the other 122 studies. Indeed, 141 

in total, 74 studies have attached phenotyping data; 100% of the curated ones, and only 142 

40% of the non-curated ones. Altogether, the total number of studies in DGRPool is currently 143 

125, and we expect that this number will continue to grow upon its public release, along with 144 

the number of curated studies. 145 

Since the curation process is still ongoing, we will be referring to two different datasets in the 146 

manuscript: 1) The full dataset, comprising 125 studies (independent of “curation” status), 147 

and 2) the curated dataset, comprising 41 studies that already underwent tedious curation 148 

and contributed about 500 phenotypes (see below). Of note, for all tools available on the 149 

website, it is possible to run these on either all studies or (as is currently the default), only on 150 

the curated studies.  151 

For all of the curated studies, we carefully separated the data by sex when information on 152 

sex-specific phenotypes was available, or we assigned it as NA when flies were sex-mixed, 153 

when there was no information on sex, or when the phenotype is inherent to a population 154 

(e.g. in the case of non-sexual chromosomal traits, like inversions). We also extracted this 155 

information from the phenotyping data itself for the non-curated studies, when available, but 156 

when not findable, it was set to NA, waiting for a more in-depth curation and careful reading 157 

of the paper method’s section. Therefore, across all 125 studies, this led to an overall 158 

equilibrium between all represented sexes, with slightly more data for females and slightly 159 

less unannotated data (Figure 1B). However, when focusing only on the 41 curated 160 

datasets, the proportion of phenotypes without assigned sex (NA) dropped drastically to 161 

~15%. This effect highlights the importance of tedious curation, which typically requires the 162 

curator to read through the entire manuscript to understand the utilized experimental 163 

protocols to select the appropriate sex, even if this information is not explicitly indicated in 164 

the phenotyping data itself. 165 

Upon data curation, the assigned curator(s) has to specify a few phenotypic categories for 166 

each study, for example, “Metabolism”, “Nutrition”, or “Ageing” (Figure 1C). Since these 167 

categories are browsable, it facilitates searching for a set of specific studies or linking the 168 

studies together. Interestingly, the top annotated categories are either “Behaviour”, “Life 169 

History Traits”, or “Resistance”, which is consistent with historical behavioral and immune 170 

studies conducted for Drosophila as a model organism17–21. The number of phenotypes per 171 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543194doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543194
http://creativecommons.org/licenses/by/4.0/


 

6 
 

study ranges from 1 to 89 (Figure 1D, Supp Figure S2), with a median of 5, and a mean of 172 

11, revealing that while a low number of phenotypes (usually less than 10) tends to be the 173 

norm, some studies aggregate lots of (often similar) phenotypes. An example of the latter is 174 

Chaston et al., 201622 which investigated the impact of microbiota on nutritional traits. The 175 

authors studied 76 different microbial taxa, whose effect was quantified independently, 176 

generating a high number of phenotypes. Similarly, Dembeck et al., 201523 studied cuticular 177 

hydrocarbon composition, considering 66 different cuticular components, while Vonesch et 178 

al., 201624 studied organismal size traits, regrouping 28 morphological phenotypes such as 179 

wing length or intraocular distance. In total, the 41 curated studies aggregate 312 M + 220 F 180 

+ 132 NA = 664 sex-specific phenotypes, for a total of 500 unique phenotypes (~60%), while 181 

the remaining non-curated studies provide another 57 M + 34 F + 267 NA = 358 sex-specific 182 

phenotypes, for a total of 329 unique phenotypes (~40%). 183 

Harmonization and formatting of phenotyping data 184 

DGRP phenotyping data are often available as a supplemental data table, published along 185 

with the main paper on the journal’s website. Such data can also be stored on external 186 

websites such as Figshare and, as already indicated, the corresponding file can be in 187 

varying formats (i.e. Excel, text, or PDF), so it is challenging to entirely automate extraction 188 

algorithms. Usually, the data are presented in the form of a matrix, with DGRP lines in rows 189 

and phenotypes in columns. But sometimes, they can be in a more “exotic” format25, 190 

requiring a hands-on approach to format it appropriately. Also, the provided phenotyping 191 

data are often not sufficiently self-informative and thus require in-depth reading of the 192 

original manuscript to grasp abbreviations or identify the correct measurement units. These 193 

are important, in particular, to assure reproducibility, but especially when aggregating 194 

multiple studies together such that the scale of the values is similar. In DGRPool, we 195 

therefore created a common matrix format to represent all studies, and we implemented a 196 

“Unit” metadata for each phenotype. Then, for each study, we mapped all phenotypes to 197 

their appropriate format and units (Supplement Figure S3). This part is fully accessible to 198 

the curator, who can update or add any phenotype that would be missing, with their 199 

corresponding units and meta-data description. 200 

Another issue that we faced is that phenotypes are often averaged across multiple individual 201 

flies and that the authors only provide these “Summary datasets”. This can be problematic in 202 

terms of reproducibility, since some figures may show boxplots or distributions of values for 203 

each DGRP line, but these plots are not reproducible when only summary data is available 204 

(i.e. means or medians). Fortunately, some studies do provide “raw datasets” which contain 205 

multiple phenotypic values per DGRP line, often corresponding to replicate flies of the same 206 
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genotype. These values tend to be of much greater interest since they enable statistical 207 

analyses and/or the computation of further summary statistics (not only mean or median, but 208 

also the standard error of means or other often non-provided summary values). 209 

