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cognitive function is still not known. The aim of this study was to investigate serotonin receptor (5-HT1A 
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into the mechanism by which DHA supplementation ameliorates reduced cognitive function associated 
with an HF diet. 

Keywords Keywords 
fat, saturated, high, fed, rats, male, brain, densities, diet, binding, dha, receptor, gabaa, cb1, ht2a, ht1a, 5, 
prevents, altered 

Disciplines Disciplines 
Medicine and Health Sciences 

Publication Details Publication Details 
Yu, Y., Wu, Y., Patch, C., Wu, Z., Szabo, A., Li, D. & Huang, X. (2013). DHA prevents altered 5-HT1A, 5-HT2A, 
CB1 and GABAA receptor binding densities in the brain of male rats fed a high-saturated-fat diet. Journal 
of Nutritional Biochemistry, 24 (7), 1349-1358. 

Authors Authors 
Yinghua Yu, Yizhen Wu, Craig Patch, Zhixiang Wu, Alexander Szabo, Duo Li, and Xu-Feng Huang 

This journal article is available at Research Online: https://ro.uow.edu.au/ihmri/319 

https://ro.uow.edu.au/ihmri/319


1 
 

Title: DHA prevents altered 5-HT1A, 5-HT2A, CB1 and GABAA 

 3 

receptor binding 1 

densities in the brain of male rats fed a high-saturated fat diet  2 

Authors: Yinghua Yu1,2, Yizhen Wu1, Craig Patch3, Zhixiang Wu1,4, Alexander Szabo1,5, Duo 4 
Li2, and Xu-Feng Huang
 6 

1 5 

Affiliations: 1. Illawarra Health and Medical Research Institute, School of Health Sciences, 7 

University of Wollongong, Wollongong, NSW 2522, Australia  8 

2. Department of Food Science and Nutrition, Zhejiang University, Zhejiang Province, China 9 

3. Clover Corporation Limited, Nu-Mega Ingredients Pty Ltd, NSW 2522, Australia; 10 

4. Department of Endocrinology and Metabolism, Affiliated Hospital of Liaoning University 11 

of Traditional Chinese Medicine, China 12 

5. ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, Sydney, 13 

NSW 2234, Australia 14 

 15 

*Corresponding author:  16 
 17 

Professor Xu-Feng Huang, MBBS, PhD 18 
School of Health Sciences,  19 
University of Wollongong, Northfields Avenue, 20 
NSW 2522, Australia 21 
 22 
Tel.: 61-02-42214300 23 
Fax: 61-02-42214096 24 
E-mail address: xhuang@uow.edu.au 25 

 26 
 27 
Abbreviated title: DHA prevents alterations of receptor binding  28 
 29 
 30 
Total words: 3,337         Words Table: 4       Figure: 9 31 
 32 
 33 

34 

mailto:xhuang@uow.edu.au�


2 
 

Abstract  35 

Low levels of docosahexaenoic acid (DHA) have been linked to a number of mental illnesses 36 

such as memory loss, depression and schizophrenia. While supplementation of DHA is 37 

beneficial in improving memory and cognition, the influence of dietary fats on the 38 

neurotransmitters and receptors involved cognitive function is still not known. The aim of 39 

this study was to investigate serotonin receptor (5-HT1A and 5-HT2A

gamma-aminobutyric acid 

), cannabinoid receptor 40 

(CB1) and type A (GABAA) receptor binding densities in the brain 41 

of male rats fed a high-saturated fat (HF) diet, as well as the effect of DHA supplementation 42 

on HF diet. Alterations of these receptors in the post-mortem rat brain were detected by [3H]-43 

WAY-100635, [3H]-Ketanserin, [3H]-CP-55,940 and [3H]-Muscimol binding autoradiography, 44 

respectively. In the hippocampus, the 5-HT1A, CB1 and GABAA receptor binding densities 45 

significantly increased in response to a HF fat diet. While in the hypothalamus, 5-HT1A and 46 

CB1 binding densities significantly increased in HF fed rats. Importantly, DHA 47 

supplementation prevented the HF induced increase of receptors binding density in the 48 

hippocampus and hypothalamus. Furthermore, DHA supplementation attenuated 5-HT2A 49 

receptor binding density in the caudate-putamen, anterior cingulate cortex and medial 50 

mammillary nucleus, which was also increased in HF group. This study showed that a high-51 

saturated fat diet increased 5-HT1A, 5-HT2A, CB1 and GABAA

Keywords: DHA, high-saturated fat, serotonin receptor, CB1 receptor, GABA

 receptor binding densities in 52 

the brain regions involved in cognitive function, and that dietary DHA can attenuate such 53 

alterations. These findings provide insight into the mechanism by which DHA 54 

supplementation ameliorates reduced cognitive function associated with a high-saturated fat 55 

diet.  56 

A

58 

 receptor 57 

http://www.naturalnews.com/memory.html�
http://www.naturalnews.com/schizophrenia.html�
http://www.google.com.au/url?q=http://en.wikipedia.org/wiki/Gamma-Aminobutyric_acid&sa=U&ei=8MaQT_bQJoWuiQe86vWRBA&ved=0CCIQFjAA&sig2=lu7I9lSV1WtzNR0jtE526g&usg=AFQjCNGVhC5xA8T2BxWkYcrFjyTu_G_CWw�
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Introduction  59 

Different types of dietary fats affect body metabolism and cognitive function differently [1]. 60 

Studies have shown that a diet high in saturated fat promotes fat deposition and impairs 61 

memory and learning, and even contributes to the development of depression [2-4]. 62 

Conversely, a diet high in n-3 polyunsaturated fat, especially docosahexaenoic acid (DHA), 63 

can have the opposite effect [2-4]. A growing body of clinical findings implicates low DHA 64 

status with being overweight [5], impaired cognitive function, and depression [6-8]. Plasma 65 

