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1 Introduction

The vacuum structure of quantum electrodynamics (QED) is modified by the presence of

electromagnetic fields, leading to non-trivial polarization of the vacuum. In a seminal paper

by Heisenberg and Euler [1] as well as in several papers published in the same age [2–4], the

authors addressed the vacuum polarization effects and showed their physical consequences

such as the pair production from the vacuum by an electric field later called the Schwinger

mechanism [5]. The vacuum polarization by electromagnetic fields also affects propagation

of probe particles, in particular photons. Recall that, in the absence of electromagnetic
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fields, an on-shell real photon travels at the speed of light in vacuum without modification

of the refractive index or conversion to di-lepton, even when the vacuum polarization

effect is included. On the contrary, Toll showed that the vacuum polarization effects in

the presence of electromagnetic fields give rise to a non-trivial refractive index that can

deviate from unity in a polarization-dependent manner [6]. This phenomenon is called

the vacuum birefringence, named after a similar optical property of materials. In turn,

the unitarity, or the optical theorem, implies the existence of an imaginary part in the

refractive index, meaning that a single real photon can be converted to a di-lepton in

electromagnetic fields. According to the polarization dependence, this photon attenuation

phenomenon may be called the vacuum dichroism. There are a number of studies on the

complex-valued refractive index (see, e.g., refs. [7–17]).

Experimental detection of the vacuum birefringence/dichroism, induced by the vacuum

polarization with electromagnetic fields, has been quite challenging. Indeed, the vacuum

birefringence/dichroism is strongly suppressed by the QED coupling constant higher than

the fourth order as represented by box diagrams. Nevertheless, the QED coupling constant

appears in a multiplicative form with the electromagnetic field strength, and thus this

naive power counting is invalidated if the electromagnetic field strength compensates the

suppression by the coupling constant. Namely, strong electromagnetic fields are demanded

for successful detection of the vacuum birefringence/dichroism.

After more than a half century since publication of the classic papers, there is remark-

able experimental progress to produce strong electromagnetic fields and/or to detect their

signatures. The intensity of high-power lasers has been increasing continuously and rapidly

since the invention of the chirped pulse amplification [18–20]. Also, as proposed in classic

papers [21–24], highly accelerated nuclei can be used as a source of strong electromagnetic

fields. Implementation of such an idea has been realized recently with Relativistic Heavy

Ion Collider (RHIC) and the Large Hadron Collider (LHC). In particular, much attention

has been paid to ultra-peripheral collision events [25–29] where the two colliding nuclei are

distant enough from each other so that QED processes dominate over quantum chromody-

namics (QCD). Besides, strong magnetic fields are thought to be realized in astronomical

systems such as neutron stars/magnetars [30–33] and the primordial Universe [34–36].

There are several future programs planned around the world to detect strong-magnetic

field effects in the astronomical systems through, e.g., observation of X-ray and gamma-

ray photons.

Motivated by those developments, it is timely to enrich theoretical foundation of the

vacuum polarization effects on photon by tractable analytic methods. In particular, we in

this paper focus on the di-lepton production by a single photon in the presence of a strong

magnetic field. We emphasize that the differential cross section for the di-lepton production

computed in this paper provides more information than the aforementioned imaginary part

of the refractive index, which corresponds to the integrated cross section. Our results

will open a new avenue to study the energy and momentum distributions of di-leptons

as signatures of the vacuum dichroism and implicitly of the vacuum birefringence, since

the vacuum birefringence and dichroism are both sides of a coin. Besides, the differential

di-lepton measurement is more feasible than a photon-polarization measurement in the
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gamma regime. We focus on effects of a magnetic field and do not consider those of an

electric field. In general, a magnetic field is more stable and can have larger spacetime

extension than an electric field, since a (constant) magnetic field does not exert work

on charged particles and is not Debye screened by charge distributions. In addition, in

actual physics systems such as ultra-peripheral heavy-ion collisions and magnetosphere of

neutron stars/magnetars, it is plausible to assume that the strong electromagnetic fields

are dominated by a magnetic-field component.