Finally, for some studies, phenotyping data were not or no longer available from the journal’s 210 

website26–28, which is often the journal’s responsibility. However, in all cases, we were able 211 

to contact the authors directly to recover the missing datasets. 212 

To avoid such issues in the future, we have formulated a couple of good practice guidelines 213 

for authors to facilitate and improve upon our and future datasets with the aim of enabling 214 

harmonized and reproducible research. These guidelines are detailed in the Discussion 215 

section of this manuscript. All curated datasets in DGRPool are formatted following these 216 

guidelines (where possible), and phenotypes can now be easily downloaded in a standard 217 

TSV format from a particular study, or from a phenotype page. 218 

How to leverage these datasets by correlating phenotypes 219 

Our formatting and harmonizing of all datasets now enables interesting cross-phenotype 220 

analyses to generate new biological insights. One strategy to perform such analyses is to 221 

download a summary table that contains all the phenotypes in a common format and that is 222 

available from DGRPool’s front page. However, we deemed this still insufficient as a 223 

catalyzing resource, which is why we implemented tools to correlate existing and user-224 

submitted phenotypes with all the other phenotypes in DGRPool (Supp. Figure S4).  225 

To better understand the structure of these phenotypes, and how they relate together, we 226 

also computed a global visualization of the phenotype correlations across all curated studies 227 

(Figure 2A, Supp. Figure S5). This revealed a clear trend, with phenotypes belonging to the 228 

same study (within-study) correlating in general stronger than those from different studies 229 

(Figure 2B, Supp. Figure S6). This is expected since a given study will typically contain 230 

phenotypes that have been acquired for a given research topic, thus they will share 231 

similarities. Another potential factor that could explain this similarity is the well-known “batch 232 

effect”. Indeed, phenotypes acquired in the same environment (same lab, technician, 233 

reagents etc.) may sometimes show greater similarity than those acquired across different 234 

labs and conditions29. The longevity phenotype however, assessed in at least six of the 235 

studies in DGRPool27,30–34 across different laboratories, illustrates that phenotype and its 236 

measurements not only exhibits strong correlation across sexes (Figure 2C), but are also 237 

sufficiently robust between laboratories (Figure 2D). This example illustrates both the high 238 

robustness of results acquired in the context of DGRP studies (stable genotype, stable 239 
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environment) and the robustness of the phenotype itself, which highlights its potential high 240 

heritability. 241 

Cross-study correlations highlight phenotype relationships 242 

Figure 2A also highlights interesting cross-study correlations. For example, we can see a 243 

strong correlation between (Vonesch et al, 2016)24 and (Grubbs et al, 2013)35 which is 244 

perhaps expected since both studies examine fly morphology traits. The first one measures 245 

different organismal size traits such as eye interocular distance, or wing length, while the 246 

second studies leg and antenna development from imaginal discs, resulting in measuring 247 

phenotypes such as leg and bone length (Figure 3A). Similarly, three studies: (MacKay et 248 

al, 2012)1, (Richardson et al, 2012)36 and (Huang et al, 2014)2 are expectedly correlated 249 

since all three investigate the influence of the Wolbachia endosymbiont. Another interesting 250 

correlation is between (Chow et al., 2013)37 and (Durham et al., 2014)27 which both studied 251 

fecundity and yield a cross-study correlation between remating proportion (Chow et al., 252 

2013)37 vs. mean fecundity (Durham et al., 2014)27 (Figure 3B). While potentially 253 

conceptually obvious, this correlation suggests that females that are more likely to mate with 254 

multiple males tend to also produce a greater number of eggs. 255 

These examples were all generated using DGRPool phenotype correlation tools, supporting 256 

our notion that it can leverage cross-study comparisons of multiple phenotypes to unveil 257 

potentially new interesting phenotype interaction/associations. As a further proof of concept 258 

and given society’s strong interest in defining “healthy aging” determinants38, we continued 259 

investigating the “mean longevity” phenotype from (Arya et al, 2010)30 and we selected 50 260 

phenotypes that were significantly correlated with it at 25% FDR threshold (Figure 3C). The 261 

hierarchical clustering clearly separated the phenotypes into three clusters: longevity-like 262 

phenotypes (strongly correlated together), other longevity-associated phenotypes (correlated 263 

with longevity), and phenotypes that seem antagonistic to longevity (anti-correlated 264 

phenotypes). Among the phenotypes that positively correlated with longevity, some may be 265 

expected such as starvation resistance10,12,13 and oxidative stress resistance7 but some are 266 

less intuitive such as desiccation survival10,11, certain cuticular components of the 267 

epicuticle39, and sleep duration8,9, whose relationship to longevity is complex and still not 268 

fully understood40. Although we cannot exclude spurious correlations, some of these more 269 

surprising correlations appear biologically highly interesting, illustrating the capacity of 270 

DGRPool to unveil new research avenues that seem worth exploring in greater molecular 271 

detail. Also of interest is the group of often unexpected phenotypes that significantly anti-272 

correlates with longevity. These include locomotor activity14, some other cuticular 273 

components of the epicuticle41, and food intake15,16, suggesting that higher locomotor activity 274 
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or food intake is linked to reduced longevity. Whether these are direct or indirect links 275 

remains unanswered, but appears worthy for a more in-depth scrutiny that is beyond the 276 

scope of this paper. 277 

Inversely, our analyses also revealed that some expected phenotype correlations could not 278 

be detected. For example, in the context of metabolic energy expenditure42, it might seem 279 

intuitive that higher activity43 would lead to greater food intake44. However, we did not 280 

observe such a correlation. Similarly, higher activity levels may reflect increased mating 281 

behaviour37, but this was also not observed. These are just a few examples of several cases 282 

where expected correlations did not materialize, collectively signifying that the genetic 283 

architecture underlying such traits appears inherently complex. 284 

These proof-of-concept examples demonstrate in our opinion the utility of the DGRP lines 285 

and by extension DGRPool to serve as powerful tools that will facilitate the identification of 286 

non-intuitive phenotype correlations and their underlying molecular basis as well as the 287 

discovery of putative genotype to phenotype relationships, as detailed below. 288 