DHA was lowered in elderly subjects with depressive disorders compared to individuals 66 

without depression [8]. The tissue DHA content of the orbitofrontal cortex and cingulate 67 

cortex was also found to be lower in individuals with major depression [6, 7]. Beneficial 68 

effects of DHA by improving cognition and anti-depressive effects have been described in 69 

clinical trials and animal studies. There is evidence that DHA supplementation improves 70 

cognition [9], enhances memory [10] and induces an anti-stress response [11], however, the 71 

underlying mechanisms remain unclear. Certain brain areas such as the hippocampus and 72 

cingulated cortex are important for cognitive function. However, there is little information on 73 

how dietary fat influences key receptors in these brain regions, which are important in the 74 

regulation of cognitive and metabolic function.   75 

 76 

The neurotransmitter serotonin (5-HT) acts via 5-HT1A and 5-HT2A receptors and has an 77 

important role in various central functions including control of energy intake, obesity, 78 

memory and learning [12-14]. 5-HT1A receptors are distributed throughout the brain and are 79 

located either pre or post-synaptically, where they regulate various brain functions [12, 15]. 80 

As presynaptic autoreceptors, the 5-HT1A receptors are found in dorsal and median raphe 81 

nuclei and negatively regulate 5-HT synthesis. A highly palatable diet in rats increases the 82 

density of 5-HT1A pre-synaptic receptor in these regions, suggesting a decrease in synthesis 83 

http://www.google.com.au/url?q=http://en.wikipedia.org/wiki/Docosahexaenoic_acid&sa=U&ei=iXm0T_GvJ6LAiQekorWFAw&ved=0CCwQFjAH&sig2=hU09g2IC1vLcuZA-IqbpNg&usg=AFQjCNGBJfJj7Vo3UnDw3wUAyZyXC-mfGg�
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and consequently a decreased release of 5-HT [16]. 5-HT1A receptors as post-synaptic 84 

receptors have a wide distribution in the brain with high density in the cortical and limbic 85 

areas, especially in the hippocampus and cortex, and low expression in other brain regions 86 

such as the hypothalamus, striatum and amygdala [17]. Clinical studies have shown that 5-87 

HT1A receptor expression is negatively associated with memory function [18]. Postsynaptic 88 

5-HT2A receptors can be found in high levels in cerebral cortical areas and at intermediate 89 

levels in the hypothalamus, striatum and hippocampus [19, 20]. Using [125I] DOI binding 90 

autoradiography, a high-saturated fat diet increased 5-HT2A binding density in the 91 

ventromedial hypothalamic nucleus and anterior olfactory nucleus in diet induced obese mice, 92 

but not in mice resistant to obesity development [21]. Furthermore, using [3H]-Ketanserin 93 

autoradiography, 5-HT2A receptor binding densities were significantly increased in post-94 

mortem tissue from the temporal cortex of patients with dementia [22]. Based on the 95 

accumulated evidence of clinical trials, blockade of 5-HT2A receptor ameliorates both the 96 

positive and negative symptoms, and to some extent the cognitive deficits in schizophrenia 97 

[23, 24]. The highly selective 5-HT2A

 101 

 antagonists MDL 100907 and EMD 281014, both 98 

developed as anti-psychotics, have also been shown to enhance cognitive function in animal 99 

models [25, 26]. 100 

The cannabinoid CB1 receptor plays an important role in various aspects of neural functions 102 

including learning and memory, anxiety, depression, addiction, appetite and feeding 103 

behaviour. Both CB1 knockout mice and CB1 antagonist (SR141716)-treated wild-type mice 104 

exhibited deficits in extinction of spatial memory [27, 28]. The systemic administration of the 105 

CB1 agonist WIN55,212-2 in rats impaired the acquisition of contextual fear conditioning 106 

[29], which is known to depend on the hippocampus [30]. GABA is the major inhibitory 107 

neurotransmitter in the brain. There are two receptors that mediate GABA neurotransmission 108 
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in the brain; GABAA and GABAB. The inhibitory function of GABAA is increasingly being 109 

recognised as important in the regulation of cognition, emotion, memory and obesity. It has 110 

been reported that the density of GABAA receptors was increased in the cortex of 111 

schizophrenia patients in order to compensate for the lowered levels of GABA [31, 32]. 112 

Allelic variants in the GABAA

 117 

α6 receptor subunit gene (GABRA6) were also associated with 113 

abdominal obesity [33]. Furthermore, the majority of leptin's antiobesity effects were 114 

mediated by GABAergic neurons reducing inhibitory tone to postsynaptic anorexigenic 115 

POMC neurons in the hypothalamus [34]. 116 

The effect of a DHA supplemented high-saturated fat diet on these receptor binding densities 118 

in brain regions associated with cognition has not been thoroughly investigated. To address 119 

this issue, we have used multiple ligands including [3H]-WAY-100635, [3H]-Ketanserin, [3H]-120 

CP-55,940 and [3H]-Muscimol to examine the regional changes of 5-HT1A, 5-HT2A, CB1 and 121 

GABAA

 126 

 receptor in the rat brain. Rats were fed either high-saturated fat diet, DHA 122 

supplement in high-statured fat diet or low-fat diet for 4 weeks. We examined alterations in 123 

receptor expression in response to a high-saturated fat diet, and if these alterations could be 124 

prevented by a supplementation of dietary DHA.  125 

Experimental procedure  127 

Animals and dietary treatments 128 

Thirty male Wistar rats (300-320g) were obtained from the Animal Resources Centre (Perth, 129 

Western Australia, Australia) and housed in environmentally controlled conditions (22°C, 12 130 

hr light–dark cycle with light cycle from 06:00 to 18:00 h and dark cycle from 18:00 to 06:00 131 

h) with ad libitum access to standard laboratory chow and water. Rats were allowed 1 week to 132 

adapt to their new environment before experiments began. They were randomized into three 133 
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groups with different diets: (1) standard laboratory chow as the low-fat control (LF, fat 134 

content 10% in kcal, saturated fat 1%), (2) high-fat diet (HF, 25% in kcal, saturated fat 10%), 135 

(3) high-fat diet + 0.5% DHA. The dose of DHA supplementation used in this study was 136 

based on the dose recommended for humans at 250mg/70kg/day (European Food Safety 137 

Authority) [35]. After four weeks of dietary treatment, rats were sacrificed by rapid CO2 138 

asphyxiation between 07:00 and 09:00 hrs in order to minimize the impact of circadian 139 

variation, and the brains were immediately removed and frozen in liquid nitrogen. Five rats 140 

per group were used to examine [3H]-WAY-100635, [3H]-Ketanserin, [3H]-CP-55,940 and 141 

[3

 146 

H]-Muscimol binding in the brain. The study was approved by the University of 142 