The crucial point of the calculation in our problem is to include the interaction between

fermions and a strong magnetic field to all orders in the QED coupling constant. As men-

tioned above, this treatment is necessary when the magnetic-field strength is large enough

to break down the naive perturbation theory. Indeed, the di-lepton production from a sin-

gle real photon is not allowed in the naive perturbation theory, since the energy-momentum

conservation and the on-shell conditions for a photon and fermions are not compatible with

each other. One could obtain a finite di-lepton production rate from a single on-shell pho-

ton only after including a non-perturbative modification of the fermion dispersion relation

by a strong magnetic field. We accomplish such a computation for on-shell as well as

off-shell photons by the use of the Ritus-basis formalism, which is constructed with the

exact wave function of a fermion in a magnetic field. Accordingly, the di-lepton spectrum

is naturally specified by the Landau levels and a still continuous momentum along the

magnetic field. This may be regarded as an extension of previous works [16, 17] in which

one of the present authors showed the Landau-level structure appearing in the complex

refractive index. Within a constant configuration of a magnetic field, we provide the most

general analytic form of the photon-to-di-lepton conversion rate, or the lepton tensor in

a magnetic field, with all-order Landau levels (see also refs. [37–40] for the Landau levels

appearing in photon/di-lepton production from finite-temperature plasma).

This paper is organized as follows. In section 2, we first briefly review the Ritus-basis

formalism in a self-contained way. Based on this formalism, we show an analytic form of the

lepton tensor in a magnetic field and its square in section 3 and inspect basic properties of

the di-lepton production rate in section 4 with some numerical plots. Section 5 is devoted

to summary and outlook. In appendices, we provide the wave function of a charged particle

in a magnetic field as an ingredient of the Ritus-basis formalism in appendix A and rigorous

consistency checks of the computation such as the gauge invariance in appendix B.

Throughout the paper, we take the direction of a constant external magnetic field in the

z-direction. Accordingly, we decompose the metric gµν ≡ diag(+1,−1,−1,−1) and four-

vectors vµ into the longitudinal and transverse parts, respectively, as gµν
‖ ≡ diag(1, 0, 0,−1)

and gµν
⊥ ≡ diag(0,−1,−1, 0), and vµ

‖ ≡ g
µν
‖ vν and vµ

⊥ ≡ g
µν
⊥ vν .

2 Preliminaries: Ritus-basis formalism for a Dirac fermion

To provide a self-contained construction, we first review the Ritus-basis formalism [41, 42].1

In case of a constant external magnetic field, the energy spectrum of charged fermions is

subjected to the Landau quantization and the Zeeman shift. The resultant energy level

1This part is based on a forthcoming review article [43].
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has two-fold spin degeneracy except for the unique ground state. The Ritus basis is, then,

introduced as a superposition of (projection operators for) the two degenerate spin states.

An advantage of the Ritus basis is that it maps the Dirac equation in an external field into

a free Dirac equation, which is easier to handle.

We start with the Dirac equation in an external magnetic field Aµ
ext,

(

i /Dext −m
)

ψ = 0 , (2.1)

where the covariant derivative Dµ
ext is given by

Dµ
ext ≡ ∂µ + iqAµ

ext . (2.2)

The electric charge q takes a positive (negative) value for positively (negatively) charged

fermions. Since we only have a constant magnetic field, the longitudinal components of

the gauge potential [Aext]‖ must be constant in spacetime. Without loss of generality, one

may set

0 = A0
ext = A3

ext . (2.3)

Whereas there is still a residual gauge freedom in the transverse components [Aext]⊥, we

first discuss gauge-independent properties until we fix the residual gauge in eq. (2.21).

To proceed, we discuss the energy level of a charged fermion in the presence of a

constant magnetic field. To this end, it is convenient to rewrite the Dirac equation (2.1)

into a Klein-Gordon type equation, by using an identity γµγν = 1
2 [γµ, γν ] + 1

2{γµ, γν}, as

(

D2
ext +m2 +

q

2
Fµν

extσµν

)

ψ = 0 , (2.4)

where σµν ≡ i
2 [γµ, γν ] is a spin operator and Fµν

ext ≡ [Dµ
ext, D

ν
ext]/iq = ∂µAν

ext − ∂νAµ
ext is

field strength. For a constant magnetic field pointing in the z-direction, only (1, 2)- and

(2, 1)-components of the field strength Fµν
ext are nonvanishing, i.e., we have a nonvanishing

commutation relation only for the transverse components of the covariant derivative

[

iD1
ext, iD

2
ext

]