From phenotypes to associated genotypes 289 

The goal of most DGRP phenotyping studies is to eventually be able to link the phenotypes 290 

to potentially causal variants or sets of variants45. In response, tools like DGRP2 GWAS 291 

(http://dgrp2.gnets.ncsu.edu/)1,2 have been put in place to accommodate geno-phenotype 292 

relationship analyses.  293 

With the goal of providing an integrative analytical environment, we therefore also 294 

implemented GWAS tools within DGRPool, aiming to assist researchers with performing 295 

GWAS analyses and interpreting the respective output. Specifically, we precalculated GWAS 296 

analyses using PLINK2 on every existing phenotype in DGRPool (see Methods), thereby 297 

considering all ~4M available DGRP variants while correcting for six main covariates 298 

(Wolbachia status, and five major insertions)2. Consequently, users can browse the GWAS 299 

results from any phenotype page on DGRPool (Supp. Figure S7). These comprise a 300 

QQplot, for assessing the validity of the results, or potentially over-estimated p-values, and a 301 

Manhattan plot, for visualizing the significant loci across the D. melanogaster genome. It also 302 

displays a table with the top 1000 associated variants and allows the user to download the 303 

table of all significant hits, at a p-value<0.01 threshold. The tool further runs an ANOVA 304 

between the phenotype and the six main covariates to uncover potential confounder effects 305 

(prior correction), which is displayed as a “warning” table to inform the user about potential 306 

associations of the phenotype and any of the covariates. The interface also allows plotting 307 

an independent boxplot for each variant to visualize the effect of each allele on the 308 
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phenotype. Importantly, for each variant, we also implemented a PheWAS button to visualize 309 

the effect of a particular variant over all existing phenotypes in DGRPool. We also annotated 310 

all the variants for impact (non-synonymous effects, stop-codon gain, etc.) and for potential 311 

regulatory effect (transcription factor binding motif disruption), which should assist 312 

researchers with prioritizing the variants in terms of potential consequences. For all of these 313 

variants, we also provide links to their description in Flybase4. 314 

As mentioned, these GWAS results are available for each existing phenotype in DGRPool, 315 

directly from the phenotype’s page. But users can also submit their own phenotype files 316 

(through the ‘Tool’ menu in the header), and visualize the same information for their own 317 

phenotypes. The GWAS analysis runs in the backend and takes about 1-2 minutes before 318 

displaying the results. This is implemented using a queuing system which prevents 319 

overloading the server in case of a peak of users or requests. 320 

After having run GWAS on all phenotypes in DGRPool, we observed the distribution of the 321 

number of significant variants per phenotype at p ≤ 1 x 10
-5 threshold, which is an often used 322 

arbitrary threshold for GWAS analyses in DGRP studies (Figure 4A). This threshold yields 323 

on average 382 significant hits per tested phenotype, which is skewed due to some 324 

phenotypes leveraging lots of results (median = 38). Conveniently, this threshold seems 325 

sufficient for avoiding an over-abundant number of false positives, as is clearly visible from 326 

other, less stringent, thresholds (Supp. Figure S8). Another very often used threshold, is the 327 

Bonferroni one, which is much more stringent and varies from p ≤ 1.126 x 10
-8 (if considering 328 

all 4M variants) to p ≤ 2.64 x 10-8 (if removing variants with low MAF or high number of 329 

missing values). In our results, the Bonferroni threshold (p ≤ 2.64 x 10
-8) yielded 73 330 

significant hits on average (median = 0, Supp. Figure S8) which could be limiting for many 331 

studies as it may mask potentially interesting variants that, while minimally contributing on an 332 

individual basis, may collectively point to implicated pathways or biological processes46. 333 

Thus, while choosing an optimal threshold is in general challenging, our results indicate that 334 

any threshold below 1 x 10-5 is reasonable given that at this threshold, the p-values appear 335 

not over-estimated, as observed on the respective QQplots. We also verified if any variant is 336 

over-selected across all phenotypes to uncover a possible bias in our studies (Figure 4B), 337 

but we did not find such variants, even at different thresholding values (data not shown). 338 

As a proof-of-concept and a validation of our approach, we compared our results with a 339 

randomly selected study that identified several variants associated with survival to azinphos-340 
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methyl at different doses (0.25, 0.5, 1, and 2 µg/ml)26. Of note, this study is available in 341 

DGRPool under https://dgrpool.epfl.ch/studies/3. In particular, this study showed that 342 

survival to azinphos-methyl is highly variable among DGRP lines, even at a “low” 0.25 µg/ml 343 

dose. Importantly, the results of this study are reproduced in DGRPool as can be observed 344 

on the respective phenotype’s page (https://dgrpool.epfl.ch/phenotypes/20, Figure 4C). For 345 

example, DGRPool’s GWAS results are very similar to those of the study 346 

(https://dgrpool.epfl.ch/phenotypes/20/gwas_analysis, Figure 4D) and show a strong 347 

association at a 2R locus. Interestingly, the top variant we found, 2R:8072884 (p = 1.966 x 348 

