

Edinburgh Research Explorer

DHTM: Durable Hardware Transactional Memory
Citation for published version:
Joshi, A, Nagarajan, V, Cintra, M & Viglas, S 2018, DHTM: Durable Hardware Transactional Memory. in
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA). Institute of
Electrical and Electronics Engineers (IEEE), Los Angeles, California, USA, pp. 452-465, The 45th
International Symposium on Computer Architecture, Los Angeles, California, United States, 2/06/18.
https://doi.org/10.1109/ISCA.2018.00045

Digital Object Identifier (DOI):
10.1109/ISCA.2018.00045

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Aug. 2022

https://doi.org/10.1109/ISCA.2018.00045
https://doi.org/10.1109/ISCA.2018.00045
https://www.research.ed.ac.uk/en/publications/722dcdbc-bb7c-4008-8af1-1ce443cc0d20

DHTM: Durable Hardware Transactional Memory

Arpit Joshi
University of Edinburgh

arpit.joshi@ed.ac.uk

Vijay Nagarajan
University of Edinburgh

vijay.nagarajan@ed.ac.uk

Marcelo Cintra
Intel, Germany

marcelo.cintra@intel.com

Stratis Viglas
Google

sviglas@google.com

Abstract—The emergence of byte-addressable persistent
(non-volatile) memory provides a low latency and high
bandwidth path to durability. However, programmers need
guarantees on what will remain in persistent memory in
the event of a system crash. A widely accepted model for
crash consistent programming is ACID transactions, in which
updates within a transaction are made visible as well as
durable in an atomic manner. However, existing software based
proposals suffer from significant performance overheads.

In this paper, we support both atomic visibility and dura-
bility in hardware. We propose DHTM (durable hardware
transactional memory) that leverages a commercial HTM to
provide atomic visibility and extends it with hardware support
for redo logging to provide atomic durability. Furthermore,
we leverage the same logging infrastructure to extend the
supported transaction size (from being L1-limited to LLC-
limited) with only minor changes to the coherence protocol.
Our evaluation shows that DHTM outperforms the state-of-
the-art by an average of 21% to 25% on TATP, TPC-C and a
set of microbenchmarks. We believe DHTM is the first complete
and practical hardware based solution for ACID transactions
that has the potential to significantly ease the burden of crash
consistent programming.

I. INTRODUCTION

The emergence of byte-addressable non-volatile memory
technologies [1], [2], [3], [4], also known as persistent
memory, is fast blurring the divide between memory and
storage. Being directly attached to the memory bus, per-
sistent memory provides a high-bandwidth and low-latency
alternative for durability. However, merely providing a fast
non-volatile medium will not suffice. Programmers need
guarantees about what will remain in persistent memory
upon a crash or a failure.

In a recent study, Marathe et al. [5] highlight the numerous
challenges in designing crash consistent programs and advo-
cate for systematic programming models such as transactions
that provide ACID guarantees (Atomicity, Consistency, Iso-
lation and Durability). ACID essentially implies that updates
within a transaction are made visible (to other transactions)
as well as durable (to a non-volatile medium), in an atomic
manner. While the database community has developed a
plethora of techniques to guarantee ACID efficiently, these
techniques have predominantly been developed with slow
block-based media in mind. When applied to in-memory
settings, such techniques tend to spend a significant amount
of time on concurrency control [6], [7], [8] and logging [6],

[9], [10]. This leads us to ask the question: How fast can we
enforce ACID in the presence of fast persistent memory?
Related Work. Recently, there have been multiple pro-
posals for providing ACID updates to persistent memory.
These proposals are classified in Table I based on how
they enforce atomic visibility and atomic durability. The
first class of designs [11], [12], [13], [14] support atomic
durability via software logging by employing flushing and
ordering instructions. Ensuring atomic durability in software,
however, comes at a significant performance cost [15], [16],
[17], [18], [19] which motivated the development of the
second class of designs that either employ hardware support
for atomic durability [15], [17], [20], [21], [22], [23] or
leverage hardware support for ordering to guarantee atomic
durability [16], [18], [24], [25]. However, both of these
classes enforce atomic visibility in software using software
transactional memory (STM) or locks.

Another approach to ACID is to leverage commercially
available Hardware Transactional Memory (HTM) to sup-
port atomic visibility, which is the focus of the remaining
classes of designs. However, current commercially available
HTM systems have two limitations. First, they efficiently
support only small transactions [26], [27], [28], [29], [30];
if a cache line written within a transaction is evicted from
the L1 cache, the transaction must abort. The severity of
the problem has been highlighted by a recent study which
finds that transactions whose write-set size is larger than
128 cache lines (quarter of the L1 size) are highly likely to
abort [31]. This L1 limitation can significantly limit usability
and efficiency for ACID transactions, which tend to have
relatively large write working-set sizes (Section V). Second,
HTM systems only provide ACI guarantees, i.e., atomic
visibility but not atomic durability. To guarantee ACID, the
third class of designs [13], [32], [33] leverages the HTM
for atomic visibility and integrates it with software support
for atomic durability. The latter requires the writing of a
log entry for every modified object within the transaction,
thereby increasing the transaction’s write set (and the abort
rate). The fourth class supports ACID by integrating HTM
with hardware support for durability. However, PTM [34]
(the only proposal in this class) not only introduces signif-
icant changes to the cache hierarchy, but also continues to
suffer from the L1 limitation.
Our Approach. Our primary goal is to design an HTM that

Designs Atomic Visibility Atomic Durability Trans. Size LLC Extensions
Atlas [11], REWIND [12], DudeTM [13],
Mnemosyne [14]

Locks or STM Software Not limited None

WrAP [15], DPO [16]*, LOC [17], HOPS [18]*,
ATOM [20], [21], [22], Kiln [23], NVHeaps [24]*,
DCT [25]*, [35]

Locks or STM Hardware Not limited [15], [17], [21], [23], [24], [35]

DudeTM [13], PHyTM [32], cc-HTM [33], [36] HTM Software L1 limited None
PTM [34] HTM Hardware L1 limited Yes
DHTM HTM Hardware LLC Limited None

Table I: Classification of techniques supporting ACID updates on persistent memory. (* Leverage hardware support for
ordering to provide atomic durability.)

can support ACID transactions efficiently. A secondary goal
is to extend the supported transaction size by supporting
overflows from the L1 cache to the last level cache (LLC)
without adding significant complexity to the coherence pro-
tocol or the LLC.

One way of achieving these goals is to leverage existing
unbounded HTM designs [37], [38], [39] that rely on logging
to support overflows and make those logs durable [20].
However, such an approach, where durability is treated as
a secondary consideration, will have poor performance as
persisting the log and/or the data will be in the critical path.

We advocate an alternative approach in which durability is
a first class design constraint. We propose Durable Hardware
Transactional Memory (DHTM) in which we integrate a
commercial HTM like RTM [28] with hardware support for
redo logging. DHTM achieves atomic visibility by leverag-
ing RTM. Whereas for achieving durability, DHTM provides
architectural support for transparently and efficiently writing
redo log entries to a durable transaction log maintained
in persistent memory; the key efficiency enabler here is
our novel mechanism for collating and flushing log entries
without consuming excessive memory bandwidth. The redo
log based design allows us to commit a transaction as soon
as all the log entries have been written to persistent memory,
without waiting for data to be made durable. DHTM then
extends the supported transaction size, by leveraging the
same logging infrastructure for also supporting L1 over-
flows. When the write set of a transaction overflows from
the L1 cache, DHTM logs the address of the overflowed
cache line and leverages the log to commit (or abort) the
transaction. DHTM supports this with minor changes to
the coherence protocol and without adding any additional
transaction tracking hardware to the LLC. In summary, our
key contributions are:
• We propose DHTM, the first complete hardware solu-

tion for an ACID compliant transactional memory system
which is not bound by the size of the L1 cache.

• We enforce ACID efficiently by leveraging RTM [28]
for atomic visibility and by providing atomic durability
via hardware support for redo logging. We also propose
a mechanism for coalescing log entries to reduce the
required memory bandwidth.

• We extend the supported transaction size by allowing for
the transaction’s write set to overflow from the L1 to the
LLC by leveraging the same logging infrastructure for
handling these overflows. We accomplish this with only
minor changes to coherence protocol.

