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Abstract—Eliminating haze interference in images is still a
challenging problem. In this paper, we consider more systemati-
cally the physical hazing mechanisms, combined with deep learn-
ing, propose a new end-to-end dehazing network called DHD-Net.
For physical hazing mechanisms, we fuse the global atmosphere
light, transmission maps, and the atmospheric scattering model
for dehazing. For the estimation of global atmosphere light, We
propose a deep learning-based haze density estimation algorithm
(DL-HDE). We establish a new dataset, of which each data item
consists of the hazy image, the transmission map, the haze-free
image, and the dense-haze area mask. Our experimental results
demonstrate that our proposed DHD-Net has better dehazing
performance than state-of-the-art algorithms.

Index Terms—Dehazing, Haze Density, Atmospheric Scattering
Model, Deep Learning, Image Processing

I. INTRODUCTION

The imaging process is extremely vulnerable to interfer-

ences from atmospheric scattering and absorption, especially

in severe haze weather. The collected images are easily af-

fected, and the loss of image feature information caused by

haze obstructs subsequent image processing tasks. Eliminating

haze interference is still a challenging problem.

Early image dehazing algorithms can be mainly divided into

image enhancement-based (IEM) [1]–[3] and physical model-

based (PMM) methods [4]–[15]. Image enhancement-based

methods can achieve better visual results such as increasing

the contrast of images [3]. However, these methods do not

consider image degradation, so they tend to lose image details

during processing. On the other hand, the physical-model-

based methods study the causes of the degradation of hazy im-

ages: by analyzing and summarizing the laws of the weakening

process of light, the light attenuation model is constructed,

and then the restored model is used to compensate for the

distorted parts of the scene and achieve dehazing. Compared

with IEMs, PMMs can perform targeted reduction according

to different reasons of image degradation and the restored

information is closer to the original haze-free image, hence

better dehazing results can be obtained. Most of PMMs rely on
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atmospheric scattering models. The key of these models is to

obtain accurate global atmosphere light value and transmission

map, which is an ill-posed problem [7].

In order to address the issues caused the ill-posed problem,

researchers proposed to include prior knowledge, such as using

prior knowledge to help estimating the transmission map,

and using a fixed rule of thumb (i.e., based on experience)

to estimate global atmosphere light. For example, the DCP

proposed by He et al. [4] and the prior knowledge of haze

lines proposed by Bermen et al. [6]. However, these methods

have more scene restrictions and pay insufficient attention to

the estimation of the global atmosphere light. Recently deep

learning (DL) starts being applied in dehazing, e.g., FFA-Net

proposed by Qin et al. [18] and DCPDN proposed by Zhang et

al. [9]. Compared with early dehazing methods, the DL-based

algorithms are more robust and have better performance.

In this paper, based on deep learning, we associate transmis-

sion maps, the global atmosphere light, and hazy images, and

use the atmospheric scattering model for dehazing. As men-

tioned above, most existing methods attach more importance

to the estimation of the transmission map and consider less

the estimation of global atmosphere light during the dehazing

process. Indeed, dense haze areas (DHAs) are important for

the estimation of global atmosphere light [15]. We propose

an DL-based haze density estimation algorithm (DL-HDE),

which uses deep learning methods to segment DHAs and

further divide the global atmosphere light candidate area

according to the characteristics of the haze to estimate the

global atmosphere light. We then propose a new end-to-end

dehazing network based on DL-HDE (DHD-Net). Because the

image haze is the depth-dependent noise and nonuniform, we

use the Pyramid Densely Connected Neural Network [9] to

estimate the transmission map in DHD-Net. Pyramid Densely

Connected Neural Network can effectively estimate features

on transmission map and preserve global information [20].