10-26), a 509bp insertion polymorphism, is the Accord LTR insertion. It is annotated as 349 

located upstream of the Cyp6g1 gene and has a high likelihood to be the main causal 350 

gene47,48. As described in the author’s Ph.D. thesis49, the minor allele at this variant —which 351 

corresponds to NOT having the insertion— correctly genotypes eight out of nine susceptible 352 

DGRP lines that are homozygous for the ancestral Cyp6g1M arrangement at this locus 353 

(DGRP lines 091, 486, 642, 776, 802, 821, 843, 852, and 857). The presence of the Accord 354 

LTR insertion is associated with increased resistance to organophosphates, suggesting that 355 

derived alleles of Cyp6g1 confer organophosphate resistance in the DGRP (Figure 4E). 356 

These results show that DGRPool is able to accurately reproduce results from existing 357 

studies, and that new biological findings can be leveraged from its interactive results and 358 

plots. Revisiting the same organophosphate study26, the PheWAS page present in the 359 

GWAS results shows that this top variant is not only significant at other doses, but that it is 360 

also significant in the context of other studies, in particular one study on cuticular 361 

hydrocarbon composition23, and another study investigating Drosophila microbiota22. This 362 

could help with fine-tuning putative causal variants, but also with uncovering potential 363 

associations between certain phenotypes that in turn could enable studies aimed at 364 

providing underlying genetic and molecular mechanisms.  365 

Extreme phenotypes 366 

After having collected and harmonized thousands of DGRP phenotypes, we investigated if 367 

we could identify outliers amongst DGRP lines that would potentially bias phenotypic 368 

associations. Indeed, if a particular DGRP line is repeatedly ranked in the extreme of all 369 

phenotypes, it could be that there are unknown cofactors that make the line “weaker” in 370 

general, or inversely. Although it is difficult to judge what phenotype is particularly 371 

advantageous or disadvantageous due to the presence of potential trade-offs50,51, we can 372 

determine how often a DGRP line is in the top or bottom 15% of a given phenotype. By 373 

focusing on phenotypes that are likely impacting overall viability, we ranked DGRP lines for 374 

each associated phenotype. Upon ranking the DGRP lines, we calculated whether the rank 375 
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falls within the top or bottom 15% performers of the phenotype. We then assessed for each 376 

DGRP line how often they are ‘extreme’ and divided this by the total number of phenotypes 377 

in which the DGRP line has been included to obtain a “fraction of extremeness” (FoE). 378 

Finally, we filtered for lines which had at least 50 phenotypic measures available to ensure 379 

that our values were not driven by a low number of observations (Figure 5A). Looking 380 

broadly, we observed a mild correlation of fraction of extremeness (FoE) across the sexes 381 

(Figure 5B, Spearman’s ρ = 0.3514, p < 1.57 x 10-5). While this may indicate that 382 

extremeness is a population-wide feature, it is not sufficiently profound to conclude that 383 

DGRP lines are generally extreme in both sexes, which may only be the case for specific 384 

DGRP lines. 385 

Upon considering individual DGRP lines, we can observe to what extent they are extreme for 386 

each individual phenotype. In Figure 5C, we show the most extreme and “moderate” (i.e. 387 

least distinctive) DGRP lines for each sex using an adjusted fraction of extremeness for 388 

plotting purposes in which lower scores represent DGRP lines with a high fraction of 389 

extremeness. While females of DGRP_879 and males of DGRP_783 tend to be extreme in 390 

some cases, for the majority of phenotypes they are considered moderate. Conversely, 391 

females of DGRP_757 and males of DGRP_352 are more likely to be labeled as extreme. 392 

These examples only represent extremeness for individual DGRP lines of a given sex, 393 

however, their counterpart may not be as extreme or moderate. We therefore also looked for 394 

DGRP lines which can be considered extreme in both females and males, and are 395 

potentially more extreme on a population-wide basis. Figure 5D describes such populations 396 

where the overall fraction of extremeness between males and females differed on average at 397 

most 0.05. In these cases, DGRP_852 and DGRP_042 are more likely to be extreme across 398 

sexes, which may be attributed to at least two factors. First, this may indicate that the 399 

population is generally not healthy if they consistently display a low lifespan, or second, and 400 

conversely, well-documented trade-offs of life history traits such as lifespan vs fecundity may 401 

be strongly at play here. The former does not however seem to be the case, as shown in 402 

Figure 5E. Both DGRP_852 and DGRP_042 generally display lifespan values around the 403 

mean lifespan of all DGRP lines, suggesting that they are more likely extreme for other 404 

phenotypes and are thus not by definition weak lines. However, DGRP_757 and DGRP_765 405 

consistently display lower longevity in lifespan studies. These lines may therefore on the one 406 

hand be of particular interest for those studying life history traits in an evolutionary context, 407 

even though we did not observe strong lifespan and fecundity trade-offs across our 408 

phenotype dataset. On the other hand though, it may be advisable not to include DGRP_757 409 
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and DGRP_765 when studying the genetic basis of these complex traits as their outlier 410 

status may not reflect common genetic principles. 411 

Discussion 412 

There are many studies across organisms where collated phenotyping data has led to novel 413 

insights52,53. Even though the Drosophila Genetic Reference Panel was formally released 414 

more than ten years ago, the resulting phenotype data of over 100 studies has so far not 415 

been combined into a single accessible resource. We anticipate that providing wider access 416 

to this data, as driven by FAIR principles5, will therefore facilitate our general understanding 417 

of the relationship between genotypes and phenotypes. 418 

We have previously shown that using a subset of this resource effectively enabled us to 419 

establish a relationship between mitochondrial haplotypes and feeding behavior which we 420 

experimentally validated54. Next to our own study, other studies have used a similar 421 

approach and compared their results to already published phenotypes. For example, Wang 422 

et al.55 studied the resistance and tolerance of DGRP flies to the fungal pathogen 423 