• Our evaluation shows that DHTM outperforms the state-
of-the-art [20] by 21% to 25% on average across TATP,
TPC-C and a set of micro-benchmarks.

II. BACKGROUND

A. Hardware Transactional Memory

From idea inception [40] to mainstream commercial adop-
tion, HTMs have come a long way. Although prior work has
explored unbounded transactions, current commercial HTMs
predominantly provide only a best effort service, with trans-
action sizes being limited by the size and associativity of the
L1 cache. Below, we briefly describe an HTM system which
is similar to state-of-the-art commercial HTM designs [26],
[27], [29] and is specifically modelled on Intel’s Restricted
Transactional Memory (RTM) [28] design. Later we briefly
discuss designs that support overflow from private caches.
For a broader perspective, the reader is referred to Harris et
al.’s book [41].
Commercial HTMs. HTMs primarily provide support for
three functionalities: buffering the speculative state, tracking
read and write sets and detecting conflicts. Commercial
HTMs typically buffer speculative state in private caches
(typically L1). Each L1 cache line is associated with a write
bit to keep track of the write set of a transaction. If a cache
line belonging to the write set of a transaction is evicted
from the L1, the transaction is aborted. Thus, the supported
write-set size is limited by the size and the associativity of
the L1 cache. Commercial HTMs avoid supporting overflows
from the private L1 caches to reduce the design complexity,
and in particular that of the LLC.

Similar to the write bit, a read bit is also associated with
each cache line in the L1 cache. This bit is set when the
corresponding cache line is read within a transaction. When
such a cache line is evicted, the transaction is typically not
aborted, but the address of the cache line is added to a read-
set overflow signature (also maintained in the L1 cache).

Thus, the read set of a transaction is tracked using both the
read bits in the L1 cache and the read-set overflow signature.

Conflict detection happens at the L1 cache, with help from
the cache coherence substrate. Specifically, when the L1
receives an invalidate request for a cache line in the read
set, or an invalidate/data forwarding request for a cache line
in the write set, a conflict is detected, triggering an abort
of one of the transactions. What transaction must abort is
determined by the conflict resolution policy. Two of the
commonly used policies are the requester wins policy [28]
and the (first) writer wins policy [29].
Overflow Support. Multiple techniques [37], [38], [39] have
been proposed to support write set overflows from private
caches. Techniques with lazy version management [38], [39]
allow the write set to overflow into a redo log. On a com-
mit, these values need to be copied in-place. Consequently,
these techniques stall any transaction that conflicts with a
committed transaction that is still copying its updates in-
place. Techniques with eager version management, such as
LogTM [37], allow the write set to overflow in-place in
memory but maintain an undo log that is applied in case
of an abort. Therefore, they have to stall transactions that
conflict with an aborting transaction that is applying its undo
log. Stalling adds significant design complexity as it requires
support for retrying requests using a NACK based coherence
protocol. Our goal with DHTM is to support overflows from
the L1 cache to the LLC while maintaining the simplicity
of an RTM like protocol (§III-C).

DHTM performs data updates in the cache and eager
conflict detection in the same way as RTM. However, it
additionally maintains a redo log in memory for atomic
durability and also supports write set overflows to the LLC
with minor modifications to the coherence protocol.

B. Crash Consistency

Storage systems [42] and more recently systems with
persistent memory [12], [14], [24] have employed write-
ahead logging to provide crash consistency. Write-ahead
logging operates on the principle that the log entries be
made persistent before data values can persist. Software
implementations rely on instructions such as non-temporal
store, cache-line write-back, sfence and pcommit to ensure
the required ordering, but suffer from a significant perfor-
mance overhead in the process [15], [16], [17], [18], [19].
To mitigate this overhead, prior work has proposed hard-
ware support for accelerating ordering [15], [16], [18], [25],
[35] and techniques for transparently performing logging in
hardware [17], [20], [21]. With the former, programmers
still need to insert appropriate barriers between log writes
and data writes. In contrast, with hardware logging, the pro-
grammer is relieved from the burden of writing log entries.
Instead, an interface is provided to demarcate the region of
code that needs to execute in a crash consistent manner. The

Begin_Transaction
Read (X)
Write (X)
Write (Y)

End_Transaction

Begin_Transaction
Read (X)
Write (Log X)
Write (X)
Write (Log Y)
Write (Y)

End_Transaction

Read Set = {X}
Write Set = {X, Y}

Read Set = {X}
Write Set = {Log X, X, Log Y, Y}

(a) (b)

Figure 1: Working set sizes for transactions (a) without
including durability log and (b) with durability log.

hardware ensures that log entries are transparently written
to persistent memory in the correct order.

III. DHTM DESIGN

In this section we present the design of our durable
HTM (DHTM), that adds support for durability on top of
a commercial RTM-like HTM design.
System Model. For the following discussion, we assume
a multicore processor with a two level cache hierarchy
consisting of private L1 caches and a shared last level cache
(LLC). The private L1s are kept coherent using a MESI
directory based coherence protocol with forwarding (similar
to the one in section 8.2 in [43]). We assume the directory
is held in the LLC with each cache line maintaining the
coherence state and sharing vector. We assume a baseline
HTM similar to Intel’s RTM. We assume that the HTM
supports strong isolation. Finally, we assume that memory is
non-volatile and byte addressable. It is worth noting that the
above model is mainly to help anchor our description and
as such, none of these choices are fundamental to DHTM.
Overview. At a conceptual level, adding durability to an
HTM requires some form of logging. Figure 1a shows a
volatile transaction at the top and the corresponding read
and write sets at the bottom. The transaction reads X (read
set) and writes to X and Y (write set). One way for this
transaction to be made durable is by executing the code
sequence shown on the top in Figure 1b, which additionally
writes log entries for the data being modified. The resultant
read set of the persistent transaction remains the same, but
the write set consists of Log X , X , Log Y and Y . Thus,
adding support for durability essentially doubles the write-
set size of transactions. This is a challenge on current RTM-
like HTM designs which already limit the write-set size. To
compound matters, applications that demand ACID tend to
have relatively large transaction sizes. Therefore, one of our
goals is to support transactions with a larger write-set size
relative to those supported by current commercial HTMs.
But in the quest for larger transactions, we do not want to
introduce significant hardware complexity; in particular, we
do not want to introduce changes to the shared LLC like

adding transaction tracking hardware or searching the LLC
for cache lines belonging to the write set – something that
current HTM designs avoid.

Our approach is to integrate hardware based redo log-
ging to an RTM-like HTM. For atomic visibility, DHTM
leverages the RTM-like HTM and for atomic durability,
it employs hardware redo logging. Since logging is per-
formed transparently, DHTM’s programming interface is
similar to that of volatile transactions (Figure 1a). DHTM’s
redo logging mechanism leverages the L1 cache write-back
interface to dynamically write redo log entries to persistent
memory for cache lines being modified within a transaction.
Furthermore, DHTM allows dirty cache lines to overflow
from the L1 cache into the LLC without causing an abort.
This increases the transaction size with minor changes to
the coherence protocol and without adding significant de-
sign complexity (in particular, without adding transaction
tracking hardware to the LLC). Below, we first describe
DHTM’s hardware logging mechanism. Then, we describe
how logging integrates with the HTM, followed by the
description on how DHTM manages overflow.

A. Logging for Durability

We ensure atomic durability using write-ahead logging.
The idea is to maintain a persistent copy of the old and
new versions at all times during the transaction, so that
the state can be recovered to either of the versions. This
persistent copy is maintained in the form of log entries which
consist of the address and the old or new version of data.
In this section we provide a design for a redo-log based
implementation to work in conjunction with HTM.
Why Redo Logging? We choose a redo-log based design
as it allows us to have both fast commits as well as fast
aborts. In volatile transactions, undo logging supports faster
commits because, on transaction completion all the in-place
updates would have already taken place (in the cache);
commit therefore only requires two simple steps: discarding
the undo log and flash-clearing the speculative write bits
to make the write set visible to other threads. Durable
transactions, however, impose additional constraints. Both
the undo log and the write set (data) have to be written
to persistent memory – only then, can the transaction be
committed. While techniques have been proposed for mini-
mizing the fine grained ordering overheads while writing log
entries [20], flushing the write set can significantly increase
commit time.