Wollongong Animal Ethics Committee and all animal experiments were conducted in 143 

compliance with the National Health and Medical Research Council Australian, Code of 144 

Practice for the Care and Use of Animals for Scientific Purposes (2004). 145 

Histological procedures 147 

Coronal brain sections (14 μm) were cut in a cryostat at −18  °C from the level of Bregma -148 

0.24mm to -5.16mm [36], thaw-mounted onto poly-L-lysine coated microscope slides 149 

(Polysine™, Menzel GmbH & Co, KG) [37] and stored at -20 °C. 150 

 151 

[3H]-WAY-100635, [3H]-Ketanserin, [3H]-CP-55,940 and [3

[

H]-Muscimol binding 152 

autoradiography 153 

3H]-WAY-100635 autoradiography was performed to examine 5-HT1A receptor binding 154 

density following procedures as described in previous work from our laboratories [38]. Brain 155 

sections were warmed to room-temperature and pre-incubated in 50 nM Tris–HCl buffer (pH 156 

7.4) for 30 min. The sections were then incubated with 5 nM [3H]-WAY-100635 (specific 157 

activity 83.0 Ci/mmol, Amersham Biosciences, UK Limited) at room temperature for 2.5 hrs 158 
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in 50 mM Tris–HCl (pH 7.4) containing 10 μM pargyline (Sigma). Non-specific binding was 159 

determined by incubating consecutive sections exposed to 10 μM 5-HT. All sections were 160 

washed for 2 min and then 3 min in ice-cold 50 mM Tris–HCl buffer.  161 

 162 

[3H]-Ketanserin autoradiography was performed as described previously [19]. Binding of 163 

[3H]-Ketanserin (67.0Ci/mmol; PerkinElmer Life Sciences, Boston, MA, USA) to 5-HT2A 164 

receptors was measured by preincubating sections in 170 mM Tris-HCl buffer (pH 7.4) for 15 165 

min at room temperature. Sections were then incubated for 120 min at room temperature in 166 

buffer containing 2 nM [3

 170 

H]-Ketanserin. Nonspecific binding was determined by the addition 167 

of 2 μM spiperone to consecutive sections. Sections were washed in ice-cold buffer (2 × 10 168 

min), dipped in distilled water and dried. 169 

Binding of [3H]-CP-55,940 was used to assess binding density of CB1 receptor [39]. Sections 171 

were allowed to defrost and then preincubated for 30 min in Tris-HCl buffer (5% bovine 172 

serum albumin (BSA), 50 mM Tris-HCl, pH 7.4) at room temperature. The binding sites of 173 

CB1 receptor were defined by incubation with 10 nM [3

 180 

H]-CP-55,940. Nonspecific binding 174 

was determined in the presence of 10 μM CP-55,940. Following incubation for 2 hrs at room 175 

temperature, slides were washed firstly for 1 hr and then 3 hrs in ice-cold buffer (1% BSA, 50 176 

mM Tris–HCl, pH 7.4), and then finally washed for a further 5 min in buffer containing no 177 

BSA. Slides were then dipped briefly in ice-cold distilled water and dried under a gentle 178 

stream of cool air.  179 

[3H]-Muscimol binding was performed to examine GABAA receptor binding density based 181 

on the method described in previous work from our laboratories [31]. Briefly, all sections 182 

underwent three 5 min pre-incubations at 4 °C in 50 mM Tris-citrate (pH 7.0). Sections were 183 
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then incubated for 45 min at 4 °C in the same buffer containing 3 nM [3H]-Muscimol 184 

(specific activity 29.5 Ci/mmol, PerkinElmer, USA). Non-specific binding was determined 185 

by incubating adjacent sections in [3

 188 

H]-Muscimol plus 100 μM GABA. Following incubation, 186 

sections were rinsed four times for 2s each in 4 °C buffer. 187 

Quantification and statistical analysis 189 

Quantification of binding sites was performed on a high-resolution Beta Imager (BioSpace, 190 

Paris, France) according to our previous study [40]. Briefly, sections were placed in a sample 191 

holder inside the detection chamber of the Beta Imager. The levels of bound radioactivity in 192 

the brain sections were directly determined by counting the number of β-particles emerging 193 

from the tissue sections. The Beta Vision Plus program (BioSpace, France) was used to 194 

measure the activities in the regions of interest. Radioligand binding signal was expressed in 195 

counts per minute per square millimetre (cpm/mm2), and with the use of standards was 196 

converted to fmol/mg tissue equivalents. The receptor density in various brain regions was 197 

quantified by measuring the average density of each region in three to five adjacent brain 198 

sections. Different brain regions were identified by reference to a standard rat brain atlas [36]. 199 

Data was expressed as mean ± SEM. [3H]-WAY-100635, [3H]-Ketanserin, [3H]-CP-55,940 200 

and [3

 205 

H]-Muscimol binding densities for each brain region were analyzed using a one-way 201 

ANOVA followed by a post-hoc Tukey–Kramer–HSD test using the SPSS 15.0 program 202 

(Chicago, IL). P values of less than 0.05 were regarded as statistically significant, and P 203 

values of less than 0.10 as a statistically significant trend.  204 

RESULTS 206 

5-HT1A

The 5-HT

 receptor binding  207 

1A receptor was widely distributed throughout the rat brain (Table 1). High 5-HT1A 208 
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receptor density was observed in the hippocampus, anterior cingulated cortex (ACC), lateral 209 

septal nucleus, primary motor cortex, and medial posterodorsal amygdala. Binding to 5-HT1A

Within the hippocampus there was a significant effect of dietary intervention on 5-HT

 210 

receptor was also observed in the ventromedial hypothalamus (VMH) and piriform cortex in 211 

lower levels. 212 

1A 213 

receptor density (F(2, 12)=11.641, P =0.002) (Table 1). The rats on HF diet had significantly 214 

higher 5-HT1A binding density (+54%, P =0.006), compared to rats on LF diet. For the DHA 215 

supplemented group, 5-HT1A binding density was significantly lower than the HF group (-216 