Finally, the atmospheric scattering model is used in DHD-Net

to fuse the transmission map, the global atmosphere light and

the hazy image to remove the haze. In this way, DHD-Net con-

siders more systematically the physical hazing mechanisms,

therefore combined with DL, can achieve better dehazing

performance. Last but not least, in order for the validation

of our new dehazing network, we establish a new dataset, of



which each data item consists of the hazy image, the trans-

mission map, the haze-free image, and the dense-haze area

mask. We perform comprehensively comparative experiments

with state-of-the-art algorithms. Our experiments show that

the proposed DHD-Net performs better w.r.t. the commonly

used Structural Similarity Index (SSIM) and Peak Signal to

Noise Ratio (PSNR). DHD-Net avoids image distortion and

chromatic aberration, and retains more edge information. In

summary, our contributions are listed as follows:

• We propose a new DL-based algorithm for estimating the

global atmosphere light called DL-HDE.

• Based on DL-HDE, we propose a new end-to-end dehaz-

ing network called DHD-Net. This new network consid-

ers more systematically the physical hazing mechanisms

and achieves better dehazing performance than state-of-

the-art algorithms.

• We establish a new dataset, of which each data item

consists of the hazy image, the transmission map, the

(ground-truth) haze-free image, and the DHA mask.

II. RELATED WORK

In recent years, dehazing methods can be roughly divided

into two types, 1) dehazing algorithms based on prior knowl-

edge; and 2) DL-based dehazing algorithms.

The representative methods in prior knowledge-based de-

hazing algorithms such as He et al. [4] proposed to use the

Dark Channel Prior (DCP) to dehaze. However, the time and

space complexity of this method is high, and insufficient con-

sideration is given to the estimation of the global atmosphere

light, the result of dehazing may loss details, and some areas

appear severely distorted. Zhu et al. [5] proposed, in addition

to DCP, to use the color attenuation prior knowledge based

on the relationship between haze density and scene depth, and

build a linear regression model to estimate scene depth using

brightness and saturation, finally get the transmission map to

dehaze. Berman et al. [6] proposed the prior knowledge of

haze lines, in which used the haze lines of global pixels is

used to estimate the transmission map. This method is more

robust, but it is diffcult to predict the haze lines when the

global illumination is much stronger than the brightness.

In order to achieve better dehazing effect and improve the

robustness of dehazing algorithms, DL starts being adapted

in dehazing recently. There are mainly two types of DL-

based dehazing algorithms: 1) to generate the haze-free image

directly [16]–[19].By learning the paired hazy images and

haze-free images, the deep learning network can directly

estimate the haze-free image, such as Conditional generative

adversarial network (cGAN) for dehazing proposed by Li et

al. [16], gated context aggregation network (GCANet) by Chen

et al. [17], and Feature fusion attention network (FFA-Net)

proposed by Qin et al. [18]; 2) to using DL to estimate

the coefficients in the physical models and get the haze-free

image [7]–[9], [12], [14], such as DehazeNet [7] by Cai et al.,

An allin-one network (AOD-Net) by Li et al. [8] and Densely

connected pyramid dehazing network (DCPDN) by Zhang et

al. [9].

Based on these existing algorithms, we can see that it is

important for dehazing algorithms to accurately estimate the

transmission map and global atmosphere light.

A. Methods for transmission map estimation

The methods for estimating transmission map mainly have

two categories: 1) methods based on prior knowledge; and 2)

methods based on deep learning. As mentioned in Section I,

methods based on prior knowledge include DCP [4], color

attenuation [5], and haze lines [6]. In addition, Fattal et al. [13]

proposed a dehazing algorithm based on color information,

which estimates the transmission map through independent

component analysis. But it is not applicable to colorless dense-

hazy scenes and gray-scale images. In general, methods based

on prior knowledge have more scene limitations, and methods

considering only one perspective of prior knowledge, e.g.,

color attenuation, cannot effectively adapt to highly varied

hazy scenarios.