= −iqF 12
ext ≡ iqB , (2.5)

with B denoting the nonvanishing 3-component of the magnetic field. Those transverse

components of the covariant derivative may be regarded as a pair of the canonical variables

in nonrelativistic quantum mechanics. Motivated by this analogy, we introduce “creation

and annihilation operators,” denoted by â and â†, respectively, as

â ≡ 1
√

2|qB|
(

iD1
ext − sgn(qB)D2

ext

)

, â† ≡ 1
√

2|qB|
(

iD1
ext + sgn(qB)D2

ext

)

, (2.6)

which satisfy the following “canonical commutation relation”:

1 = [â, â†] , 0 = [â, â] = [â†, â†] . (2.7)
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Using â and â†, one may reexpress the Klein-Gordon operator as

D2
ext +m2 = ∂2

t − ∂2
z +

(

2â†â+ 1
)

|qB|+m2 . (2.8)

This expression gives the relativistic energy spectrum of the Landau level for a charged

scalar particle. For a charged fermion, which obeys eq. (2.4), we have another term q
2F

µν
extσµν

in addition to the Klein-Gordon operator. This term is responsible for the Zeeman effect.

To confirm this point, we introduce spin projection operators along the magnetic field2

P± ≡
1

2

(

1± σ12sgn(qB)
)

=
1

2

(

1± iγ1γ2sgn(qB)
)

. (2.9)

Using q
2F

µν
extσµν = |qB|(−P+ + P−), one can reexpress the Klein-Gordon equation (2.4) as

[

∂2
t − ∂2

z +
(

2â†â+ 1− 2s
)

|qB|+m2
]

ψs = 0 , (2.10)

with s = ±1/2 being the eigenvalue of the spin operator along the magnetic field, i.e.,

2sψs = sgn(qB)σ12ψs (the factor 2 accounts for the Landé g-factor). Namely, s = +1/2 and

−1/2 (s = −1/2 and +1/2) if the spin direction is parallel and anti-parallel, respectively,

with respect to the magnetic-field direction for positively (negatively) charged fermions.

Since the operators â and â† satisfy the commutation relation (2.7), one understands that

the energy level is given by

ǫn ≡
√

m2 + 2n|qB|+ p2
z . (2.11)

The non-negative integer n = 0, 1, 2, · · · ∈ N is the resultant quantum number after the sum

of the Landau level and the Zeeman shift. Therefore, the energy level has two-fold spin

degeneracy (s = ±1/2) except for the unique ground state (s = +1/2), which is often called

the lowest Landau level (after the Zeeman shift is included). pz is the longitudinal momen-

tum, which is conserved because the longitudinal motion is not affected by a magnetic field.

Accordingly, one can factorize the eigenfunction ψs,n (such that i∂tψs,n = ±ǫnψs,n) as

ψs,n ∝ e−ip‖·xφn(x⊥) , (2.12)

where the transverse wave function φn depends on the transverse coordinates x⊥ but not

on the longitudinal coordinate x‖. One can construct φn as eigenstates of the “number

operator” as φn = 〈x|n〉 with â†â|n〉 = n|n〉 and â|0〉 = 0. For the moment, we do not need

an explicit form of φn which can be obtained only after fixing the gauge, and just discuss

gauge-invariant properties of φn. Precisely speaking, there exists another good quantum

number χ [e.g., χ = py in the Landau gauge (2.21) which we adopt later]. The existence

of this additional good quantum number is anticipated, since there is a constant of motion

in classical picture of the cyclotron motion, that is, the center coordinate of the cyclotron

motion. In quantum theory, χ corresponds to a label of the center coordinate, and each

Landau level is degenerated with respect to χ since shift of the center coordinate should not

2These operators have useful properties: P†
± = P±, P+ + P− = 1, P±P± = P±, and P±P∓ = 0. Also,

P±γµP± = γµ

‖
P± and P±γµP∓ = γµ

⊥P∓. We will use those properties below.
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affect the energy level in a constant magnetic field. For notational simplicity, we label the

eigenfunction ψs,n only with n and suppress the additional label χ unless needed. While χ is

a gauge-dependent quantity, the Landau level constructed with the “creation/annihilation

operator” is a gauge-invariant concept as clear in the construction of the operators (2.6).