40%, P =0.002), but there was no significant difference in 5-HT1A

A dietary effect was also observed on 5-HT

 binding density in the 217 

hippocampus between DHA group and LF group (Fig 1A, Fig 2). 218 

1A receptor density within the VMH (F(2, 219 

12)=8.222, P =0.006) (Table 1). Rats maintained on HF diet had significantly higher 5-HT1A 220 

receptor expression in VMH than rats on LF diet (+58%, P =0.007). In addition, dietary 221 

intervention by the addition of DHA to the HF diet significantly decreased receptor densities 222 

compared to the rats on HF diet (-31% decrease, P =0.022), but there was no significant 223 

difference in 5-HT1A

5-HT2A binding density 226 

 receptor expression in the VMH between the DHA and LF group (Fig 224 

3A, Fig 2). 225 

There was abundant binding of [3H]-Ketanserin to 5-HT2A receptors in the ACC, caudate 227 

putamen, medial mammillary nucleus (MM), primary motor cortex, piriform cortex, medial 228 

posterodorsal amygdala and VMH. 5-HT2A

5-HT

 receptor expression was also observed at lower 229 

levels in the hippocampus (Table 2). 230 

2A binding density in the ACC differed between the various diet treatment groups in this 231 

study (F(2, 12)=12.474, P =0.001) (Table 2). The 5-HT2A binding density was significantly 232 

higher in the HF group than the LF or HF + 0.5% DHA group (+71%, P =0.003 and +75%, P 233 
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=0.002 respectively) (Fig 4A and Fig 5). There was no significant difference between DHA 234 

and LF group. 235 

Within the caudate putamen dietary intervention had a significant effect on 5-HT2A binding 236 

density (F(2, 12)=11.179, P =0.002) (Table 2). Rats fed the HF diet had significantly higher 5-237 

HT2A binding density (+43%, P =0.001) compared to rats on the LF diet. The DHA 238 

supplemented group had significantly lower 5-HT2A

This study also demonstrated differences between diet treatment groups in 5-HT

 binding density compared with the HF 239 

group (-19% lower, P =0.026), while there was no significant difference between DHA group 240 

and LF group (Fig 4B and Fig 5). 241 

2A receptor 242 

density in the MM (F(2, 12)=6.857, P =0.010) (Table 2). In the HF group 5-HT2A

CB1 receptor binding density 248 

 binding 243 

density was 47% higher than the LF group (P =0.026) and 55% higher than the DHA 244 

supplemented group (P =0.015). No difference was observed between LF and DHA groups 245 

(Fig 4C and Fig 6). A similar pattern of receptor expression in response to diet treatment was 246 

also observed in the anterior amygdaloid area. 247 

Diet affected the expression of CB1 receptor within the hippocampus (F(2, 12)

There was also a significant effect by dietary intervention on CB1 receptor density in the Arc 254 

(F

=2.960, P 249 

=0.048) (Table 3). The rats on HF diet had 43% elevated CB1 receptor density compared with 250 

rats on LF diet (P =0.007) (Fig 1B, Fig 7). DHA supplemention significantly lowered CB1 251 

receptor binding density compared with the HF group (-22%, P =0.041), but there was no 252 

significant difference in hippocampal CB1 receptor density between the DHA and LF groups. 253 

(2, 12)=37.138, P <0.001) (Table 3). In this region, rats on the HF diet had significantly 255 

higher CB1 receptor density than the rats on LF diet (+64%, P <0.001) (Fig 3B, Fig 7). The 256 

supplementation of DHA in the HF diet significantly decreased receptor expression compared 257 

to the rats on HF diet (-39%, P <0.001), but no difference was observed between DHA and 258 
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LF groups. 259 

Furthermore, HF diet significantly increased CB1 receptor density in the substantia nigra 260 

(SN), ventral tegmental area (VTA), and amygdala compared with LF diet (SN: +37%, P 261 

=0.003; VTA: +15%, P =0.020; amygdala: +20%, P =0.045) (Table 3). CB1 receptor binding 262 

density was decreased with DHA supplementation compared with the HF group in these brain 263 

areas. There was no effect of dietary intervention on CB1 in the VMH, caudate putamen, 264 

piriform cortex, primary motor cortex and ACC. 265 

GABAA

GABA

 binding density 266 

A receptor binding density in the hippocampus was affected by the different diets 267 

utilised in this study (F(2, 12)=4.386, P =0.040) (Table 4). Hippocampal GABAA receptor 268 

density was increased 53% in the HF group compared to the LF group (P =0.021) (Fig 1C, 269 

Fig 8), while DHA supplementation significant lowered the HF induced elevation in GABAA 270 

receptor binding density by 42% (P =0.038). There was also a positive correlation between 271 

CB1 and GABAA

In the thalamus and posterior cingulated cortex (PCC), HF diet significantly decreased 273 

GABA

 receptor binding density in the hippocampus (R=0.593, P =0.025) (Fig 9). 272 

A receptor density compared with LF diet (thalamus, -41%, P =0.020; PCC -60%, P 274 

=0.011) (Table 4). While GABAA receptor density was significantly increased by DHA 275 

supplementation compared with HF group in these brain areas (thalamus, +77%, P =0.011; 276 

+PCC 154%, P =0.009). There was no significant effect of dietary intervention on GABAA

Energy intake, body weight, and plasma leptin level of rats with dietary intervention 279 

 277 

receptor density in the ACC. 278 

The average of energy intake during the dietary treatment was significantly different among 280 

the three groups (P =0.010, HF: 94.38±2.69 kcal/24hours; LF: 84.69±1.56 kcal/24hours; HF 281 

+ 0.5% DHA: 90.81±1.86 kcal/24hours), in which HF group was significantly higher than LF 282 

group (P =0.007). No significant difference was found between other groups. The four week 283 

http://www.google.com.au/url?q=http://en.wikipedia.org/wiki/Ventral_tegmental_area&sa=U&ei=xqSYT6WoDJGtiQfIqqXZBQ&ved=0CBQQFjAA&sig2=xhvodDxdtedmTX8_fETrUQ&usg=AFQjCNHlsUEhDKrSTcWBZOi8_EMr7uyvHQ�
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accumulative energy intake was also significantly higher in HF group than the LF group 284 

(11.44%, P = 0.012). There was no significant difference in body weight changes among 285 

three groups (P =0.503, HF: 84.80±5.48g; LF: 81.78±6.05g; HF + 0.5% DHA: 83.00±6.04g). 286 