Redo logging, in contrast, requires only the redo log to
be written to persistent memory at commit time. This is
because the redo log, in addition to serving as a recovery
log in case of a failure, can also provide the up-to-date
values on commit. This allows for the data updates to be
written to persistent memory in the background, and out of
the commit critical path. One traditional drawback of redo
logging is that, because writes are not allowed to overwrite

previous values, subsequent reads to those addresses need
to be redirected to the redo log. Our proposed hardware
based redo-logging mechanism overcomes this limitation by
allowing writes to overwrite previous values in the cache. A
subsequent read can therefore directly read the updated value
from the cache. It is worth noting, however, that the writes
do not overwrite the old values in memory but are written to
a separate log area. Lastly, aborts are also faster with redo
logging and only require two simple steps: discarding the
redo log and invalidating the modified lines in the cache.
Log management. In the DHTM design, the transaction
log space is thread private and is allocated by the operating
system (OS) when the thread is spawned. The OS keeps
track of all the logs it has allocated so that it can recover
transactions from logs in case of a system crash. This per
thread transaction log is organized as a circular log buffer
similar to Mnemosyne [14]. On a log overflow, DHTM
aborts the transaction with an indication that the abort is
because of log overflow. The OS in this case allocates a
larger log space for the thread and the transaction is retried.
Hardware Support. One of the design goals of DHTM is to
write log entries to the transaction log in persistent memory
without adding them to the write set. To this end, logging
is performed in hardware in DHTM, allowing DHTM to
differentiate between log writes and data writes. The L1
cache controller is modified to enable it to write log entries
to persistent memory by bypassing the LLC as shown in the
Figure 2a. The L1 cache controller creates these log entries
on the fly at a word granularity for every store within a
transaction. Figure 2b shows the log writes that the L1 cache
controller performs.
Log coalescing. Writing a word-granular redo-log entry
for every store can generate a large number of log entries
which can consume significant amounts of memory write
bandwidth. Figure 2b highlights this with an example. Let
us assume that each cache line consists of two words (all
words belonging to cache lines A and B are initially 0);
the subscript for each cache line refers to the word in the
cache line that is being modified. Performing word-granular
logging generates 5 log writes across the memory bus for
5 store requests to different words in cache lines A and B.
The bandwidth consumed can be mitigated to some extent
by coalescing multiple log entries into one cache line before
writing them to memory. Nonetheless, creating a log entry
for every store request is problematic. Recall that each log
entry is composed of the data and the address (metadata).
The finer the granularity of logging, the greater the amount
of metadata, which in turn translates into higher bandwidth
consumption. Second, logging for every store request might
miss opportunities for coalescing multiple stores to the same
word via a single log entry. For example, in Figure 2b the
word A0 gets written to twice which leads to the creation
of 2 log entries, however only the second log entry would
have sufficed.

L1 $ L1 $

LLC

Persistent Memory Log

Log Writes

(a) Log Write Path

Memory Bus

L1 $

Log Area

Begin A₀ = 1 A₁ = 2 A₀ = 3 B₀ = 1 B₁ = 2 End

A₀ : 1 A₁ : 2 A₀ : 3 B₀ : 1 B₁ : 2

(b) Hardware redo log at word granularity. Each redo-log entry consists of
(address, new value) pair.

Log Area

Memory Bus

L1 $

Log Buffer

Begin A₀ = 1 A₁ = 2 A₀ = 3 B₀ = 1 B₁ = 2 End

A:32 B:12

A:10 A:12 A:32 B:10 B:12

(c) Hardware redo log at cache line granularity using a log buffer.

Figure 2: Redo logging in hardware.

An alternative is to perform logging at cache line granular-
ity. But naively creating a log entry for every store request
will only worsen the memory bandwidth consumption. At
the same time, the final state of a cache line (at the end of a
transaction) must be logged for correctness. If we can predict
the final store to a cache line, that would be an opportune
moment to log that cache line, since that would minimize the
number of entries logged for that cache line. It is important
to note that the prediction must be conservative, in that, it
must not miss the last store under any circumstance.

We conservatively predict the final store to a cache line
via a simple structure called log buffer that is added to the
L1 cache. The log buffer is a fully associative structure with
a small number of entries that keeps track of cache lines with
their cache line addresses. When a store is performed, the
corresponding cache line address is added to the log buffer
(if not already present). A log entry is written to persistent
memory only when an entry is evicted from the log buffer.
An entry is evicted from the log buffer under two situations:
(a) when the log buffer is full, an eviction has to happen in
order to make space for a new cache line address; (b) when

an L1 cache line is replaced and the log buffer holds the
corresponding address, the address is evicted from the log
buffer. Thus, we use eviction from the log buffer as a proxy
for predicting the last store to a cache line; in practice, this
simple policy works well because write reuse distance (when
there is reuse) is typically low for transactional workloads.
When an entry is evicted from the log buffer, the redo-log
entry for that cache line is created as usual by composing
the address with the contents of that cache line from the
L1 cache. Then, the redo-log entry is written to persistent
memory – in doing so, the stores to one cache line are
temporally coalesced, such that all these coalesced stores get
only one log write. Finally, at the end of the transaction, all
of the cache lines being tracked in the log buffer are logged
to persistent memory. It is important to note that this log
buffer is different from the log buffer used in LogTM [37].
LogTM uses a buffer to reduce the contention for the L1
cache port and to hide L1 cache miss latency whereas the
buffer in DHTM is to coalesce log writes to the same cache
line and to predict the last write to a cache line.

Figure 2c shows the previous example in the presence of
a single entry log buffer. Initially the buffer holds cache line
A while it is being modified. When cache line B has to be
modified, the updated value of cache line A is written to the
log area and the buffer now holds cache line B. Eventually
when the transaction ends, a redo log entry for B is also
written to the log area. In this example, 5 store requests
require only 2 log writes over the memory bus.

B. Integrating Logging with HTM

In this section, we will describe how to integrate our
logging mechanism with an RTM-like HTM. This section
will assume that the transaction will abort on a write-set
overflow from the L1; we will handle write-set overflows in
the next section.
Overview. Committing a volatile transaction requires that
the read-/write-set tracking structures be cleared and that the
speculative state be made visible to other threads. In addition
to the above steps, in order to commit a durable transaction
(with redo logging), the redo-log entries must be written to
persistent memory. Recall that the data updates (write set)
can be written to persistent memory lazily and out of the
commit critical path. Conflict detection works identically
to a volatile transaction. Non-transactional accesses also
safely integrate with DHTM, similar to RTM, by aborting
an ongoing transaction if it conflicts with a non-transactional
access. Aborts also are largely identical, with an added step
of (logically) clearing the redo log for the transaction. Thus,
a durable transaction can be expressed in the form of a state
diagram as shown in Figure 3a, with the following states:
Active, Commit, Commit Complete and Abort Complete.
Below, we discuss these in more detail.
Commit. Upon reaching the end of the transaction, and
having written all redo-log entries to persistent memory, the

End Transaction
&

Log Records
Persisted

Begin
Transaction

In-place Data
Persisted

Conflict

Active Commit

Abort
Complete

Commit
Complete

(a) States of a transaction (without overflows).

End Transaction
&

Log Records
Persisted

Begin
Transaction

In-place Data
Persisted

Conflict

Active Commit

Abort Abort
Complete

Overflowed
Cache Lines
Invalidated

Commit
Complete

(b) States of a transaction (with overflows).

Figure 3: Transaction States. A core can start executing sub-
sequent non-transactional instructions after reaching Com-
mit/Abort and can start a new transaction after reaching
Commit Complete/Abort Complete.

transaction effectively commits. To mark that the transaction
has committed, DHTM writes a commit log record to the
log area. The L1 cache controller then starts writing back
the cache lines belonging to the write set of the committed
transaction via the cache write-back interface. DHTM does
not flash clear the write bit associated with cache lines on
a commit, instead it clears those bits once a write-back is
issued for the corresponding cache line. After writing back
all the modified cache lines to persistent memory, DHTM
marks the transaction as completed by writing a complete log
record to the log area. Writing a complete log record is not
a correctness requirement but reduces recovery time on a
failure (as we shall see in the section on recovery). Once
a transaction has committed, DHTM can start executing
non-transactional code following the transaction. But since
DHTM has only one set of write bits per cache line, it
cannot start executing a new transaction until the previous
transaction has completed. This is because, in order to
complete a transaction, DHTM relies on these write bits
to identify the modified cache lines that need to be written
back to persistent memory.