Metarhizium anisopliae (Ma549) and found that the host’s defense to Ma549 was correlated 424 

with its defense to the bacterium Pseudomonas aeruginosa (Pa14). But they also compared 425 

this result to several previously published DGRP phenotypes including oxidative stress 426 

sensitivity56, aggression57, nutritional scores58, sleep indices43, and others. Similarly, Zwarts 427 

et al.59 studied the size of the cerebral cortex and the mushroom bodies (MB). They showed 428 

that these phenotypes were correlated with phenotypes from other studies like aggression60 429 

and sleep43. Therefore, we believe that DGRPool will either aid with validating the findings of 430 

a given study (i.e. higher bacterial resistance linked to overall resistance phenotypes) or by 431 

placing a study’s phenotype data into a wider context (for example, linking brain size to 432 

behavioral phenotypes). 433 

Moreover, having access to multiple studies studying similar phenotypes can also be of help 434 

for meta-analyses and increased statistical power. In the case of longevity for example, there 435 

are multiple studies that aggregated this phenotype, across similar or complementary DGRP 436 

lines. Therefore, one could conduct a meta-GWAS analysis61 by leveraging the replicates or 437 

combining the different lines into a single dataset. This tends to be a challenging process 438 

given the need for data harmonization and curation, which is exactly what we aimed to 439 

address by establishing with DGRPool. Of course, since similar DGRP lines across 440 

laboratories still have the same genotype, they should not be treated as biological replicates, 441 

but phenotypes could be averaged across similar lines, which would reduce hidden 442 

covariates such as laboratory adaptation or batch effects. Moreover, complementary lines 443 
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can be used to enhance power and potentially find more small-effect associations. Indeed, 444 

researchers are increasingly advocating for collaboration and joining efforts to combine 445 

resources62 to enable more accurate, and reproducible results. 446 

Our data collection and harmonization efforts have already enabled us to conduct some 447 

interesting cross-study analyses, including an investigation into the presence of biases 448 

stemming from outlier DGRP lines. Our "extremeness" analysis revealed that caution is 449 

warranted when selecting DGRP lines for specific studies, because, while some DGRP lines 450 

may be situated at the outer edge of the phenotypic spectrum by chance, DGRP_757 and 451 

DGRP_765 generally display lower lifespans in longevity studies. It is important to note that 452 

a shorter lifespan does not necessarily imply lower viability, as populations can still be 453 

propagated healthily. However, a shorter lifespan may also result from an impaired 454 

development63 or developmental environment, which may confound the study of healthy 455 

aging64. Consequently, researchers should consider excluding these extreme lines from their 456 

experimental designs to prevent loss of power or potential covariate biases. 457 

Furthermore, and beyond our current focus on DGRP lines, we may in the future also 458 

consider adding standard D. melanogaster lines such as w1118, YWB, YWN or ORB to 459 

DGRPool. This is because such lines have often been included as controls in DGRP 460 

studies34, and for most of these, genomic information is also available.  461 

Finally, in order to sustain the value of the DGRP as a resource and to promote more 462 

findings, we provide the following guidelines for future DGRP phenotyping studies: 463 

● When available, report the raw datasets with values per fly. Optionally, but only in 464 

addition, the summary datasets can be provided, with values averaged across flies. 465 

● Provide the data as a separate Excel or text file (TSV/CSV) in the form of a matrix, with 466 

DGRP lines in rows and phenotypes in columns. Avoid reporting the values in the form of 467 

a PDF or an image, because it complicates data extraction afterward. 468 

● Clearly define the abbreviations in the tables and the units used for all phenotypes, so 469 

that the phenotyping dataset is self-explanatory and does not require an extended search 470 

in the main manuscript. 471 

● Report all DGRP lines in the first column of the phenotyping file, and the corresponding 472 

sex in the second column (M, F, or NA), before all phenotypes. Be careful to use the 473 

same format for all DGRP lines (e.g. DGRP_XXX). 474 

● Pick a common format for all NA values. Whether reporting NA, or as an empty cell. But 475 

avoid mixing different formats. 476 
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In conclusion, we propose that DGRPool has two primary purposes within the Drosophila 477 

community and beyond. First, it can be used to evaluate potential associations between 478 

phenotypes and contribute to understanding the genetic architecture underlying complex 479 

traits. Second, it can serve as a catalyst for further research and inform broader validation 480 

experiments, as exemplified in our previous work54. In the latter study, the validation of our 481 

hypothesis would not have been feasible without a harmonized dataset of phenotype data, 482 

as the connection between mitochondrial haplotypes and food intake would have remained 483 

theoretical. To maximize the benefits of DGRPool, it should therefore remain subject to all 484 