Next, we examine the Dirac spinor structure of ψs,n and introduce the Ritus basis. In

eq. (2.10), we have seen that the two spin eigenstates such that 2sψs,n = sgn(qB)σ12ψs,n

(s = ±1/2) provide appropriate bases for solutions of the Dirac equation. It is, therefore,

convenient to introduce a basis for a superposition of the two degenerated spin eigenstates,

Rn(x⊥) ≡ φn(x⊥)P+ + φn−1(x⊥)P− , (2.13)

where φ−1 ≡ 0 is understood. This is the so-called Ritus basis, which was introduced first

for computation of the fermion self-energy in external fields [41, 42]. Using the Ritus basis,

one may write

ψs,n(x) =











e−ip‖·xRn(x⊥)u for a positive-energy solution

e+ip‖·xRn(x⊥) v for a negative-energy solution
, (2.14)

where u and v are four-component spinors. By noticing

[

i /Dext −m
]

ψs,n =

[

(i/∂‖ −m)−
√

2|qB| γ1
(

âP+ + â†P−

)

]

ψs,n

=



















e−ip‖·xRn(x⊥)

(

/p‖
−

√

2n|qB| γ1 −m
)

u

e+ip‖·xRn(x⊥)

(

−/p‖
−

√

2n|qB| γ1 −m
)

v

, (2.15)

one finds that the ansatz (2.14) satisfies the Dirac equation (2.1) if the spinors u and v

satisfy the “free” Dirac equations

0 = (/pn
−m)u(pn) , (2.16a)

0 = (/̄pn
+m)v(p̄n) , (2.16b)

where

pµ
n ≡

(

ǫn,
√

2n|qB|, 0, pz

)

, p̄µ
n ≡

(

ǫn,−
√

2n|qB|, 0, pz

)

. (2.17)

Each “free” Dirac equation has two solutions u = uκ, v = vκ, corresponding to two spin

degrees of freedom that we label with κ = 1, 2. We normalize the solutions uκ and vκ in

such a way that they satisfy the following completeness relation

∑

κ=1,2

uκ(pn)ūκ(pn) = (/pn
+m) ,

∑

κ=1,2

vκ(p̄n)v̄κ(p̄n) = (/̄pn
−m) . (2.18)

The choice of κ is arbitrary, and one could choose κ different from the spin label s = ±1/2

defined with respect to the magnetic field direction [see eq. (2.10)]. In general, κ is a
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superposition of s = ±1/2. This is understood by explicitly writing down the normal-

ized solutions (although we do not use the explicit forms in our study). In the chiral

representation, they read [44]

uκ(pn) =
(√

pn · σ ξκ,
√

pn · σ̄ ξκ

)

, vκ(p̄n) =
(

√

p̄n · σ ηκ,−
√

p̄n · σ̄ ηκ

)

, (2.19)

where σµ = (1, σi) and σ̄µ = (1,−σi). The free Dirac equation (2.16) is satisfied with

any two-component spinors ξκ and ηκ, resulting in the aforementioned arbitrariness in

the choice of κ. One of the most convenient choices is to take the eigenvectors of σ3 as

ξ1 = η1 = (1, 0) and ξ2 = η2 = (0, 1). Note for this case that uκ and vκ are in general not

eigenstates of σ12 = diag(σ3, σ3) because of the presence of nonvanishing p1
n, p̄

1
n for the

higher Landau levels n ≥ 1.

We perform canonical quantization of the Dirac field operator ψ to define creation and

annihilation operators. We expand ψ in terms of the solution of the Dirac equation (2.14) as

ψ(x) =
∑

κ=1,2

∞
∑

n=0

∫

dpzdpy

(2π)2
√

2ǫn
Rn,py (x⊥)

[

apn,py ,κe
−ip‖·xuκ(pn) + b†

p̄n,py ,κe
ip‖·xvκ(p̄n)

]

,

(2.20a)

ψ̄(x) =
∑

κ=1,2

∞
∑

n=0

∫

dpzdpy

(2π)2
√

2ǫn

[

bp̄n,py ,κe
−ip‖·xv̄κ(p̄n) + a†

pn,py ,κe
ip‖·xūκ(pn)

]

R†
n,py

(x⊥).