In the DHTM design, there is a window between the
commit point of a transaction and its completion point
(when the cache lines modified in the transaction are being
written back to persistent memory and are being marked as
non-speculative) during which a conflict might be detected

incorrectly. For example, consider that a transaction TA tries
to modify a cache line X . But X has already been modified
by a committed but not yet complete transaction TB , and has
not yet been marked as non-speculative. In such a scenario
a conflict will be detected incorrectly. DHTM sidesteps this
problem by also consulting the state of the transaction during
conflict detection; as the transaction status of TB indicates
that it has committed, DHTM does not raise a conflict in this
situation. Additionally, DHTM inserts a sentinel log entry
in the transaction log of both TA and TB indicating that
transaction TA is dependent on the updates of transaction
TB . This sentinel log entry enables the recovery manager
to decide the correct order of replay for transactions with
conflicting updates.
Abort. Aborting a volatile transaction requires that the read-
/write-set tracking structures be cleared and that the spec-
ulative state be invalidated. To abort a durable transaction,
in addition to the above steps, the log entries need to be
cleared. DHTM logically clears the log entries by writing
an abort log record, effectively marking the log entries as
being part of an aborted transaction.
Recovery. At the time of failure, a durable transaction can
be in one of the following states: Active, Commit, Commit
Complete, or Abort Complete. The recovery manager does
not have to do anything for transactions in Active or Abort
Complete state as none of the updates of the transactions
would have been written back in-place in persistent memory.
In other words, persistent memory has the pre-transaction
state for those transactions. For committed but not completed
transactions (transactions in Commit state), the recovery
manager reads the log entries and writes the updated values
in-place in persistent memory, thus recovering the updates
of the transaction. Finally, for completed transactions (in
Commit Complete state) the recovery manager does not have
to do anything, since all of their updates would have already
been written back in-place in persistent memory. In the
absence of a complete log record, the recovery manager
would have had to copy all the updates from the log area to
in-place in persistent memory. Thus the writing a complete
log record helps reduce the recovery time.

The replay order of committed but not complete transac-
tions does not matter as long as they do not have conflicting
updates. For transactions with conflicting updates, the re-
covery manager infers the required replay order by looking
at the sentinel log entries in the relevant transaction logs.

The recovery manager is implemented as an operating
system service which is invoked upon system re-start. As
described earlier, the OS keeps track of all the logs it has
allocated which it also registers with the recovery manager
on creation and de-registers when the the log is deallocated.
When the recovery manager is invoked, it scans all the regis-
tered logs and restores all the committed but not completed
transactions.

C. Handling Overflow

The design described above continues to suffer from the
transaction size limitation that is typical of an RTM design.
We now describe an extension that allows the write set of
a transaction to overflow the L1 cache without aborting
the transaction. Consistent with current commercial HTM
designs, our proposed extension also does not require ex-
pensive operations at the LLC (e.g. searching for cache
lines belonging to a transaction), making it amenable to
commercial adoption. We first summarize the challenges
in supporting overflow efficiently and then describe our
approach.
Challenges. Commercial HTM designs like RTM allow the
read set to overflow the L1 cache. Conflicts are detected
with the help of the overflow signature maintained in the
L1 cache, which tracks the addresses of cache lines that
have overflowed. On a transaction commit or an abort, the
overflow signature is cleared; importantly, nothing needs to
be updated in the LLC. In contrast, RTM-like designs do
not support write-set overflows from the L1 cache. This
is because, aborting a transaction requires that the HTM
invalidate all the cache lines belonging to the write set.
Whereas this can be done in private L1 caches by flash
invalidating the cache lines, doing this for a shared structure
as large as the LLC is expensive and involves non-trivial
changes (indexing and searching operations). With durable
transactions, a commit would also require a similar operation
at the LLC: all the cache lines that have overflowed must
be identified and written back to persistent memory.
Overview. Our DHTM design allows for the write set to
overflow from the L1, with minor changes to the coherence
protocol and without requiring any structural changes to the
LLC. Our key idea is to leverage the redo log (which holds
the speculative state of the transaction) for handling write-
set overflows, thus obviating the need for expensive changes
to the shared LLC.

DHTM handles write-set overflow by allowing for cache
lines belonging to the write set to be replaced from the
L1 cache to the LLC; in order to enable conflict detection
the coherence state of the cache line in the LLC is kept
unchanged, however. This ensures that the LLC continues to
show the cache line as being owned by the core executing the
transaction. Therefore, any coherence message will continue
to be forwarded to the owner’s L1, wherein a potential
conflict can be detected. It is worth noting that our idea of
using stale coherence state for conflict detection is similar
to the sticky state solution used in LogTM [37]. Therefore,
the resulting coherence protocol extensions in DHTM are
similar to the sticky state extensions of LogTM.

While maintaining stale state in the LLC helps in conflict
detection, we also need a mechanism to identify all the cache
lines that have overflowed from the L1 cache to the LLC for
versioning. To this end, DHTM maintains an overflow list

along with the redo log in memory. When a dirty cache line
overflows from the L1 cache to the LLC, DHTM writes the
address of the overflowed cache line to the overflow list.
On a commit or an abort, DHTM uses the overflow list
to identify cache lines belonging to the write set that have
overflowed, and writes them back to persistent memory (in
case of a commit), or invalidates the corresponding LLC
cache line (in case of an abort).

The recovery procedure remains the same with overflows,
since the cache lines belonging to the write set that over-
flowed the L1 cache are already present in the redo log.
In summary, a durable transaction with write-set overflows
can be expressed in the form of a state diagram as shown in
Figure 3b with the following states: Active, Commit, Commit
Complete, Abort and Abort Complete. One key difference
with overflows is that like commits, aborts now require a
completion phase. Below, we discuss this in more detail.
Commit. After writing the commit log record to the log area
and issuing write-backs for all the cache lines belonging to
the write set in the L1 cache, DHTM reads the overflow
list corresponding to the committing transaction (recall that
the overflow list contains addresses of all the dirty cache
lines that have overflowed from the L1 cache). It then sends
write-back messages for those cache lines to the LLC. On
receiving a write-back request, the LLC writes back the
relevant cache line in-place in persistent memory and also
transitions the cache line to a clean state and clears its sharer
vector. After writing back all the cache lines in-place in
persistent memory, DHTM writes a complete log record to
the transaction log and then transitions the transaction status
to Commit Complete. This completion operation ensures that
the LLC correctly reflects the status of overflowed write-set
cache lines belonging to the transaction and eliminates any
need for LLC modifications to clear such state.
Conflict Detection. Recall that conflicts are detected at
the L1 controller, by checking coherence requests against
the read/write bits associated with cache lines or the read
overflow signature. In order to enable conflict detection in
the presence of write-set overflows, we need to ensure that
coherence requests for the overflowing cache lines continue
to reach the L1 cache. To this end, when a dirty block
overflows from the L1, the coherence state of the LLC is
kept unchanged. Specifically, when an L1 cache receives a
Fwd-GetM request or a Fwd-GetS request for a cache line
that is not present in the cache, DHTM infers that the request
corresponds to a cache line that has overflowed from the L1.
Therefore, a conflict is detected and one of the transactions
is aborted based on the conflict resolution policy.
Abort. To abort a transaction, DHTM first invalidates the
cache lines belonging to the write set in L1 as described in
Section III-B. But additionally, the cache lines in the LLC
that overflowed from the L1 will also need to be invalidated.
Therefore, in the presence of overflows, abort also has a
completion phase as shown in Figure 3b.

In the completion phase, DHTM reads the cache line
addresses from the overflow list in the transaction log and
issues invalidate requests for those cache lines to the LLC.
The LLC invalidates the cache lines on receiving an inval-
idate message. Similar to the completion phase of commit
(Section III-B), the completion phase for abort can continue
in parallel with the execution of other non-transactional
instructions, but a subsequent transaction cannot begin until
this phase completes. However, differently from a commit,
DHTM does not (need to) write an abort complete log record
for an aborted transaction as the state that needs to be
invalidated is in volatile caches and will anyway be lost
on a system crash.