FAIR principles, which unfortunately are still too often only implemented in terms of "open" 485 

and "sharing." In other words, when large amounts of data are made publicly available 486 

without systematic curation or homogenization, data interoperability and reproducibility can 487 

be highly problematic. DGRPool is in this regard a crucial initial step towards making DGRP 488 

phenotyping data widely accessible and usable for the entire Drosophila research 489 

community. 490 

Methods 491 

Data availability 492 

All phenotyping data aggregated in DGRPool can be downloaded in a common format on 493 

each phenotype page. In the “Download” section on the front page, we also provide four .tsv 494 

files containing 1) All studies and their metadata (authors, citation, ...), 2) All phenotypes and 495 

their metadata (name, description, unit, …), 3) All DGRP lines and their metadata (name, 496 

bloomington accession, …), and 4) a global file with all numerical phenotypes across all 497 

studies, formatted following our recommendations. 498 

 499 

All codes used to produce the figures of this manuscript are also available on our GitHub: 500 

https://github.com/DeplanckeLab/DGRPool 501 

Web application 502 

The DGRPool web application is hosted on a virtual machine at EPFL. All compute-intensive 503 

calculations (i.e. GWAS) are performed on an HPC within EPFL and results are then moved 504 

to the virtual machine’s local storage. The back-end is implemented with Ruby-on-Rails 505 

(RoR) 7 and all data is stored in a PostgreSQL relational database. The front-end uses 506 

different JavaScript libraries and is set to enable interactive usage. For instance, the 507 

application implements bootstrap tooltips to display HTML texts within tooltips, plotly.js 508 

v.2.16.129 to generate the scatter plots, bar plots and box plots , using scattergl, bar and box 509 
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modes respectively, or Jquery autocomplete for phenotype search combined with a SOLR 510 

search engine running on the server side (used for the phenotype comparison tool). 511 

Semi-automated referencing of studies and/or phenotypes 512 

To submit a new study, any user can submit a DOI from the front page. Then, all metadata 513 

associated with this study (authors, journal, date, …) are automatically imported from the 514 

Crossref65 API. When the study is created, it acquires the “Submitted” state, and 515 

administrators are notified. Then, a curator is assigned to the study and needs to manually 516 

verify all information. A specific curator page allows him/her to 1) edit the metadata, 2) edit 517 

the categories associated with the study, or 3) add/remove/modify the phenotyping data and 518 

edit their names/types/units. 519 

Identifiers from GEO66, ArrayExpress67, or the Sequence Read Archive (SRA)68 can be 520 

associated manually with any study, for example for referencing additional gene expression 521 

data that would be published along with the phenotyping data. 522 

Phenotypes correlated with longevity 523 

We computed the correlation of the “mean longevity” phenotype from (Arya et al, 2010)30 524 

and selected 50 phenotypes that were significantly correlated with it using a 25% FDR 525 

threshold. For this, we used the phenotype correlation tools available in DGRPool (result list 526 

available at https://dgrpool.epfl.ch/phenotypes/1315/compute_correlation) which makes our 527 

results reproducible and freely accessible, following the FAIR principles. 528 

GWAS 529 

GWAS analyses (whether pre-calculated, or using the web tool) use Plink2 v2.00a3LM (1 Jul 530 

2021). It runs on all available variants in the DGRP database which is using the dm3 531 

assembly (4’438’427 variants: 3’963’420 SNPs, 293’363 deletions, 169’053 insertions and 532 

12’591 MNPs) with options “--glm --geno 0.2 --maf 0.05”. We corrected the model for six 533 

main covariates (Wolbachia status, and 5 major insertions) that were described in 2 and also 534 

used on the DGRP2 website. Of note, these covariates are phenotypes, and thus are also 535 

available as a separate, browsable study on DGRPool (https://dgrpool.epfl.ch/studies/17).  536 

Extremeness 537 
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Fraction of extremeness was calculated for each phenotypic spectrum separately by ranking 538 

the values with ties being assigned the minimum rank. We then calculated a cut-off to assign 539 

ranks in the bottom or upper 15% of a phenotypic range. This rank cut-off was further 540 

rounded up to be more inclusive on either end (i.e. if the cut-off was 1.2 or 1.8, the cut-off 541 

would become 2). Phenotypes equal or lower than the cut-off were assigned -1, whereas 542 

phenotypes equal to the max rank minus the cutoff or higher were assigned 1. Remaining 543 

phenotypic values were assigned 0. DGRP lines with phenotypic values of either -1 or 1 544 

were then considered extreme for a given phenotype. 545 

To calculate the overall fraction of extremeness for each DGRP line, we counted the number 546 

of times a DGRP line was assigned -1 or 1 and divided this by the total number of 547 

phenotypes available for that particular DGRP line. For most of our analyses, we only 548 

included DGRP lines for which at least 50 phenotypes were available unless stated 549 

otherwise. 550 

 551 

The adjusted fraction of extremeness was calculated by dividing the phenotypic ranking by 552 

the max rank of a given phenotype. Values were adjusted with 1 minus the value if the value 553 

was above 0.5 (e.g. if x = 0.91, the adjusted value is 1-0.91 = 0.09). Only adjusted fraction of 554 

extremeness values below 0.15 are therefore considered extreme. As no rounding was 555 

performed in this case, it is possible for DGRPs to be assigned -1 and labeled as extreme, 556 

even though the DGRP line may have a value of 0.167. Further analysis shows that this 557 

'violation' only takes place for 1.1% (417 out 36,753) of the observations. At a per DGRP 558 

view, this would amount to less than 1 per 50 phenotypes, the cut-off for the number of 559 

phenotypes which a line needs to adhere to in order to be included in our analysis. 560 
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Figures 732 