Deep learning-based methods include DehazeNet proposed

by Cai et al. [7]. DehazeNet builds a convolutional neural net-

work (CNN), which takes hazy images as input and produces

transmission maps as output. Ren et al. [14] improved CNN

and proposed a multiscale CNN to estimate the transmission

map, which can extract multi-scale features. To include global

structural information, Zhang et al. [9] designed a densely

connected encoder-decoder structure with multilevel pyramid

pooling model to estimate the transmission map.

B. Methods for global atmosphere light estimation

Previous dehazing works have not paid enough attention

to the estimation of global atmosphere light. For example,

in DCP [4], a fixed rule of thumb is used to estimate the

global atmosphere light, which extracts the brightness value

corresponding to the top 0.1% of the brightest gray position

in the black channel map as the global atmosphere light.

In particular, this method estimates incorrectly due to noises

caused by the light from bright objects such as table lamps.

Afterwards, researchers found that an accurate estimation

of global atmosphere light is more conducive to dehazing.

For example, AOD-Net proposed by Li et al. [8] unified

the transmission map and global atmosphere light into a

variable, and estimated this variable through the network.

Zhang et al. [9] proposed to use U-Net to directly learn global

atmosphere light in the hazy image. We propose to identify

DHAs in the process of estimating the global atmosphere light

because intuitively this way we include more prior knowledge

on physical hazing mechanisms. Experiments show that our

method outperform mentioned existing methods.

Kim et al. [11] proposed the idea of establishing a global

atmosphere light candidate area through a quad-tree search

method and a scoring mechanism. However this method still

cannot overcome the noises by bright objects when the global

atmosphere light candidate area contains bright objects. Ac-

cording to the relationship between haze density and global

atmosphere light, Ju et al. [15] proposed an algorithm to

screen the candidate area of global atmosphere light through
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Fig. 1: The architecture of DHD-Net.

the physical properties of haze, which can avoid the influence

of bright objects and noises caused by them. This algorithm

relies on the accurate positioning of the DHA, for which they

applied Fuzzy c-means (FCM). However, FCM did not take

into account the spatial information of the image, therefore

it is very sensitive to noises and uneven gray distributions.

And FCM is randomly initialized, so the clustering results

could be biased. To overcome this problem, we propose to

use deep learning methods to segment and identify the DHA.

Experments show that our method is more robust in estimating

the global atmosphere light.

III. PROPOSED NETWORK

Our end-to-end dehazing network, DHD-Net, is depicted in

Fig. 1. The network mainly consists of 3 parts: 1) Trans-

mission map estimating using Pyramid Densely Connected

Neural Network; 2) Global atmosphere light estimation; and

3) Dehazing using the atmospheric scattering model.

A. Transmission map estimation based on Pyramid Densely

Connected Neural Network

This structure is a tightly connected encoder-decoder struc-

ture, and each layer consists of a number of dense blocks.

Because the deep features of the image need to be extracted

for estimating the transmission map, such a structure can

maximize the preservation of feature information in each layer.

In addition, this neural network uses a multi-level pyramid

pooling block so that the information in each layer can be

directly used to estimate the transmission map. In this way, the

final result has “global” feature information from objects of

different scales. The structure of Pyramid Densely Connected

Neural Network is depicted in the Fig. 2.

———
---- ——————

---- ———
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Fig. 2: The structure of Pyramid Densely Connected Neural

Network (adapted from Fig. 3 in [9]).

B. Global atmosphere light estimation based on our proposed

method

As mentioned earlier, haze density is important in the

estimation of the global atmosphere light. We propose a

new haze density estimation algorithm, DL-HDE, to segment

DHAs and further divide the global atmosphere light candidate

area according to the characteristics of the haze to estimate

the global atmosphere light. For the segmentation, we use the

U-shaped CNN, a.k.a. U-Net [21]. The haze information is

often closely related to the depth information in the image.

We use this information to generate DHA mask map, which

is a critical component in the training dataset. For the details

of generating DHA mask map, please refer to Section IV-A.