One corner case concerns cache lines that have been
reread back into the L1 during the transaction, after over-
flowing from the L1 to the LLC. When such a transaction
aborts, these reread cache lines must be identified as belong-
ing to the write set and invalidated by the L1. Such reread
cache lines are correctly identified by DHTM as follows. On
an LLC read, DHTM will look at the state of the cache line
and the sharer vector; if the cache line is dirty and its state
is in modified state with the requester marked as its owner,
DHTM will identify the cache line as belonging to the write
set and will set the write bit in the L1. This ensures that such
reread cache lines are invalidated on an abort.

It is worth noting that, as opposed to existing proposals
for supporting overflow (such as LogTM) DHTM does not
stall requests from other transactions. Consider the case
where transaction TA has modified cache line X which then
overflowed to the LLC. TA is subsequently aborted because
of a conflict. While TA is in the process of aborting, another
transaction TB issues a read for cache line X . Because
of the eager version management of LogTM, the read for
X cannot be completed until X has been reverted to a
non-speculative state from the undo log. Therefore, LogTM
would NACK the read request for X while waiting for the
abort process of TA to end and TB will have to subsequently
re-issue the read. This adds significant complexity to the
coherence protocol. DHTM on the other hand has non-
speculative data in memory because it maintains a redo log
for atomic durability. Therefore, it can immediately complete
the read for X by fetching it from memory. In summary,
DHTM maintains the simplicity of an RTM like design while
allowing for overflows from the L1 to the LLC.

IV. PUTTING IT TOGETHER

In this section we first explain through detailed examples,
the life cycle of a transaction. We also quantify the overall
hardware overhead and finally describe a software fallback
mechanism for transactions that do not fit in DHTM.
Transaction Lifecycle. Figure 4 shows the life cycle of a
transaction for both commits (e and f) and aborts (g and h).
For this example, let us assume a dual-core processor. Each
figure shows three views: (i) L1 view from the perspective

of core 1, showing L1 cache lines with their read/write bits,
a single entry log buffer, the read overflow signature and
transaction status register; (ii) LLC view, showing for each
cache line, its coherence state, sharer vector and dirty bit;
and (iii) Persistent memory view, showing the overflow list,
log area and in-place values of cache lines in memory.
(a) Initial state. The transaction is in Active state and
has already modified cache line A with a value of 15 and
has already read cache line B. No transactional data has
overflowed from the L1. The LLC has cache lines A and B
owned by the core 1 in modified state.
(b) Write B. The transaction modifies the value of cache line
B to 25. Therefore, DHTM sets the write bit for cache line
B. Also, cache line A needs to be evicted from log buffer
(to make space for cache line B), so its updated value of 15
is written to the redo log area.
(c) Read C. The transaction reads cache line C, because
of which cache line A gets replaced from the L1 cache.
Therefore, cache line A is written back to the LLC and its
dirty bit is set, but the coherence state of cache line A is
not changed. Also, the address of cache line A is written to
the overflow list in memory. Cache line C is present in the
LLC in shared state, its sharer vector is updated to add core
1 as a sharer and the cache line is brought to the L1 with
its read-bit set.
(d) Write E. The transaction writes 55 to cache line E. This
leads to cache line C being replaced from the L1. Before
being replaced, the address of cache line C is added to the
read overflow signature (but because of inherent imprecision,
let us assume that the signature conservatively shows both
C and D as its members). Since cache line E is not present
in the cache hierarchy, it is brought to the LLC in modified
state with the sharer vector showing core 1 as the owner. The
cache line is also added to the L1 cache where it is updated
and its write bit is set. Since cache line E also needs to be
added to the log buffer, cache line B is removed from the
buffer and its updated value is written to the transaction log.
(e) Commit. When the transaction commits, cache line E
is written from the L1 to the transaction log and a commit
log record is also written to the log. Simultaneously, the read
bits and the read overflow signature in the L1 are cleared and
the transaction state is updated to Commit. The transaction
commits at this point and core 1 may continue executing
non-transactional instructions.
(f) Commit Complete. In the commit completion stage, the
L1 writes back cache lines B and E to the LLC and clears
their respective write bits. On receiving the write-backs, the
LLC updates them and also writes them back to persistent
memory. Then the memory controller reads the overflow
list and issues a write-back request to the LLC for cache
line A. The LLC on receiving the request, clears the sharer
vector and dirty bit for cache line A and writes it back in-
place in persistent memory. Finally, a complete log record
is written to the log area, the overflow list is cleared and

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Initial state of the transaction. The figure shows cache lines with read/write bits in the L1 cache along with the log buffer, the read overflow
signature and the transaction state (Active). In the LLC it shows cache lines with their state and sharer vector. Finally, in persistent memory it shows
the write overflow list, the transaction log and in-place values for various cache lines. The read set of the transaction consists of cache line B and
the write set consists of cache line A which is also being tracked in the log buffer.

Write B. The transaction modifies the value of cache line B to 25. Therefore, DHTM sets the write bit for cache line B. Cache line B is added to the
log buffer by evicting cache line A, for which a log entry consisting of its updated value (15) is written to the redo log area.

Read C. The transaction reads cache line C which is present in a shared state in the LLC. Its sharer vector is updated to add core 1 as a sharer.
The cache line is added to the L1 cache with its read bit set. Moreover, cache line A is evicted from the L1 cache and is updated in the LLC where
its dirty bit is set but its coherence state is not updated. Also, the address of cache line A is written to the overflow list in memory.

Write E. Transaction writes 55 to cache line E which is brought from memory and added to LLC in an exclusive state and is also added to the L1
cache with the write bit set. Moreover, it is also added to the log buffer in L1 by evicting B for which a log entry consisting of its updated value (25) is
written to the transaction log. Also, since C is replaced from the L1 cache its address is added to the read overflow signature, but because of its
inherent imprecision let us assume that it shows both C and D as its members.

Commit. When the transaction commits, a log entry for cache line E, tracked in the log buffer, is written to the transaction log followed by a commit
record. Simultaneously, the read bits in the L1 cache and the read overflow signature are cleared and the transaction status is changed to Commit.

Commit complete. After commit, the L1 cache updates the value of cache line B and E in the LLC and persistent memory and clears their write
bits. Then, the memory controller reads the write overflow list and issues a write back request to the LLC for cache line A. The LLC clears the sharer
vector and dirty bit of cache line A and writes it back in-place in persistent memory. Finally, DTM writes a complete log record to the transaction log,
the overflow area is cleared and the transaction status is updated to Commit Complete.

Abort. If instead the transaction is aborted after step (d), the read bits, the read overflow signature and the log buffer in L1 are cleared. An abort log
record is written to the transaction log and the transaction status is changed to Abort.

Abort complete. L1 invalidates cache lines B and E and sends an invalidate message for them to the LLC. The LLC then clears the sharer vector
for those cache lines. Subsequently the memory controller reads the write overflow list and sends invalidate message for cache line A to the LLC.
The LLC then invalidates cache line A and clears its sharer vector and dirty bit. Finally, the transaction status is changed to Abort Complete.

(a)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

Transaction
Log

Write Overflow
List

LLC

A = 10
B = 20
C = 30

Cache Line

M
M
S

State

1
1

1

Sharer
Vector

Dirty
Bit

L1 Cache

A = 15 1
B = 20 1

Cache Line R W

Active

Transaction
State

Read Overflow
Signature

A
Log Buffer

(b)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

A = 15

Transaction
Log

Write Overflow
List

LLC

A = 10
B = 20
C = 30

Cache Line

M
M
S

State

1
1

1

Sharer
Vector

Dirty
Bit

L1 Cache

A = 15 1
B = 25 1 1

Cache Line R W

Active

Transaction
State

Read Overflow
Signature

B
Log Buffer

(c)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

A = 15

Transaction
Log

A

Write Overflow
List

LLC

A = 15
B = 20
C = 30

Cache Line

M
M
S

State

1
1
1 1

Sharer
Vector

1

Dirty
Bit

L1 Cache

C = 30 1
B = 25 1 1

Cache Line R W

Active

Transaction
State

Read Overflow
Signature

B
Log Buffer

(d)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

A = 15
B = 25

Transaction
Log

A

Write Overflow
List

LLC

A = 15
B = 20
C = 30
E = 50

Cache Line

M
M
S
M

State

1
1
1 1
1

Sharer
Vector

1

Dirty
Bit

L1 Cache

E = 55 1
B = 25 1 1

Cache Line R W

Active

Transaction
State

C D

Read Overflow
Signature

E
Log Buffer

(e)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

A = 15
B = 25
E = 55
Commit

Transaction
Log

A

Write Overflow
List

LLC

A = 15
B = 20
C = 30
E = 50

Cache Line

M
M
S
M

State

1
1
1 1
1

Sharer
Vector

1

Dirty
Bit

L1 Cache

E = 55 1
B = 25 1

Cache Line R W

Commit

Transaction
State

Read Overflow
Signature

Log Buffer

(f)