(2.20b)

Here and hereafter, we assume the Landau gauge,

Aµ
ext(x) = (0, 0, Bx, 0) . (2.21)

It is clear that one of the canonical transverse momenta py is conserved and specifies the

Landau degeneracy. py is a gauge-dependent quantity and hence is not an observable,

while the energy ǫn (or the Landau level n) and the longitudinal momentum pz are gauge-

independent and observable quantities.3 We chose the Landau gauge just for simplicity,

and the mode expansion (2.20) as well as the calculations below can be done in a simi-

lar way in other gauges. Importantly, we explicitly prove that our final physical results

are gauge-independent; see appendix B.2. Next, we impose the canonical commutation

relations on the Dirac field operator ψ (see appendix A.2 for details) and normalize the

transverse wave function φn,py , which fixes the normalization of the Ritus basis Rn,py , as

∫

d2x⊥φ
∗
n,py

(x⊥)φn′,p′
y
(x⊥) = 2πδ(py − p′

y)δn,n′ . (2.22)

Then, apn,py ,κ and bpn,py ,κ are quantized as

{

apn,py ,κ, a
†
pn′ ,p′

y ,κ′

}

=

{

bp̄n,py ,κ, b
†
p̄′

n′ ,p
′
y ,κ′

}

= (2π)2δ(py − p′
y)δ(pz − p′

z)δn,n′δκ,κ′ , (2.23)

3While one could define a (gauge-invariant) kinetic transverse momentum, its expectation value taken

for the eigenstates of the Landau levels should be vanishing due to the closed cyclotron orbit.
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while the other commutations are vanishing. The operators apn,py ,κ and bpn,py ,κ can now be

interpreted as annihilation operators of a fermion and an anti-fermion state, respectively,

which are specified with the energy ǫn, longitudinal momentum pz, and spin label κ. Note

again that κ is a label for the spin basis for the free Dirac spinors uκ and vκ, which can

be chosen arbitrarily [see discussions above eq. (2.18)] and is projected to the physical spin

states s = ±1/2 by P± in the mode expansion (2.20). After the quantization, one can

identify the vacuum state |0〉 as

0 = apn,py ,κ|0〉 = bp̄n,py ,κ|0〉 for any pn, p̄n, py, κ , (2.24)

and construct multi-particle states as

|fpn,1,py,1κ1fpn,2,py,2κ2 · · · f̄p̄′
n′,1

,p′
y,1κ′

1
f̄p̄′

n′,2
,p′

y,2κ′
2
· · · 〉 (2.25)

≡
(√

2ǫn,1â
†
pn,1,py,1κ1

)(√

2ǫn,2â
†
pn,2,py,2κ2

)

· · ·
(

√

2ǫ′n′,1b
†
p̄′

n′,1
,p′

y,1κ′
1

)(

√

2ǫ′n′,2b̂
†
p̄′

n′,2
,p′

y,2κ′
2

)

|0〉 ,

where f (f̄) is a fermion (anti-fermion) state carrying the quantum numbers pn, py, κ

(p̄′
n′ , p′

y, κ
′). We normalized the multi-particle states as

‖ |fpn,1,py,1κ1fpn,2,py,2κ2 · · · f̄p̄′
n′,1

,p′
y,1κ′

1
f̄p̄′

n′,2
,p′

y,2κ′
2
· · · 〉 ‖2

=





∏

f states

(2ǫn)(2π)2δ(2)(0)









∏

f̄ states

(2ǫ′n′)(2π)2δ(2)(0)



 , (2.26)

where the products on the right-hand side are taken over the multi-fermion and anti-fermion

states and we use an abbreviation ǫ′n ≡ ǫn(p′
z) =

√

m2 + 2n|qB|+ (p′
z)2.

3 Lepton tensor with all-order Landau levels

We analytically evaluate the photon-to-di-lepton vertex in a strong constant magnetic field.

Since the magnetic field is assumed to be strong, we treat the interaction with the magnetic

field non-perturbatively, which can be conveniently achieved by the Ritus-basis formalism

reviewed in the preceding section. On the other hand, we treat the interaction with a

dynamical photon A perturbatively. At the leading order in A, one can write down the

amplitude explicitly as (see figure 1)

εµqMµ ≡ 〈fpn,py ,κ, f̄p̄′
n′ ,p

′
y ,κ′ | q

∫

d4x ψ̄(x) /A(x)ψ(x) |γk〉

= εµq

∫

d4x e
−ik·x+i(p‖+p′

‖
)·x
ūκ(pn)R†

n,py
(x⊥)γµRn′,p′

y
(x⊥)vκ′(p̄′

n′) , (3.1)

where the one-photon state |γk〉 is normalized as

‖ |γk〉 ‖2 = 2k0(2π)3δ(3)(0) (3.2)

and εµ is a polarization vector of the initial dynamical photon (which is not necessarily

on-shell). The fermion field is expanded with the Ritus basis (2.20) and hence is dressed
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kμ
(pn,py ,κ)
(pn,