The plasma level of leptin in HF diet fed rats (11.47±2.17ng/ml) was significantly higher than 287 

that of the LF group (4.72±0.73ng/ml) (P =0.005). DHA supplementation decreased the 288 

plasma leptin level (7.21±1.01ng/ml) of rats compared with HF group in statistically 289 

significant trend (P =0.070), while there was no significant difference in plasma leptin 290 

between DHA and LF group (P =0.290). 291 

 292 

 293 

DISCUSSION 294 

Serotonin, cannabinoids and GABA systems play an important role in cognitive function [14, 295 

29, 31], and a chronic high-saturated fat diet has been shown to affect memory and learning 296 

[2]. Therefore, the effects of high-saturated fat diets on these neurotransmitter systems are of 297 

interest. This study showed that a high-saturated fat diet increased the density of 5-HT1A 298 

receptor in the hippocampus and VMH, 5-HT2A receptor in the ACC, caudate putamen and 299 

MM, CB1 receptor in the hippocampus, Arc, SN, VTA and amygdale, and GABAA

 304 

 receptor 300 

in the hippocampus. These regions are primarily limbic structures associated with the 301 

regulation of cognition. In addition, these HF diet induced changes in receptor density can be 302 

prevented by dietary supplementation of 0.5% DHA. 303 

A number of changes in receptor expression have been observed in the brain of individuals 305 

with abnormal cognitive function. It has been reported that 5-HT1A receptor binding density 306 

in the human hippocampus is negatively correlated with memory [18]. Furthermore, 5-HT1A 307 

and 5-HT2A receptor binding densities are significantly increased in the temporal cortex of 308 
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patients with dementia [22]. Both GABAA and CB1 receptor densities are increased in the 309 

posterior cingulated cortex of schizophrenia [41, 42]. This study similarly found alterations in 310 

receptor density in response to a high-saturated fat diet, specifically increased 5-HT1A, 5-311 

HT2A, GABAA

 320 

 and CB1 receptor densities in a number of brain regions, particularly in the 312 

limbic structures. Although the mechanism for the alteration of receptor binding densities is 313 

unclear, such effects could be due to the high-saturated fat diet decreasing the level of the 314 

respective neurotransmitters in the limbic regions. This is supported by a study showing that 315 

a high-fat diet (20% corn oil) for six weeks significantly decreased 5-HT levels in the 316 

brainstem of rats [43]. In addition, maternal high-fat consumption results in a significant 317 

decrease in CSF 5-HT content leading to 55% of offspring with increased anxiety as assessed 318 

by the novel object tests, and 78% with aberrant behavior (anxious and/or aggressive) [44].  319 

We found that hippocampal 5-HT1A binding density was increased in rats fed a high-saturated 321 

fat diet. Hippocampal circuits play an important role in learning and memory, but also in the 322 

hedonic aspects of eating [18, 45]. 5-HT1A receptors in the hippocampus are negatively 323 

associated with memory function in clinical and animal studies [18, 46]. Using positron 324 

emission tomography (PET), a significant negative correlation was found between explicit 325 

memory function and 5-HT1A receptor expression localized in the bilateral hippocampus of 326 

healthy subjects. Furthermore, administration of the 5-HT1A agonist tandospirone dose-327 

dependently impaired explicit verbal memory [18]. In a rat study, injection of the 5-HT1A 328 

agonist 8-OH-DPAT into hippocampus resulted in memory and learning impairment [46]. 329 

Conversely, administration of WAY 100635, a 5-HT1A antagonist, into the hippocampus of 330 

rats prevented the deficit of spatial learning induced by administration of CPP, a NMDA 331 

receptor antagonist [47]. Recent findings indicate that dietary factors which promote 332 

excessive food intake and weight gain can also interfere with hippocampal functioning. For 333 



14 
 

example, epidemiological and animal studies show that intake of diets high in saturated fat 334 

are associated with memory deficits and microglial activation (indicating inflammation 335 

and/or gliosis) in the hippocampus [2, 3]. Therefore, the high-saturated fat diet induced 336 

increase in hippocampal 5-HT1A

 340 

 receptor expression observed in this study may be involved 337 

in impairment of hippocampus function associated with learning and memory which in turn 338 

contributes to an increased energy intake.  339 

Furthermore, we found that both CB1 and GABAA receptor density were increased in the 341 

hippocampus of rats fed high-saturated fat diet. It is known that CB1 receptors are highly 342 

expressed in the hippocampus and are involved in memory function in this brain region. An 343 

intrahippocampal administration of rimonabant, a CB1 antagonist, completely attenuated the 344 

memory disruptive effects of cannabinoid induced memory impairment [48]. Systemic and 345 

intrahippocampal administration of cannabinoid agonists have been shown to impair 346 

hippocampal-dependent memory tasks [48, 49]. Oral administration of a CB1 inverse agonist, 347 

SLV319, inhibits the CB1 receptor-mediated catalepsy induced by HU-210 ip injection in 348 

mice [50]. In the present study, the elevated CB1 receptor binding density suggests that 349 

activation of CB1 in the hippocampus may contribute to high-saturated fat associated 350 

memory deficits. Endocannabinoid (eCB) ligands have been shown to act on the CB1 351 

receptor to inhibit the release of GABA in the rat hippocampus [51]. In this study the 352 

increased GABAA receptor expression in response to high-fat diet may reflect decreased 353 

GABA as a consequence of CB1 receptor activation in the hippocampus. This is supported by 354 

our observation that CB1 receptor density is positively correlated with GABAA receptor 355 

density. Furthermore, a previous study showed that in high-fat diet induced obese mice CB1 356 

receptor immunoreactivity and the eCBs, anandamide and 2-arachidonoyl glycerol (2-AG) 357 

were increased in the hippocampus [52]. In this study CB1 receptor binding density in the 358 



15 
 

hippocampus was increased even without any changes in body weight. This suggests that 359 

high-fat diet alone rather than obesity increases CB1 binding.  360 

 361 

Both clinical trials and animal studies have shown that DHA supplementation can improve 362 

learning and memory [53, 54]. Conversely, depletion of DHA in rat brain was found to 363 

increase 5-HT1A expression in the hippocampus and was associated with impairment of 364 

spatial learning and memory [55, 56]. In our study, addition of DHA to the diet prevented the 365 

increase of hippocampal 5-HT1A density in rats induced by a high-saturated-fat diet. DHA 366 

supplementation is also able to prevent increased CB1 and GABAA receptor densities 367 

induced by high-fat diet, as shown in this study. These findings suggest the effect of DHA 368 

supplementation on improving learning and memory may be via its influence on hippocampal 369 