Persistent Memory

B = 25
C = 30
D = 40
E = 55

In-place

A = 15

F = 60

A = 15
B = 25
E = 55
Commit

Transaction
Log

Complete

Write Overflow
List

LLC

A = 15
B = 25
C = 30
E = 55

Cache Line

M
M
S
M

State

1
1 1
1

Sharer
Vector

Dirty
Bit

L1 Cache

E = 55
B = 25

Cache Line R W

Commit-
Complete

Transaction
State

Read Overflow
Signature

Log Buffer

(g)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

A = 15
B = 25
Abort

Transaction
Log

A

Write Overflow
List

LLC

A = 15
B = 20
C = 30
E = 50

Cache Line

M
M
S
M

State

1
1
1 1
1

Sharer
Vector

1

Dirty
Bit

L1 Cache

E = 55 1
B = 25 1

Cache Line R W

Abort

Transaction
State

Read Overflow
Signature

Log Buffer

(h)

Persistent Memory

B = 20
C = 30
D = 40
E = 50

In-place

A = 10

F = 60

A = 15
B = 25
Abort

Transaction
Log

Write Overflow
List

LLC

B = 20
C = 30
E = 50

Cache Line

M
S
M

State

1 1

Sharer
Vector

Dirty
Bit

L1 Cache

Cache Line R W

Abort
Complete

Transaction
State

Read Overflow
Signature

Log Buffer

Figure 4: Flow of a transaction

Register Description
Log Buffer Tracks cache lines pending log writes
Transaction State Identify the state of a transaction
Log Area
Start Pointer The start address of the log space
Next Pointer Address to write the next log entry
Size Size of the log space
Overflow List
Start Pointer The start address of the overflow list
Next Pointer Address to write the next entry
Size Size of the overflow list

Table II: Hardware Overhead

the transaction state is updated to Commit Complete. At this
point the transaction has completed and core 1 may begin a
new transaction.
(g) Abort. Shows the state of the system if the transaction
were to abort after (d). An abort log record is written to
the log area, the read bits and the read overflow signature
in the L1 are cleared, and the transaction status is updated
to Abort. The transaction has aborted at this point and
core 1 may continue executing subsequent non-transactional
instructions.
(h) Abort Complete. In the abort completion phase, the
L1 invalidates cache lines B and E belonging to the write
set and sends invalidate messages to the LLC which then
clears the sharer vector for cache lines B and E. Then
the memory controller reads the overflow list and issues
invalidate message for cache line A to the LLC. On receiving
the invalidate message, the LLC invalidates cache line A and
clears its sharer vector and dirty bit. Finally, the transaction
status is updated to Abort Complete and at this point, core
1 may begin a new transaction.
Hardware Overhead. Table II shows the hardware overhead
that DHTM adds on top of an RTM-like HTM design.
DHTM adds to the L1 cache a fully-associative structure
called the log-buffer, for keeping track of cache lines for
which redo log entries need to be written to persistent
memory. It also adds a transaction state register to identify
the current state of the transaction. DHTM also adds two sets
of registers to keep track of the log area and the overflow
list. The registers in each set consist of a start pointer to
identify the start address of the corresponding area, a next
pointer to identify the address where the next entry can be
written to and finally a size register to keep track of the size
of each area so that an overflow can be detected.
Fallback Path. DHTM increases the limit for the transaction
size from the L1 cache to the LLC. However, if a transaction
aborts continually because of a overflow from the LLC
(or due to any other reason) then it might not be able to
make forward progress. Therefore, a fallback path must be
provided. In principle integrating a software fallback path to
DHTM is no different from the ones proposed for RTM [44]

Cores 8 In-order cores @ 2GHz
L1 I/D Cache 32KB 64B lines, 4−way
L1 Access Latency 3 cycles
L2 Cache 1MB×8 tiles, 64B lines, 16−way
L2 Access Latency 30 cycles
MSHRs 32
NVM Access Latency 360 (240) cycles write (read)

Table III: System Parameters

Workload Description Write Set
TPC-C Online transaction processing 590
TATP Mobile carrier database 167
Queue Insert/delete entries in a queue 52
Hash Insert/delete entries in a hash table 58
SDG Insert/delete edges in a scalable graph 56
SPS Random swaps between entries in an

array
63

BTree Insert/delete nodes in a b-tree 61
RBTree Insert/delete nodes in a red-black tree 53

Table IV: Benchmarks used in our experiments along with
their descriptions and write-set sizes (# cache lines).

because both employ a similar mechanism for atomic visibil-
ity. In particular, this software fallback path does not interact
with hardware logging because, before initiating the fallback
path DHTM would abort the transaction (taking it to abort
complete state) which clears the log. The only difference
is that our fallback will provide both atomic visibility and
durability similar to Mnemosyne [14].

V. EXPERIMENTAL SETUP

We now describe our simulation infrastructure, system
configuration, benchmarks and designs that we evaluate.
We implemented DHTM on the gem5 [45] simulator with
Ruby. We extend the Ruby memory model to implement
DHTM functionality, with a log buffer size of 64 entries. We
evaluate DHTM on an 8-core multicore (one thread per core)
with each core containing a 32 KB private L1 and a multi-
banked LLC. The local L1s are kept coherent using a MESI
based directory protocol. DHTM is built on top of HTM
that is based on an RTM-like implementation. Conflicts are
detected by piggybacking on top of the coherence protocol
and the HTM employs a first-writer wins conflict resolution
policy similar to IBM POWER8 [29]. However, it is impor-
tant to note that the choice of conflict resolution policy is
not fundamental to DHTM design and it can be implemented
with other policies (like requester wins) as well. Table III
shows the main parameters of our system. The peak memory
bandwidth in our setup is 5.3 GB/s.
Workloads and their Characteristics. We considered two
classes of workloads for our study. TPC-C and TATP (the
first two rows from Table. IV) are traditional online trans-
action processing (OLTP) workloads that require ACID
guarantees. We use in-memory implementations of these

workloads [12]. It is worth noting that the OLTP workloads
have write working-set sizes exceeding or comparable to the
size of the L1 cache. Indeed, the write-set size of TPC-C
(37 KB) exceeds the L1 cache size (32 KB) and can cause
both capacity and conflict L1 misses which in turn can cause
aborts when run on an HTM. Although TATP has a write-
set size of around 10 KB, we find that there are significant
conflict misses, which can lead to aborts.

The second class of workloads (the last six rows from Ta-
ble. IV) are micro-benchmarks that perform atomic search,
insert and delete operations on the corresponding data struc-
ture. The micro-benchmarks are similar to those in the
benchmark suite used by NVHeaps [24]. We evaluate each
of these micro-benchmarks with a data set size of 3 KB,
similar to ATOM [20]. It is worth noting that the write-set
sizes of the micro-benchmarks are significantly smaller than
the L1 size, in contrast to the OLTP workloads.
Evaluated Designs:
• SO: This software only design uses locks for atomic vis-

ibility and software logging for atomic durability. For the
OLTP workloads, we use the default software concurrency
control mechanism which uses fine-grained locking. For
the micro-benchmarks, we partition the data-structure into
coarse-grained partitions with a lock associated with each
partition, to allow for concurrency across the different
partitions. We use a software logging mechanism simi-
lar to Mnemosyne [14], wherein log entries are flushed
synchronously as soon as their values are finalized (thus
benefiting from coalescing as well).

• sdTM: This design (software durability + hardware trans-
actional memory) is based on PHyTM [32], which uses
HTM similar to Intel’s RTM for atomic visibility. We
disable the software concurrency control mechanism in the
benchmarks and instead enclose each transaction within a
hardware transaction. We use software logging similar to
Mnemosyne for atomic durability.

• ATOM: This design uses locks (similar to the SO design)
for atomic visibility. It uses the state-of-the-art hardware
undo logging mechanism for atomic durability [20].

• LogTM-ATOM: This design uses LogTM [37] like HTM
for atomic visibility and integrates it with ATOM [20] for
atomic durability. It is worth noting that this represents a
new design that has not been studied previously.