Figure 1. General content of the DGRPool web tool. A. Pubmed search on “Drosophila 733 
DGRP” terms unveiled 131 results from 2012 to 2023 (search made on March 2023). B. Sex 734 
of the DGRP lines used across all 125 studies (left) and 41 curated studies (right), for each 735 
phenotype. Studies have only been curated up to study 41 at the time of writing. C. Number 736 
of studies per phenotype category. Studies can be assigned to multiple categories. D. 737 
Number of phenotypes per study and per sex. Studies without attached phenotypes were not 738 
plotted. Of note, a given phenotype can be measured for different sexes and thus counted 739 
multiple times.  740 

Figure 2. Within- and cross-study phenotype correlations. A. Spearman’s correlation of 741 
all phenotypes available in the 41 curated studies. Of note, we separately computed the 742 
phenotype correlations when data per sex were available (M, F or NA), and we restricted the 743 
computation to quantitative (non-categorical) phenotypes. Phenotypes are grouped by study 744 
(colored box at the bottom of the plot). B. Absolute value of the Spearman’s correlation of 745 
pairs of phenotypes that originated from the same study (within-study) and those that 746 
originated from two different studies (cross-study). Of note, displayed values are median. 747 
Mean values are 0.099 for cross-study, and 0.260 for within-study. Again, we restricted the 748 
calculation to the 41 curated studies. C. Correlation of two longevity phenotypes from the 749 
same study (Arya et al, 2010)30, revealing a strong correlation between Female (F) and Male 750 
(M) longevity. D. Correlation of two phenotypes from different studies: mean lifespan 751 
(Durham et al, 2014)27 and mean longevity (Arya et al, 2010)30. Of note, both the C and D 752 
plots were generated using the “phenotype correlation” tool in DGRPool. 753 

Figure 3. Phenotype correlations contribute new biological insights. A. Correlation of 754 
mean femur length (Grubbs et al., 2013)35 vs. mean head width (Vonesch et al., 2016)24 755 
showing the significant cross-study association of organismal size traits. B. Correlation of 756 
remating proportion (Chow et al., 2013)37 vs. mean fecundity (Durham et al., 2014)27. C. 50 757 
phenotypes correlated with longevity (Arya et al, 2010)30 at a 25% FDR threshold, revealing 758 
three main groups of phenotypes: lifespan phenotypes (middle rows), other correlated 759 
phenotypes (bottom rows) and anti-correlated phenotypes (top rows). Of note, both the A 760 
and B plots were generated using the “phenotype correlation” tool in DGRPool. 761 

Figure 4. Overview of GWAS results across phenotypes and one case study. A. 762 
Distribution of the number of significant variants after a GWAS, for each phenotype available 763 
in DGRPool. Of note, all values >1000 have been set to 1000, for easier visualization. B. For 764 
each variant, we plotted the number of times it was significantly associated with a phenotype 765 
(y-axis = number of occurrences). It is worth noting that we chose a Manhattan plot for 766 
representing this information, but this is not a “real” GWAS Manhattan plot. C. Case study on 767 
survival to azinphos-methyl exposure (Battlay et al., 2016)26, here to a 0.25 µg/ml dose. This 768 
plot was extracted from the phenotype’s page on DGRPool at 769 
https://dgrpool.epfl.ch/phenotypes/20. D. Manhattan plot (taken from DGRPool’s result page 770 
https://dgrpool.epfl.ch/phenotypes/20/gwas_analysis) showing the association of variants to 771 
“survival at 0.25 µg/ml dose” phenotype. E. Boxplot (taken from DGRPool’s result page 772 
https://dgrpool.epfl.ch/phenotypes/20/gwas_analysis), showing the effect of the top variant, 773 
2R:8072884, which is a long insertion. 774 
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Figure 5. Analysis of extremeness among DGRP lines across 40 phenotypes. A. 775 
Fraction of extremeness of a given DGRP line. DGRP lines are assigned as ‘extreme’ in a 776 
phenotype when they are in the top or bottom 15% of the phenotypic spectrum. Phenotypes 777 
were selected based on the curated studies which had the following categories assigned to 778 
them: Life history traits, Immunity, Toxicity, Resistance, Fecundity, Aging. DGRP lines were 779 
included if they had at least 50 phenotypic measures. B. Scatter plot for the fraction of 780 
extremeness of DGRP lines. On the x-axis, the fraction of extremeness is plotted for 781 
females, whereas males are plotted on the y-axis. C. Most extreme and moderate DGRP 782 
lines per sex. On the x-axis, the adjusted fraction of extremeness is provided. Individual 783 
fractions of extremeness per phenotype were retrieved for each DGRP line. The fraction was 784 
adjusted by 1 minus the fraction of extremeness if the fraction of extremeness was above 785 
0.5. Because extremeness can range from 0 to 0.15 or 0.85 to 1, we adjusted the fraction of 786 
extremeness for plotting purposes. DGRP lines with a low adjusted fraction of extremeness 787 
are therefore more extreme, whereas a high adjusted fraction of extremeness is 788 
representative of more moderate DGRP lines. D. Extreme and moderate DGRP line 789 
pairings. On the x-axis, the adjusted fraction of extremeness is provided. Extreme and 790 
moderate line pairings were retrieved by searching for DGRP lines for which the fraction of 791 
extremeness between females and males was not greater than 0.05 while still having the 792 
highest and lowest average fraction of extremeness (across sex). E. Looking at phenotypes 793 
from Figure 2D marked as longevity/lifespan, for DGRP lines which are in the top 5 of 794 
fraction of extremeness for each respective sex, including DGRP_852 and DGRP_042 (red 795 
shades) from 5D. We specifically highlight DGRP_757, DGRP_765 in blue shades to show 796 
that they are across multiple studies in the lower end of the lifespan as is expected given 797 
that the lifespan trait is robust across studies. Similarly, DGRP_320 shows a trend in which it 798 
displays above average lifespan. Other extreme DGRP lines which were in each respective 799 
top 5 are displayed in gray. 800 
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Supplement Figures 802 