5-HT1A, CB1 and GABAA

 371 

 systems. 370 

The hypothalamus is well recognised as a critical centre in the regulation of energy balance. 372 

Hypothalamic 5-HT1A receptors are involved in the control of negative energy balance. A 373 

negative relationship has been reported between the 5-HT content in the hypothalamus and 374 

amount of fat and food intake in rodents. For example, an infusion of 5-HT into the 375 

hypothalamus can lead to a dose-related decrease in the amount of fat intake in either fat- or 376 

carbohydrate- preferring rats [57]. The intrahypothalamic injection of a 5-HT1A agonist, 8-377 

OH-DPAT, decreases food intake and promotes satiety [58]. Conversely, intra-hypothalamic 378 

injection of WAY-100635, a 5-HT1A antagonist, blocks the anorexic effect induced by 5-HT 379 

[59]. The present study showed that rats fed a high-fat diet had increased 5-HT1A receptor 380 

expression in the ventromedial hypothalamus (VMH). This finding supports the assertion that 381 

a high-fat diet significantly decreases central 5-HT levels in rats [43]. Moreover, in the 382 

present study DHA supplementation prevented the increase in VMH 5-HT1A receptor density 383 
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induced by a high-saturated fat diet, which is in agreement with various reports in the 384 

literature. Previous studies have shown that n-3 PUFA/DHA intake influences 5-HT levels in 385 

the brain. A positive association has been reported between the amount of dietary DHA and 386 

brain 5-HT in piglets [60]. While rats maintained on a n-3 deficient diet have a low response 387 

to fenfluramine induced 5-HT stimulation [61]. Finally, n-3 PUFA supplementation in mice 388 

reverses the stress-induced reduction in 5-HT levels [62]. 389 

 390 

CB1 receptor expression was also increased in the Arc of the hypothalamus as a result of 4 391 

weeks of high-saturated fat diet, and this was prevented by dietary DHA supplementation. 392 

Hypothalamic eCBs and the CB1 receptor are involved in food intake and the response to 393 

peripheral feeding signals. Intravenous injection of leptin reduces the levels of the eCBs 394 

anandamide and 2-AG in the hypothalamus of normal rats and ob/ob mice [63]. High-395 

saturated fat diets increase plasma leptin thereby downregulating eCBs in the Arc, which may 396 

have led to the upregulation of Arc CB1 receptor density observed in this study. Moreover, 397 

the prevention of hyperleptinemia in high-saturated fat fed rats supplemented with DHA may 398 

have played a role in maintaining CB1 receptor binding density at levels similar to LF rats.  399 

 400 

In the present study a high-saturated fat diet increased 5-HT2A receptor binding density in the 401 

caudate putamen (striatum), ACC and MM of rats. The striatal serotonergic (5-HT) system is 402 

involved in reward behaviour; elevated 5-HT neurotransmission increases reward (positive 403 

feedback) sensitivity and decreases negative feedback sensitivity in rats [64, 65]. Rats fed a 404 

high-saturated fat diet have lowered levels of 5-HT release from striatal slices compared to 405 

rats fed a low-fat diet [64]. High saturated-fat diet induced obesity has been considered as a 406 

compulsive disorder reflecting a “reward deficiency syndrome” [66]. Therefore, the increase 407 

in striatal 5-HT2A receptor binding density observed in this study may contribute to deficits in 408 
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the reward system. The ACC and MM are involved in cognitive and memory function [67, 409 

68]. Studies with functional neuroimaging techniques, including PET and functional 410 

magnetic resonance imaging (fMRI), have ascribed the ACC with cognitive function and 411 

working memory [69]. Rodents with lesions of the MM are impaired on tests of spatial 412 

memory tasks and working memory [70, 71]. When rats are fed a high-fat diet they show a 413 

reduction in their cognitive ability and a decline in working memory after just nine days [72]. 414 

The 5-HT2A receptor plays an important role in cognitive abilities and working memory 415 

process [13, 73]. In the present study, 5-HT2A

 418 

 receptor binding density increased in brain 416 

regions related to cognition and memory (ACC and MM). 417 

Decreased DHA content in the brain is associated with increased density of cortical 5-HT2A 419 

receptors and altered serotonergic neurotransmission [74, 75]. Perinatal DHA-deficient rats 420 

have significantly lowered 5-HT content in the prefrontal cortex [74]. Moreover, a n-3 421 

PUFA-supplemented diet reverses decreased brain 5-HT levels in mice subjected to chronic 422 

mild stress [76]. In the present study adding DHA into the high-saturated fat diet of rats 423 

prevents increased levels of 5-HT2A binding density in the striatum, ACC and MM. The 424 

previously discussed ability of DHA supplementation to maintain central 5-HT levels is a 425 

potential mechanism by which DHA prevents 5-HT2A receptor upregulation. In addition, 426 

DHA content influences the physicochemical properties of neuronal membranes, and thus 427 

modulates the function of membrane bound proteins, such as receptors [77, 78]. Alterations 428 

in the fatty acid composition of neural membranes with DHA supplementation may result in 429 

changes in the affinity of neuronal receptors towards their neurotransmitter [77]. Therefore it 430 

is also possible that DHA directly affects the 5-HT2A receptor by increasing affinity to its 431 

neurotransmitter, negating the need for an increase in expression to cope with reduced 5-HT 432 

levels. DHA can affect gene expression as well as mRNA stability [77]. It is therefore also 433 
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possible that DHA exerts its effects on the 5-HT2A

 437 

 receptor at a transcriptional level. 434 

However, the exact mechanism by which DHA influences this receptor requires further 435 

research.  436 

In summary, we found that a high-saturated fat diet significantly increased 5-HT1A, CB1 and 438 