• DHTM: This is our proposed design which supports
atomic visibility by using HTM similar to Intel’s RTM and
atomic durability by using hardware based redo logging.
It also allows the write set to overflow from the L1 to the
LLC.

VI. RESULTS

In this section, we quantitatively compare the performance
of the evaluated designs on the micro-benchmarks. We then
present studies to better understand where the DHTM gains
are coming from. One important parameter that could affect

Figure 5: Transaction throughput normalized to SO.

queue hash sdg sps btree rbtree Ave.
sdTM 68 19 23 27 37 46 37
DHTM 46 5 13 16 18 26 21

Table V: Abort rates for sdTM and DHTM designs.

the efficacy of DHTM is the size of the log-buffer. Therefore,
we quantify its impact. We also evaluate the efficacy of the
designs on TPC-C and TATP workloads. Finally, we analyze
the overheads of persistence by comparing our design with
a non-persistent design.

A. Transaction Throughput

Figure 5 shows the transaction throughput of all the eval-
uated designs normalized to the software-only (SO) design,
on the micro-benchmarks. As we can see, sdTM provides
an average throughput improvement of 20% over SO. Recall
that sdTM uses HTM for concurrency control which can po-
tentially uncover more concurrency, especially in workloads
where locking is coarse-grained. On the other hand, sdTM
can suffer the negative effects of rollbacks in situation where
the HTM aborts frequently. Table V shows the abort rates
for the workloads for the sdTM design. In general, we can
observe a correlation between the abort rates experienced
by various workloads and the throughput improvement over
SO. In particular, for the rbtree workload which experiences
a significant 46% abort rate, sdTM provides only a minimal
5% improvement over SO.

We can also observe than ATOM provides a more robust
average improvement of 35% over SO. Recall that ATOM
uses the same concurrency control mechanism as SO (locks),
but provides faster atomic durability by performing undo
logging in hardware. Interestingly, we can see that ATOM
has a comfortable 15% advantage over sdTM because of the
aborts experienced by the latter.

Our DHTM design provides the best throughput improve-
ment amongst all competing designs. On average, DHTM
improves transaction throughput by 61% compared to SO.
In comparison to SO, it can achieve faster durability by way
of hardware logging and can also uncover more concurrency.
In comparison with sdTM, DHTM improves transaction

Figure 6: Normalized transaction throughput sensitivity to-
wards log-buffer size for hash benchmark.

throughput by 41%. It not only benefits from faster dura-
bility, but also benefits from fewer aborts because DHTM
supports write-set overflows from the L1. This is evidenced
in Table V, where we can see that DHTM suffers from a
relatively lower 21% abort ratio in comparison with the 37%
abort ratio of sdTM. In comparison with ATOM, DHTM pro-
vides a 26% higher improvement in transaction throughput.
DHTM not only benefits from better concurrency (because
of HTM), but also because logging is faster in DHTM.
Indeed, because ATOM uses undo logging, it suffers from
the overhead of persisting data in-place in the commit critical
path. In contrast, because DHTM uses redo logging, data can
be persisted out of the critical path.

Finally, we look at LogTM-ATOM which implements
eager version management for both atomic visibility and
atomic durability. On average, DHTM provides 17% higher
improvement in throughput compared to LogTM-ATOM.
Since both designs leverage HTM for atomic visibility,
the difference in performance between the two designs is
primarily because of difference in atomic durability mech-
anisms. In other words, the low transaction commit latency
in DHTM enabled by the redo log leads to performance
improvement over LogTM-ATOM. From this we can also
infer that more than half of the DHTM’s 26% improvement
over ATOM is because of faster durability (and the rest
owing to higher concurrency). In summary, DHTM provides
a significant performance improvement, because of faster
logging and/or integration with HTM, over the state-of-the-
art design (ATOM [20]) and over a (novel) design combining
LogTM [37] with ATOM.

B. Sensitivity to the size of the log-buffer

Figure 6 shows the impact of the size of log buffer on
the performance of DHTM for the hash benchmark (other
benchmarks show similar trends). We run the benchmark
with buffer sizes ranging from 4 through 128 entries. As the
number of entries are increased, the throughput increases,
saturates at the size of 64 entries (default configuration in
DHTM) and then marginally reduces upon further increase
in the size. A small persist buffer size leads to creation of
multiple redo log entries which consumes higher amount
of memory bandwidth and adversely impacts other memory

SO ATOM DHTM
TPC-C 1 1.67 1.88
TATP 1 1.27 1.53

Table VI: Transaction throughput for ATOM and DHTM
normalized to SO for TPC-C and TATP benchmarks.

1× 2× 10×
NP 2.9 3.0 3.3
DHTM 1.9 2.4 3

Table VII: Transaction throughput for NP and DHTM nor-
malized to SO for hash benchmark with varying memory
bandwidth.

requests. On the other hand, a larger buffer delays log writes
which results in those log writes happening in the critical
path of commit. Recall that a transaction cannot commit
until all the redo log entries have been made persistent. In
summary, we find that a 64-entry log-buffer provides the
best coalescing effect.

C. TPC-C and TATP Throughput

Table VI shows the transaction throughput of ATOM and
DHTM normalized to the throughput of SO for the TPC-
C and TATP workloads. We have not shown sdTM results
because it performs quite poorly. Because of the significant
number of HTM aborts (owing to the large write working-
set size of the OLTP workloads), these conventional HTM
designs revert to the software concurrency mode often.

As we can see, DHTM continues to provide impres-
sive speedups, not only over the SO baseline, but also
over ATOM. Specifically, for the TPC-C workload, DHTM
provides an 88% improvement over SO and 21% higher
improvement compared to ATOM. For the TATP workload,
DHTM provides a 53% improvement over SO and 26%
higher improvement compared to ATOM.

D. The Cost of Atomic Durability

In this section, we wanted to see how close DHTM is
compared to a non-persistent (volatile) HTM design that we
call NP. For micro-benchmarks, we find that NP provides
2.2× higher transaction throughput compared to SO which
is 59% better than DHTM.

Next, we wanted to understand better the reason for the
performance gap. Are their inefficiencies in DHTM or is
it fundamentally limited by the cost of durability? There
are two primary sources of overheads in DHTM compared
to NP. First, the overhead of log writes and data writes
that are in the critical path. These include log writes that
are pending when a transaction execution completes and is
waiting to commit and data writes from the committed but
yet to complete transaction pending when a core encounters
the next transaction. To evaluate the performance impact of

these overheads we implemented a DHTM design where
these writes happen instantaneously. This design is able
to improve performance over DHTM by 16% for micro-
benchmarks Therefore log/data writes in the critical path of
execution appear not to be the major source of overhead.

The second source of overhead corresponds to a funda-
mental difference in memory write bandwidth requirements
for DHTM and NP. Recall that, in comparison with NP,
DHTM needs to flush cache lines for atomic durability.
To analyze the impact of this overhead, we performed
experiments by varying the available memory bandwidth.
Table VII shows the transaction throughput for NP and
DHTM designs normalized to SO design for the hash micro-
benchmark with varying memory bandwidth. With the base-
line bandwidth (5.3 GB/s) the difference between NP and
DHTM designs is 100% whereas with 10× the baseline
bandwidth the difference is only 30%. Thus in a system with
higher memory bandwidth DHTM can achieve performance
similar to that of a volatile only (NP) design.

VII. CONCLUSION

ACID transactions are a well-understood and widely
adopted programming model. How fast can we achieve
ACID in the presence of fast persistent memory? We have
proposed DHTM, a HTM design in which durability is
treated as a first class design constraint. It extends a commer-
cial HTM like RTM with hardware support for atomic dura-
bility. It supports atomic visibility by employing an RTM
like HTM and atomic durability by employing a hardware
logging infrastructure which transparently and efficiently
writes redo log entries to persistent memory. A redo-log
based design allows us to commit a transaction as soon as
all the log entries have been made persistent, without waiting
for the data to persist.

One of our design goals was to support larger transactions,
since ACID transactions tend to be considerably larger than
those supported by current L1-limited RTM like HTM de-
signs. But in supporting larger transactions we did not want
to introduce significant hardware complexity. In particular,
we did not want to introduce changes to the shared LLC –
something that current HTM designs avoid. Our key insight
here is to reuse the logging infrastructure that is necessary
for durability for also supporting L1 overflows. Our exper-
imental results showed that our proposal outperforms the
state-of-the-art ACID design by an average of 21% to 25%
on TATP, TPC-C and a set of micro-benchmarks.