U-Net’s unique U-shaped symmetrical structure design inte-

grates low-dimensional and high-dimensional features in the

network, which makes the resolution of the output layer

consistent. In this way, a higher precise segmentation on hazy

image can be obtained.

The encoder structure of U-Net can down-sample the input

image, so as to obtain a series of features about the haze den-

sity, which are smaller in size than the original image. Down-



sampling can also increase the size of the receptive field for

obtaining global illumination information, which is important

for the estimation of the haze density. The decoder in U-Net is

used to guide the encoder to select relatively important feature

information, and restore the abstracted features to the size of

the original image, and finally get the segmented DHA of the

hazy image. The process of DL-HDE is shown in Fig. 3.
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Fig. 3: The process of global atmosphere light value estima-

tion.

The segmented DHA is used as the global atmosphere light

pre-selection area L0, and then the brightness image of the

hazy image is processed to divide the flat area and texture area

of the hazy image. According to the flatness characteristics of

the DHA, the candidate area L1 of the global atmosphere light

is further filtered out in L0. Finally, the maximum brightness

value in L1 is used as the global atmosphere light value. If

the segmented L1 is empty, i.e. there are no pixels in L1, the

average value of the first 30% of the larger brightness in L0

is used as the global atmosphere light value.

C. Dehazing

Our algorithm follows the physical hazing mechanisms

and uses the atmospheric scattering model for dehazing. The

mathematical expression of the atmospheric scattering model

is as follows:

I = J · t+ L∞(1− t) (1)

where I is observed hazy image, J is the expected haze-

free image, L∞ is the global atmosphere light and t is the

transmission map. This shows the key to dehazing is to

estimate the global atmosphere light L∞ and transmission map

t from the hazy image.

In order to achieve an end-to-end network, we embed the

global atmosphere light value A and the atmospheric scattering

model (1) into the model. The hazy image I is input to the

Pyramid Densely Connected Neural Network for training to

estimate the transmission map t. Similar to existing works,

we assume that the global atmosphere light with a hazy image

is uniform, i.e. the global atmosphere light value A is spread

out according to the size of the transmission map t. In this

way, every pixel in the global atmosphere light map L∞ is

the same, and its value is A. Finally, the transmission map t,

the global atmosphere light map L∞, and the hazy image I

are input into (1) to produce a haze-free image J .

D. Loss Functions

a) Loss for segmenting the DHA Using U-Net: For image

binary classification and segmentation, BCE loss is widely

used. But BCE loss performs poorly for imbalanced data,

which is the case for segmenting DHAs. Dice loss [22]

performs well for unbalanced data but it is unfavorable for

small objects [23] and the convergence could be unstable in

some cases [24]. Here we use an integrated BCE+Dice loss

function for DHA segmentation, formulated as:

LBCE+Dice = LBCE − log(1.− LDice)

= −g · log gpred − (1− g) log(1− g)

− log(1.− (1−

∑N

n=1 g · gpred + ǫ
∑N

n=1 g + gpred + ǫ

−

∑N

n=1(1− g)(1− gpred) + ǫ
∑N

n=1 2− g − gpred + ǫ
))

(2)

where g is the true DHA with hazy image, and gpred is the

DHA segmented by U-Net from the hazy image, N is the

number of channels of the image.

b) Loss for estimating transmission map using Pyramid

Densely Connected Neural Network: In DCPDN [9], an edge-

preserving loss function was proposed to train the Pyramid

Densely Connected Neural Network. The edge-preserving loss

function consists of 3 parts: L2 loss, two-directional gradient

loss, and feature edge loss. The feature edge loss is calculated

based on shallow features extracted from VGG-16.