GABAA receptor binding densities in various rat brain regions, especially in limbic structures 439 

such as hippocampus and hypothalamus, which are important in the regulation of energy 440 

balance, learning, memory and cognitive functions. Furthermore, 5-HT2A

 454 

 receptor binding 441 

was increased in the caudate putamen, anterior cingulated cortex and medial mammillary 442 

nucleus of rats fed a high-saturated fat diet. The anatomical distributions of these receptor 443 

alterations suggest serotonin, cannabinoid and GABA receptor contribute at least partially to 444 

cognitive dysfunctions and abnormal energy balance induced by high-saturated fat diet, 445 

which is well supported by current literature. Importantly, the addition of dietary DHA 446 

prevented alteration of these receptor binding densities in rats induced by high-fat diet. The 447 

present findings point to DHA acting on numerous receptor systems in various areas of the 448 

brain. Furthermore, our results support the assertion that DHA supplements have beneficial 449 

effects on improving memory and cognition. Therefore, potential strategies to improve 450 

mental function against the adverse effects of high-saturated fat diets include targeting the 451 

serotonin, CB1 and GABA receptor systems, as well the proper application of molecular 452 

nutrition using supplements such as DHA. 453 
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Figure Legends: 673 
 674 
Fig 1. The effect of dietary intervention on [3H]-WAY-100635 (A), [3H]-CP55940 (B) and 675 

[3

 679 

H]-Muscimol (C) binding (nCi/mg tissue) in the hippocampus of the rat brain. Data are 676 

expressed as mean ± SEM. Abbreviations: LF, low-fat diet; HF, high-saturated fat diet; DHA, 677 

n-3 polyunsaturated docosahexaenoic acid; Hip: hippocampus. *P <0.05 vs. HF.  678 

Fig 2. Autoradiograph depicting [3H]-WAY-100635 binding in the hippocampus and 680 

ventromedial hypothalamus (VMH) of rats fed a LF (B), HF (C) and HF+DHA diet (D). 681 

Panel A is from a rat brain atlas. The density of [3H]-WAY-100635 binding was significantly 682 

increased in the hippocampus and VMH by HF diet, whereas the DHA supplement prevented 683 

the increase of [3

 686 

H]-WAY-100635 binding by HF diet. LF, low-fat diet; HF, high-saturated 684 

fat diet; DHA, n-3 polyunsaturated docosahexaenoic acid. 685 

Fig 3. The effect of dietary intervention on [3H]-WAY-100635 (A) and [3

Fig 4. The effect of dietary intervention on [

H]-CP55940 (B) 687 

binding (nCi/mg tissue) in the hypothalamus of the rat brain. Data are expressed as mean ± 688 

SEM. Abbreviations: LF, low-fat diet; HF, high-saturated fat diet; DHA, n-3 polyunsaturated 689 

docosahexaenoic acid; VMH, ventromedial hypothalamus; Arc, hypothalamic arcuate 690 

nucleus. *P <0.05 vs. HF.  691 

3

 696 

H]-Ketanserin binding density (nCi/mg tissue) 692 

in the rat brain. Data are expressed as mean ± SEM. Abbreviations: MM, medial mammillary 693 

nucleus; CPu, caudate putamen; ACC, anterior cingulate cortex; LF, low-fat diet; HF, high-694 

saturated fat diet; DHA, n-3 polyunsaturated docosahexaenoic acid. *P <0.05 vs. HF.  695 

Fig 5. Autoradiograph depicting [3H]-Ketanserin binding in the anterior cingulae cortex and 697 

caudate putamen of rats on LF (B), HF (C) and HF+DHA diet (D). Panel (A) is from a rat 698 
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brain atlas. The density of [3H]-Ketanserin binding was significantly increased in the anterior 699 

cingulae cortex and caudate putamen by HF diet whereas the DHA supplement prevented the 700 

increase of [3

 703 

H]-Ketanserin binding by HF diet. LF, low-fat diet; HF, high-saturated fat diet; 701 

DHA, n-3 polyunsaturated docosahexaenoic acid. 702 

Fig 6. Autoradiograph depicting [3H]-Ketanserin binding in the medial mammillary nucleus 704 

of rats on LF (B), HF (C) and HF+DHA diet (D). Panel (A) is from a rat brain atlas. The 705 

density of [3H]-Ketanserin binding was significantly increased in the medial mammillary 706 

nucleus induced by HF diet, whereas the DHA supplement prevented the increase of [3

 710 

H]-707 

Ketanserin binding by HF diet. LF, low-fat diet; HF, high-saturated fat diet; DHA, n-3 708 

polyunsaturated docosahexaenoic acid. 709 

Fig 7. Autoradiograph depicting [3H]-CP-55,940 binding in the hippocampus (A-C) and 711 

hypothalamic arcuate nucleus (D-F) of rats on LF (A and D), HF (B and E) and HF+DHA 712 

diet (C and F). The density of [3H]-CP-55,940 binding was significantly increased in the 713 

hippocampus and hypothalamic arcuate nucleus by HF diet, whereas the DHA supplement 714 

prevented the increase of [3

 717 

H]-CP-55,940 binding by HF diet. LF, low-fat diet; HF, high-715 

saturated fat diet; DHA, n-3 polyunsaturated docosahexaenoic acid. 716 

Fig 8. Autoradiograph depicting [3H]-Muscimol binding in the hippocampus of rats on LF 718 

(A), HF (B) and HF+DHA diet (C). The density of [3H]-Muscimol binding was significantly 719 

increased in the hippocampus by HF diet, whereas the DHA supplement prevented the 720 

increase of [3

 723 

H]-Muscimol binding by HF diet. LF, low-fat diet; HF, high-saturated fat diet; 721 

DHA, n-3 polyunsaturated docosahexaenoic acid. 722 
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 724 
Fig 9. There was significant correlation between [3H]-CP55940 and [3

 727 

H]-Muscimol binding 725 

(nCi/mg tissue) in the hippocampus of rat brain.  726 

 728 



1 
 

 
Table 1. Specific [3

  

H]-WAY-100635 binding (nCi/mg tissue; mean ± SEM) in different brain regions following 4 weeks of dietary 
intervention 

Mean ± SEM.    One-way ANOVA     P value, Tukey’s HSD post hoc    
   LF (n=5) HF (n=5)  HF+DHA (n=5)   F (2, 12) P value   HF vs. LF HF vs. DHA DHA vs. LF 
Hip 2.14±0.21 3.29±0.16 1.97±0.24 