Supplemental Figure S1. Screenshot from the curator’s view for a given study - Metadata 803 
section. This screenshot shows the metadata section of the editing page for a study, where the 804 
curator can edit any of the fields. We expect the curator to set a description (short abstract) for the 805 
study, and associate some categories. The curator can also deactivate a phenotype if he/she 806 
considers that it is not a proper phenotype (like the number of replicates). Once the curation is done, 807 
the “Status” field can be changed to “Validated”, which signifies that the curation process is finished, 808 
allowing the study to be widely visible to the users. 809 

Supplemental Figure S2. Number of phenotypes per study. Studies have only been curated up to 810 
study 41 at the time of writing. Studies without attached phenotypes were not plotted. We here 811 
disregard the sex and thus count the unique phenotypes irrespective of the available sex associated 812 
with them. The 41 curated studies have 500 different phenotypes (~60%), while the remaining (S42-813 
S125) studies provide another 329 phenotypes (~40%). 814 

Supplemental Figure S3. Screenshot from the curator’s view for a given study - Phenotype 815 
section. This screenshot shows the phenotype section of the editing page for a study, where the 816 
curator can create or update the phenotyping data associated with the study. Here, the data is from 817 
(Huang et al, 2020)31, taken as an example study. It is divided into 4 columns (from left to right): 1) 818 
dataset type (raw or summary), 2) phenotypes, 3) DGRP lines, and 4) actions. If the curator submits 819 
or updates a phenotype, a parsing script is then run to check the data format, and then the data is 820 
updated in the DGRPool database. For each study, the curator can submit, update or delete a unique 821 
summary dataset, containing summary data for each DGRP line (for e.g. mean or median values). 822 
The curator can also submit multiple raw datasets, if the raw data is available for this study. Raw data 823 
means that the phenotyping data is not summarized, i.e. there are multiple values for the same DGRP 824 
line (e.g. because of replicate flies). Note: Gray phenotypes are deactivated phenotypes, i.e. not 825 
treated as real phenotypes (here, it is a block number for each fly). 826 

Supplemental Figure S4. Screenshot from the phenotype correlation tool result page. This 827 
screenshot shows the results obtained after running the phenotype vs phenotype correlation tool, 828 
available directly from a phenotype page, by clicking the “Compute Correlation” button. Of note, there 829 
is also the possibility to run this tool from the “Tool” section displayed on the banner of the DGRPool 830 
website on any user-submitted phenotype file. 831 

Supplemental Figure S5. Spearman’s correlation of all phenotypes available in the 41 curated 832 

studies. Here, we applied a binary coloring using a fixed threshold to better visualize the correlations. 833 

All correlations above abs(Spearman’s �) > 0.3 are shown in black (therefore anti-correlated 834 

phenotypes are also in black), the others are in white. 835 

Supplemental Figure S6. Comparison of correlation within and cross-study. We calculated the 836 
absolute value of the Spearman’s correlation of pairs of phenotypes that originated from the same 837 
study (within-study) and those that originated from two different studies (cross-study). Of note, 838 
displayed values are median. Mean values are 0.170 for cross-study, and 0.287 for within-study. 839 
These values are calculated across all phenotypes (125 studies). 840 

Supplemental Figure S7. Screenshot from the GWAS result page. This screenshot shows the 841 
results obtained after running the GWAS analysis, available directly from a phenotype page, by 842 
clicking the “GWAS” button. Of note, there is also the possibility to run this tool from the “Tool” section 843 
displayed on the banner of the DGRPool website on any user-submitted phenotype file. 844 
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Supplemental Figure S8. Distribution of the number of GWAS hits per phenotype depending 845 
on the significance threshold.  846 

Tables 847 

   

DGRPool DGRP2 

REFERENCE This study (Mackay et al., 2012) 
(Huang, Massouras, et al., 2014) 

D
A

TA
 

DGRP lines 341 205 

DGRP studies 125 (41 fully curated) 12 

Phenotypes 935 31 

Gene Expression data External links � 

TO
O

L
S

 GWAS 

Calculated on all phenotypes � 
 

User upload � � 

Method Plink2 FastLMM 

Covariates Wolbachia + 5 Insertions Wolbachia + 5 Insertions 

Boxplot of REF vs ALT �  

PheWAS of top variants �  

Phenotype 
correlation 

Calculated on all phenotypes � 
 

User upload � 

 

W
E

B
 URL https://dgrpool.epfl.ch/ http://dgrp2.gnets.ncsu.edu/ 

Backend Ruby-on-rails + PostgreSQL NA 

Frontend Javascript, Plotly NA 

F
E

A
T.

 Curation system & tools �  

Publish new studies �  

Interactive plots �  

 848 
Table 1. Comparison of the two currently available web portals organizing DGRP phenotyping 849 
data. This table compares different features available in DGRPool, with DGRP2, the current main 850 
resource for DGRP data. It separates the features into 1) Data, which summarizes the available 851 
phenotyping data, 2) Tools, which lists the available tools and options, mainly GWAS, PheWAS and 852 
phenotype correlation, 3) Web, which describes the website itself, and 4) Additional features, that 853 
are available in DGRPool, such as the curation system, the possibility to publish new studies and the 854 
interactive plots. 855 
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