In our network, we replace the L2 loss with the L1 loss

in the edge-preserving loss function. Although the L2 loss

converges faster and is more widely used in dehazing, some

researches [25] pointed out that the L1 loss is more robust to

outliers, has smaller gradient changes, and performs better in

terms of SSIM metrics. The formula for the loss function Lt

for estimating transmission map in DHD-Net is:

Lt = λl1Ll1 + λgLg + λfLf (3)

where Ll1 stands for the L1 loss, Lg stands for the two-

directional gradient loss, and Lf stands for the feature edge

loss. λl1 , λg and λf are weight coefficients.

c) Overall Loss: We train the our DHD-Net using the

overall loss function as follows:

L = Lt + LBCE+Dice + Ld (4)

where Lt and LBCE+Dice are the same as above. Ld, using L1
loss function, represents the dehazing loss, which calculates

the loss between the output and the ground-truth haze-free

images.



E. Training

Training of DHD-Net is divided into two steps. The first step

is to 1) segment the DHA in the hazy image, then 2) estimate

the global atmosphere light value. The second step is to 1)

estimate the transmission map by training the Pyramid Densely

Connected Neural Network model; 2) construct the global

atmosphere light map by spreading out the global atmosphere

light value according to the size of the transmission map; 3)

input the transmission map and the global atmosphere light

map into the atmospheric scattering model to produce the

haze-free image.

IV. EXPERIMENTS

We perform experiments on both synthetic and real-world

datasets to verify the effectiveness of our proposed DHD-Net.

We compare our DHD-Net with four state-of-the-art meth-

ods: DCP [1] (He CVPR’09), AOD-Net [8] (Li ICCV’17),

DCPDN [9] (Zhang CVPR’18), and GCANet [5] (Chen

WACV’19). We use SSIM and PSNR to evaluate the dehazing

performance.

A. Dataset and Configurations

a) Dataset: DCPDN [9] proposed a dehazing dataset

named TrainA, of which one data item consists of 4 parts:

1) Hazy image, 2) Haze-free image, 3) Transmission map,

and 4) Global atmosphere light map. The dataset TrainA

contains 3000 synthetic data items and 1000 real-world data

items randomly selected from the NYU-depth2 dataset. These

3000 items are synthesized based on (1), randomly selected

from global atmosphere light coefficients L∞ ranging from

0.5 to 1 and attenuation coefficient β ranging from 0.4 to 1.6.

Our dataset, named TrainD, is constructed based on

TrainA. For one data item, we keep the hazy image, haze-

free image, and the transmission map and discard the global

atmosphere light map 1. In addition, we generate a DHA mask

map corresponding to the hazy image. In summary, one data

item in our dataset TrainD consists of 1) Hazy image; 2)

Haze-free image; 3) Transmission map; and 4) DHA Mask

map.

In order to generate the DHA mask map, we obtain the

corresponding scene depth map d through the transmission

map according to the assumption that when the global atmo-

sphere light value is constant in a single image, the relationship

between the transmission map and the scene depth map can

be expressed as:

t = e−β×d (5)

where t is the transmission map, β is the attenuation coefficient

of the atmosphere and d is the scene depth map. Then we

estimate the quantification map of haze density D based on

a linear model defined by image-based brightness feature

1Recall that we construct the global atmosphere light map by spreading out
the global atmosphere light value according to the size of the transmission
map

distribution and texture feature distribution. The linear model

can be expressed as:

d ∝ D = QL − α ·QT (6)

where D is the quantification map of haze density, d represents

the scene depth map. QL is the brightness feature distribution

of the image and QT is the texture feature distribution of the

image. α is the weight coefficient, represents the degree of

influence of texture features on the haze density. In the model,

QL and QT can be expressed by the local brightness mean and

the “adjusted” local gradient mean, as shown in the following

formula:










QL(m) = 1
|ω| ·

∑

n∈ω(m)

LI(n)

QT (m) = 1
|ω| ·

∑

n∈ω(m)

|∇I(n)|
(7)

where ω(m) represents the neighborhood centered on the pixel

index m, |ω| is the number of pixels in the neighborhood, LI

and ∇I are the brightness map and gradient map of the hazy

image I , respectively.