 
11.641 0.002 

 
0.006 0.002 0.827 

VMH 0.74±0.06 1.17±0.10 0.81±0.08 
 

8.222 0.006 
 

0.007 0.022 0.790 
M1 1.66±0.09 1.58±0.09 2.05±0.07 

 
1.167 0.344 

 
− − − 

ACC 1.64±0.12 1.41±0.15 1.48±0.17 
 

0.635 0.547 
 

− − − 
LSD 2.89±0.32 2.65±0.24 3.43±0.42 

 
0.043 0.958 

 
− − − 

MeP 1.46±0.07 1.67±0.22 1.69±0.13 
 

0.654 0.538 
 

− − − 
Pir 1.09±0.08 1.04±0.05 1.11±0.10   0.192 0.828   − − − 

Abbreviations: VMH, Ventromedial hypothalamus; Hip, Hippocampus; M1, primary motor cortex; ACC, anterior cingulate cortex; 
LSD, lateral septal nucleus; MeP, Medial posterodorsal amygdala; Pir, Piriform cortex; LF, low-fat diet; HF, high-fat diet; DHA, n-3 
polyunsaturated docosahexaenoic acid. 
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Table 2. Specific [3

 

H]-Ketanserin binding (nCi/mg tissue; mean ± SEM) in different brain regions following 4 weeks of dietary intervention 
Mean ± SEM. 

 
 One-way ANOVA   

 
P value, Tukey’s HSD post hoc    

   LF (n=5) HF (n=5)  HF+DHA (n=5)   F (2, 12) P value   HF vs. LF HF vs. DHA DHA vs. LF 
ACC 1.92±0.25 3.29±0.21 1.88±0.21 

 
12.474 0.001 

 
0.003 0.002 0.99 

CPu 2.13±0.20 3.04±0.07 2.45±0.10 
 

11.179 0.002 
 

0.001 0.026 0.276 
MM 2.44±0.39 3.58±0.20 2.31±0.14 

 
6.857 0.010 

 
0.026 0.015 0.943 

AA 2.50±0.19 3.28±0.14 2.39±0.13 
 

9.660 0.003 
 

0.006 0.002 0.888 
Hip 0.98±0.05 0.97±0.06 0.89±0.04 

 
0.916 0.426 

 
− − − 

VMH 1.36±0.07 1.35±0.14 1.34±0.09 
 

0.016 0.984 
 

− − − 
MeP 1.82±0.05 1.76±0.11 1.82±0.16 

 
0.116 0.891 

 
− − − 

Pir 3.20±0.22 3.48±0.30 3.73±0.39 
 

0.698 0.517 
 

− − − 
M1 4.45±0.50 4.81±0.43 4.92±0.39 

 
0.303 0.744 

 
− − − 

Abbreviations: MM, Medial mammillary nucleus; ACC, Anterior cingulated cortex; AA, Anterior amygdaloid area; CPu, Caudate putamen; 
Hip, hippocampus; M1, primary motor cortex; MeP, Medial posterodorsal amygdala; Pir, Piriform cortex; VMH, Ventromedial 
hypothalamus; LF, low-fat diet; HF, high-fat diet; DHA, n-3 polyunsaturated docosahexaenoic acid. 
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Table 3. Specific [3

  
H]-CP55940 binding (nCi/mg tissue; Mean±SEM) in different brain regions following 4 weeks of dietary intervention 

Mean±SEM   One-way ANOVA   P value, Tukey’s HSD post hoc    

 
LF HF HF+DHA 

 
F (2, 12) p- value 

 
HF vs. LF HF vs. DHA DHA vs. LF 

Hip 82.92±7.39  118.49±14.70  92.47±4.83    2.960 0.048   0.007 0.041 0.778 
Arc 37.15±1.72  61.01±3.01  37.27±1.62  

 
37.138 <0.001 

 
<0.001 <0.001 0.999 

VMH 65.99±4.41  75.06±4.06  61.45±3.02  
 

3.202 0.077 
 

− − − 
Amg 47.89±1.32  57.55±2.56  45.38±3.25  

 
6.559 0.012 

 
0.045 0.013 0.764 

SN 37.68±1.81  51.73±4.61  34.75±2.93  
 

7.465 0.008 
 

0.003 0.001 0.810 
VTA 40.12±1.55  47.34±1.57  38.30±1.10  

 
11.260 0.002 

 
0.020 0.005 0.651 

CPu  54.10±6.20  56.78±4.10  51.53±2.66  
 

0.331 0.725 
 

− − − 
Pir 56.13±3.20  65.76±7.12  54.34±2.87  

 
1.635 0.236 

 
− − − 

M1 65.14±6.95  63.59±5.15  61.87±6.21  
 

0.071 0.932 
 

− − − 
ACC 57.30±6.91  60.84±6.21  55.27±3.41    0.244 0.787   − − − 

Abbreviations: Arc, hypothalamic arcuate nucleus; SN, Substantia nigra; VTA, Ventral tegmental area; Hip, hippocampus; VMH, 
Ventromedial hypothalamus; Amg, Amygdala; CPu, Caudate putamen; Pir, Piriform cortex; M1, Primary motor cortex; ACC, anterior 
cingulate cortex; HF, high-fat diet; LF, low-fat diet; DHA, n-3 polyunsaturated docosahexaenoic acid. 

 
 
 
 
 
 
 
 
 
 
 



4 
 

 

Table 4. Specific [3

 

H]-Mmuscimol binding (nCi/mg tissue; mean ± SEM) in different brain regions following 4 weeks of dietary 
intervention 

Mean ± SEM. 
 

 One-way ANOVA   
 

P value, Tukey’s HSD post hoc    

 
 LF (n=5) HF (n=5)  DHA (n=5) 

 
F (2, 12) P value 

 
HF vs. LF HF vs. DHA DHA vs. LF 

Hip 3.43±0.47 5.25±0.57 3.05±0.67   4.386 0.040   0.021 0.038 0.656 
PCC 3.23±0.68 1.23±0.34 3.12±0.32 

 
6.923 0.011 

 
0.012 0.009 0.878 

Thalamus 5.10±0.58 3.01±0.60 5.35±0.47 
 

5.375 0.022 
 

0.020 0.011 0.760 
ACC 2.23±0.21 1.96±0.34 2.59±0.47   0.733 0.502   − − − 
Abbreviations: ACC, Anterior cingulated cortex; Hip, hippocampus; PCC, posterior cingulated cortex; LF, low-fat diet; HF, high-fat 
diet; DHA, n-3 polyunsaturated docosahexaenoic acid. 
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