ACKNOWLEDGMENT

We would like to thank our shepherd, Daniel Sanchez, and
the anonymous reviewers for their helpful comments. This
work is supported by the Intel University Research Office
and by EPSRC grants EP/M001202/1 and EP/M027317/1 to
the University of Edinburgh.

REFERENCES

[1] H. Akinaga and H. Shima, “Resistive Random Access Mem-
ory (ReRAM) Based on Metal Oxides,” Proceedings of the
IEEE, vol. 98, no. 12, 2010.

[2] Intel Corporation and Micron, “Intel and Micron Produce
Breakthrough Memory Technology,” 2015, http://newsroom.
intel.com/community/intel newsroom/blog/2015/07/28/
intel-and-micron-produce-breakthrough-memory-technology.

[3] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda,
Y. M. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Mat-
sukura, H. Takahashi, H. Matsuoka, and H. Ohno, “2Mb
Spin-Transfer Torque RAM (SPRAM) with Bit-by-Bit Bidi-
rectional Current Write and Parallelizing-Direction Current
Read,” in Proceedings of the International Solid-State Circuits
Conference, 2007.

[4] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,
Y. Chen, R. M. Shelby, M. Salinga, D. Krebs, S. Chen,
H. Lung, and C. H. Lam, “Phase-change random access
memory: A scalable technology,” IBM Journal of Research
and Development, vol. 52, no. 4-5, 2008.

[5] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris, “Persis-
tent Memcached: Bringing Legacy Code to Byte-Addressable
Persistent Memory,” in USENIX Workshop on Hot Topics in
Storage and File Systems, 2017.

[6] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“OLTP Through the Looking Glass, and What We Found
There,” in Proceedings of the International Conference on
Management of Data, 2008.

[7] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler,
B. Schlegel, and W. Lehner, “Improving in-memory database
index performance with Intel R© Transactional Synchroniza-
tion Extensions,” in Proceedings of the International Sympo-
sium on High Performance Computer Architecture, 2014.

[8] V. Leis, A. Kemper, and T. Neumann, “Scaling HTM-
Supported Database Transactions to Many Cores,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28,
no. 2, 2016.

[9] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware
Logging in Transaction Systems,” Proc. VLDB Endow., 2014.

[10] T. Wang and R. Johnson, “Scalable Logging Through Emerg-
ing Non-volatile Memory,” Proc. VLDB Endow., 2014.

[11] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas:
Leveraging Locks for Non-volatile Memory Consistency,”
in Proceedings of the International Conference on Object
Oriented Programming Systems Languages & Applications,
2014.

[12] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “REWIND:
Recovery Write-Ahead System for In-memory Non-volatile
Data-Structures,” Proc. of VLDB Endow, vol. 8, no. 5, 2015.

[13] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng,
and J. Ren, “DUDETM: Building Durable Transactions with
Decoupling for Persistent Memory,” in Proceedings of the
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2017.

[14] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:
Lightweight Persistent Memory,” in Proceedings of the Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[15] K. Doshi, E. Giles, and P. Varman, “Atomic Persistence for
SCM with a Non-intrusive Backend Controller,” in Proceed-

ings of the International Conference on High Performance
Computer Architecture, 2016.

[16] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu,
P. M. Chen, and T. F. Wenisch, “Delegated Persist Ordering,”
in Proceedings of the International Symposium on Microar-
chitecture, 2016.

[17] Y. Lu, J. Shu, L. Sun, and O. Mutlu, “Loose-ordering con-
sistency for persistent memory,” in Proceedings of the Inter-
national Conference on Computer Design, 2014.

[18] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and
K. Keeton, “An Analysis of Persistent Memory Use with
WHISPER,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2017.

[19] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: Fair and High-
Performance Memory Control for Persistent Memory Sys-
tems,” in Proceedings of the International Symposium on
Microarchitecture, 2014.

[20] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM:
Atomic Durability in Non-volatile Memory through Hardware
Logging,” in Proceedings of the International Symposium on
High Performance Computer Architecture, 2017.

[21] E. L. M. Matheus A. Ogleari and J. Zhao,
“Relaxing persistent memory constraints with hardware-
driven undo+redo logging,” University of California,
Santa Cruz, Tech. Rep., 2016. [Online]. Available:
https://users.soe.ucsc.edu/∼jzhao/files/HardwareLogging.pdf

[22] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Pro-
teus: A Flexible and Fast Software Supported Hardware Log-
ging Approach for NVM,” in Proceedings of the International
Symposium on Microarchitecture, 2017.

[23] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln:
Closing the Performance Gap Between Systems With and
Without Persistence Support,” in Proceedings of the Inter-
national Symposium on Microarchitecture, 2013.

[24] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson, “NV-Heaps: Making Persis-
tent Objects Fast and Safe with Next-generation, Non-volatile
Memories,” in Proceedings of the International Conferenceon
Architectural Support for Programming Languages and Op-
eratingSystems, 2011.

[25] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch,
“High-Performance Transactions for Persistent Memories,” in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems,
2016.

[26] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth,
D. Christie, and D. Grossman, “ASF: AMD64 Extension for
Lock-Free Data Structures and Transactional Memory,” in
Proceedings of the International Symposium on Microarchi-
tecture, 2010.

[27] R. Cypher, A. Landin, H. Zeffer, S. Yip, M. Karlsson,
M. Ekman, S. Chaudhry, and M. Tremblay, “Rock: A High-
Performance Sparc CMT Processor,” IEEE Micro, 2009.

[28] Intel Corporation, Intel R© Architecture Instruction Set Exten-
sions Programming Reference, 2014.

[29] H. Q. Le, G. Guthrie, D. Williams, M. M. Michael, B. Frey,
W. J. Starke, C. May, R. Odaira, and T. Nakaike, “Transac-
tional memory support in the IBM POWER8 processor,” IBM
Journal of Research and Development, 2015.

[30] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael, “Evaluation of blue
gene/q hardware support for transactional memories,” in Pro-
ceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques, 2012.

[31] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware
transactional memory in main-memory databases,” in Inter-
national Conference on Data Engineering, 2014.

[32] H. Avni and T. Brown, “PHyTM: Persistent Hybrid Transac-
tional Memory,” Proceedings of VLDB Endowment, 2016.

[33] E. Giles, K. Doshi, and P. Varman, “Continuous Checkpoint-
ing of HTM Transactions in NVM,” in Proceedings of the
International Symposium on Memory Management, 2017.

[34] Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen, “Persistent
Transactional Memory,” IEEE Computer Architecture Letters,
2015.

[35] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient
Persist Barriers for Multicores,” in Proceedings of the Inter-
national Symposium on Microarchitecture, 2015.

[36] E. Giles, K. Doshi, and P. Varman, “Brief Announcement:
Hardware Transactional Storage Class Memory,” in Proceed-
ings of the Symposium on Parallelism in Algorithms and
Architectures, 2017.

[37] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood, “LogTM: log-based transactional memory,” in
Proceedings of the International Symposium on High Perfor-
mance Computer Architecture, 2006.

[38] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie, “Unbounded transactional memory,” in Proceed-
ings of the International Symposium on High-Performance
Computer Architecture, 2005.

[39] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing transactional
memory,” in Proceedings of the International Symposium on
Computer Architecture, 2005.

[40] M. Herlihy and J. E. B. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data Structures,” in
Proceedings of the International Symposium on Computer
Architecture, 1993.

[41] T. Harris, J. Larus, and R. Rajwar, Transactional Memory,
2Nd Edition, 2nd ed. Morgan and Claypool Publishers, 2010.

[42] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz, “ARIES: A Transaction Recovery Method Sup-
porting Fine-granularity Locking and Partial Rollbacks Using
Write-ahead Logging,” ACM Trans. Database Syst., vol. 17,
no. 1, 1992.

[43] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on
Memory Consistency and Cache Coherence, 1st ed. Morgan
& Claypool Publishers, 2011.

[44] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy, “Im-
proved single global lock fallback for best-effort hardware
transactional memory,” in Workshop on Transactional Com-
puting, 2014.

[45] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, 2011.