Afterwards, we use the guided filter to perform edge-

preserving smoothing on quantification map of haze density

D. Finally, according to the prior knowledge [15] that the

larger the value in the quantification map of haze density

D, the denser the haze, we first divide the area with larger

quantization values in D, and further based on the scene depth

map d, continuously divide the areas with deep quantization

values as the DHA in the hazy image, and make the mask

map.

We establish a testset TestD with 400 real-world data items

selected from the NYU-depth2 dataset. We ensure that all test

data items are not in the training set TrainD. We use indexes

of SSIM and PSNR to evaluate the dehazing effect on TestD.

b) Configurations: In the process of training for DHA

segmentation, we adopt the SGD optimizer, adjust the learning

rate to 0.001, and set the batch size to 10. When training the

dehazing model, we set the parameters λl1 = 1, λg = 2, and

λf = 2 in the edge-preserving loss function to predict the

estimated transmission map, and using the Adam optimizer,

seting the batch size to 1. The training samples size is set

to 512 × 512. During the training of the dehazing model,

the global atmosphere light map with a size of 512 × 512
and a number of channels of 3, is input to the atmospheric

scattering model. We use the PyTorch framework to implement

our network and an RTX 2080Ti GPU to run our experiments.

B. Experiment on segmenting DHA in hazy images

We compare our DL-HDE algorithm with FCM and the Full

Connected Network (FCN)2 [26], using the Dice coefficient

as the evaluation index. The experiment results on TestD are

shown in Table I and the DHA mask maps output by the 3

algorithms are shown in Fig. 4 along with the hazy image and

the ground-truth mask map.

2A commonly-used DL network for image segmentation tasks.



TABLE I: Comparisons on DHA Segmentation

FCM FCN DL-HDE

Mask image ↑ 0.6693 0.7288 0.7902

In Table I, we can see that DL-HDE performs better than

FCM and FCN in terms of the Dice coefficient in segmenting

DHA for hazy images. In Fig. 4, we can see that the mask

maps segmented by DL-HDE is closer to the ground-truth,

and FCM and FCN cannot segment the DHA stably, there

are missing areas, which will have a negative impact on the

subsequent dehazing process.

(a) Hazy image (b) FCM (c) FCN

(d) DL-HDE (e) Ground-truth Mask Map

Fig. 4: The Results of DHA Mask Map Segmentation.

C. Comparisons on Dehazing

We compare our dehazing network, DHD-Net, with 4

state-of-the-art dehazing networks, namely DCP, AOD-Net,

DCPDN and GCANet. We use SSIM and PSNR as the

evaluation indexes.The SSIM and PSNR results on TestD

are shown in Table II.It can be seen that the SSIM and

PSNR results of DHD-Net is the highest, i.e. the dehazing

performance of DHD-Net on TestD is the best.

The haze-free images output by all compared methods are

shown in Fig. 5. There is almost no haze in the DCP’s

dehazed image, color aberration and distortion still occur in

the dehazed image; AOD-Net is not thorough in dehazing the

image with bright objects, and some details are lost. Although

the image after dehazing with DCPDN is restored to global

clarity, there are still small haze clusters in the dehazed image;

the overall dehazing effect of GCANet is good, but ghosting

and distortion still occur at the edges of the dehazed image,

and not very good for cases with dense haze areas. Our

DHD-Net preserves more detailed information while ensuring

that the dehazed image contains no distortion or chromatic

aberration. And the edge processing in DHD-Net is more

stable. In addition, we observe that DHD-Net is more robust

across different hazy images with different haze density levels.

V. CONCLUSION

In this paper, we proposed a new deep-learning-based end-

to-end dehazing network called DHD-Net, considering more

systematically the prior knowledge on hazing. We established

a new dataset and validated that our proposed DHD-Net has

better dehazing performance than state-of-the-art algorithms.

In future work, we will further explore different scenarios for

the atmospheric scattering model with different deep learning

facilities. In addition, we will apply our dehazing network in

more categories of hazy images.
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