, ,py
, ,κ,)

|γk〉
| fpn ,py,κ〉

| f p_ n,, ,py
, ,κ,〉

●
B

B

B

B

B

B

B

B

…

…

Figure 1. The photon-to-di-lepton vertex in a magnetic field (3.1). The wave functions of the

produced fermion and anti-fermion are non-perturbatively dressed by the magnetic field.

by the magnetic field non-perturbatively. On the other hand, the mode expansion for the

dynamical photon field A is the usual Fourier decomposition because A is charge neutral

and still in a momentum eigenstate. As a consequence, the three-point vertex between

the fermion current and the dynamical photon field is given by a convolution of two Ritus

bases and a plane wave. Inserting the explicit form of the Ritus basis (2.13) into the

amplitude (3.1), we find

Mµ = (2π)2δ(2)(k‖ − p‖ − p′
‖) (3.3)

× ūκ(pn)
[

γµ
‖

(

P+Γn,n′ + P−Γn−1,n′−1

)

+ γµ
⊥

(

P+Γn−1,n′ + P−Γn,n′−1

) ]

vκ′(p̄′
n′) ,

where the scalar form factor Γn,n′ is defined as an overlap between the two fermion wave

functions in the transverse plane:

Γn,n′(p, p′; k) ≡
∫

d2x⊥ e
i(kxx+kyy)φ∗

n,py
(x⊥)φn′,p′

y
(x⊥) . (3.4)

We will discuss properties of Γn,n′ in detail in section 3.3. In eq. (3.3), the first term coupled

to γ‖ gives the amplitude for spin-zero lepton pair production. This observation is based

on the facts that the same spin projection operators are acting on the spinors u and v (cf.

γµ
‖P± = P±γ

µ
‖P±) and that the anti-fermion spinor P±v corresponds to the opposite spin

direction to that of the fermion spinor P±u [44]. In the same manner, one understands that

the second term coupled to γ⊥ is responsible for spin-one lepton pair production according

to a property γµ
⊥P± = P∓γ

µ
⊥P±.

3.1 Scalar form factor Gn,n′ in the Landau gauge

We explicitly evaluate the scalar form factor Γn,n′ (3.4) in the Landau gauge (2.21). While

we choose a particular gauge, we keep track of the gauge dependence carefully and con-

firm that the gauge invariance is finally restored in the squared amplitude (see the next

subsection). Moreover, we show that our amplitude (3.7), and thus the squared ampli-

tude, satisfies the Ward identity 0 = kµMµ for each pair of Landau levels, which is the

manifestation of the gauge invariance for the dynamical photon field; see appendix B.1.
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In the Landau gauge (2.21), one can explicitly write down the wave function φn ob-

tained as eigenstates of the number operator (see below eq. (2.12) and appendix A.1 for

derivation):

φn,py (x⊥) = eipyy in
√

1

2nn!π
1
2 ℓ
e− ξ2

2 Hn(ξ) , (3.5)

where Hn is the Hermite function Hn(z) ≡ (−1)ne+z2
∂n

z e
−z2

and ξ ≡ (x − xc)/ℓ with

xc ≡ py/qB and ℓ ≡ 1/
√

|qB| representing the center and the typical radius of the cyclotron

motion (called the magnetic length), respectively. By substituting this expression (3.5) into

eq. (3.4), one obtains4,5

Γn,n′(p, p′; k)

= 2πδ(ky − py + p′
y)× ei

kx(py+p′
y)

2qB e− 1
2

|k̄⊥|2(−1)∆n

√

n!

n′!
e−i sgn(qB)∆n θ⊥ |k̄⊥|∆nL∆n

n (|k̄⊥|2)

≡ 2πδ(ky − py + p′
y)× Gn,n′(p, p′; k) , (3.7)

where the scalar form factor Gn,n′(p, p′; k) is defined for the Landau gauge after factorizing

the delta function, and Gn,n′ = 0 for n or n′ < 0 is understood. We also defined

∆n ≡ n′ − n, |k̄⊥|2 ≡
|k⊥|2
2|qB| , θ⊥ ≡ arg(kx + iky), (3.8)

where θ⊥ is the azimuthal angle of the photon momentum k. Lk
n is the associated Laguerre

polynomial such that Lk
n(z) ≡ ∂k

z (e+z∂n
z (zne−z)). While systems exposed to a constant

magnetic field should maintain the gauge symmetry and the translational and rotational

symmetries in the transverse plane, the gauge configuration Aµ
ext partially or completely

hides those symmetries. Indeed, the scalar form factor Gn,n′ itself does not possess the

gauge symmetry due to the exponential phase factor exp
[

ikx(py + p′
y)/2qB

]

(the so-called

Schwinger phase) because py is a gauge-dependent label in the Landau gauge. The rota-

tional symmetry also seems to be apparently broken by the dependence on the azimuthal

angle θ⊥. Nevertheless, the Schwinger factor does not depend on n and thus is canceled

out when the amplitude is squared. Similar to this, one can also show that the rotational

symmetry is restored after squaring the amplitude; see appendix B.2.

4Note that one may extract the positive-power dependence on |k̄⊥| by using L−ℓ
m (ρ) =

(m−ℓ)!
m!

(−ρ)ℓLℓ
m−ℓ(ρ) as

Gn,n′ = e
i

kx(py+p′
y)

2qB e− 1
2

|k̄⊥|2

(−1)n′−min(n,n′)
√

n!/n′!
sgn(∆n)

e−i sgn(qB)∆n θ⊥ |k̄⊥||∆n|L
|∆n|

min(n,n′)
(|k̄⊥|2) .

(3.6)

5The square of the scalar form factor |Gn,n′ |2 has precisely the same form as Cm
ℓ (η) defined in eq. (38)

of ref. [16] if one identifies the variables as η = |k̄⊥|2, m = −∆n and ℓ = n′; namely, |Gn,n′ |2 = C′−∆n
n (η).
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3.2 Analytic form of the lepton tensor

We turn to evaluate the lepton tensor in a magnetic field Lµν
n,n′ which is defined via the

squared amplitude as

∑

κ,κ′

|εµqMµ|2
2k0(2π)3δ(3)(0)

≡ T

Lx

q2

2k0
(2π)3δ(2)(k‖ − p‖ − p′

‖)δ(ky − py + p′
y)[ εµε

∗
νL

µν
n,n′ ] , (3.9)

where T ≡ 2πδ(p0 = 0) and Lx are the whole time-interval and the system length in the

x direction, respectively. The factor of 1/[2k0(2π)3δ(3)(0)] is inserted so as to cancel the

uninterested normalization factor coming from the one-photon state (3.2). For notational

brevity, we rewrite the amplitude Mµ as

Mµ = (2π)3δ(2)(k‖ − p‖ − p′
‖)δ(ky − py + p′

y)× ūκ(pn)[γµ
‖J0 + γµ

⊥J1]vκ′(p̄′
n′) , (3.10)

with

J0 ≡ P+Gn,n′ + P−Gn−1,n′−1 , J1 ≡ P+Gn−1,n′ + P−Gn,n′−1 . (3.11)

Note that J0 and J1 control the amplitudes for spin-zero and spin-one lepton pair produc-

tions, respectively, as we remarked below eq. (3.4). Then, after the spin summation
∑

κ,κ′ ,

one can express Lµν
n,n′ as

Lµν
n,n′ = tr

[

(/pn
−m)(γµ

‖J0 + γµ
⊥J1)(/̄p

′

n′ +m)(J †
0 γ

ν
‖ + J †

1 γ
ν
⊥)

]

= T1 − 2|qB|
√
nn′T2 −

√

2n|qB|T3 +
√

2n′|qB|T4 , (3.12)

where

T1 ≡ tr
[

(/p‖
−m)(γµ

‖J0 + γµ
⊥J1)(/p

′
‖

+m)(J †
0 γ

ν
‖ + J †

1 γ
ν
⊥)

]

, (3.13a)

T2 ≡ tr
[

γ1(γµ
‖J0 + γµ

⊥J1)γ1(J †
0 γ

ν
‖ + J †

1 γ
ν
⊥)

]

, (3.13b)

T3 ≡ tr
[

γ1(γµ
‖J0 + γµ

⊥J1)(/p
′
‖

+m)(J †
0 γ

ν
‖ + J †

1 γ
ν
⊥)

]

, (3.13c)

T4 ≡ tr
[

(/p‖
−m)(γµ

‖J0 + γµ
⊥J1)γ1(J †

0 γ
ν
‖ + J †

1 γ
ν
⊥)

]

. (3.13d)

The gauge-dependent Schwinger phase goes away by the squaring operation, and thus

the gauge and translational invariances have been restored explicitly in eq. (3.12). The

rotational symmetry has also been restored here, although it may not be obvious at a

glance; see appendix B.2 for an explicit demonstration.

Before proceeding, we introduce several notations in order to simplify the traces (3.13)

in a physically transparent way. We first introduce photon’s circular polarization vectors

with respect to the direction of the magnetic field,

εµ
± ≡ −(gµ1 ± i sgn(qB)gµ2)/

√
2 = (0, 1,±i sgn(qB), 0)/

√
2 , (3.14)

which are ortho-normalized as εµ
±ε

∗
∓µ = 0 and εµ

±ε
∗
±µ = −1 and satisfy εµ∗

± = εµ
∓. We

inserted a sign function in the above definition (3.14) because the direction of fermion’s
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spin changes depending on sgn(qB). Those polarizations couple to di-leptons carrying total

spin s + s′ = ±1 states as we see below. Next, we introduce helicity-projection operators

for circularly polarized photons

Qµν
± ≡ −εµ

±ε
ν∗
± = (gµν

⊥ ± i sgn(qB)εµν
⊥ )/2 , (3.15)

where εµν
⊥ ≡ gµ1gν2 − gµ2gν1. Those operators have eigenvectors εµ

± which satisfy

Qµν
± ε±ν = εµ

± and Qµν
± ε∓ν = 0. Finally, we introduce scalar and longitudinal photon po-

larization vectors

εµ
0 ≡ (1, 0, 0, 0) , εµ

‖ ≡ (0, 0, 0, 1) , (3.16)

respectively, which are ortho-normalized as εµ
0ε

∗
‖µ = 0, εµ

0ε
∗
0µ = +1, and εµ

‖ε
∗
‖µ =−1. Clearly,

those vectors are orthogonal to the circular polarization vectors as 0 = εµ
±ε0µ = εµ

±ε‖µ and

do not couple to the helicity-projection operators, i.e., 0 =Qµν
± ε0µ =Qµν

± ε‖µ. The scalar

and longitudinal photons couple to s+s′ = 0 channel of di-leptons, as we see below. Note

that the four polarization vectors ε0,±,‖ satisfy the following completeness relation

gµν = εµ
0ε

ν∗
0 − εµ

+ε
ν∗
+ − εµ

−ε
ν∗
− − εµ

‖ε
ν∗
‖ , (3.17)

and form a complete basis for the photon polarization vector εµ.

Now, we are ready to simplify the traces in eq. (3.13). For T1, a straightforward

calculation yields

T1 = tr
[

(/p‖
−m)γµ

‖ (/p
′
‖

+m)γν
‖ |J0|2

]

+ tr
[

(/p‖
−m)γµ

⊥(/p
′
‖

+m)|J1|2γν
⊥

]

(3.18)

= (|Gn,n′ |2 + |Gn−1,n′−1|2)Lµν
‖ − 4(p‖ · p′

‖ +m2)
(

|Gn−1,n′ |2Qµν
+ + |Gn,n′−1|2Qµν

−

)

.

Here, we introduced the lepton tensor in the (1 + 1)-dimensional form

Lµν
‖ = 2

[

pµ
‖p

′ν
‖ + pν

‖p
′µ
‖ − (p‖ · p′

‖ +m2)gµν
‖

]

, (3.19)

which couples only to the scalar and longitudinal photon polarizations, i.e., 0 6= Lµν
‖ ε0µ,

Lµν
‖ ε‖µ and 0 = Lµν

‖ ε±µ. Remember that the terms proportional to J0 and J1 are originated

from spin-zero and spin-one di-lepton configurations. Therefore, the first term is responsible

for spin-zero di-lepton production and is coupled to the photon mode longitudinal to the

direction of the magnetic field. On the other hand, the last two terms describe spin-one

di-lepton production and are coupled to circularly polarized photons. Note that, among

all the terms, only the term proportional to |G0,0|2 survives in the lowest Landau level

approximation. Next, we turn to evaluate the remaining terms T2, T3, and T4:

T2 = tr
[

γ1γµ
‖ (J0γ

1J †
0 )γν

‖

]

+ tr
[

γ1γµ
⊥(J1γ

1J †
1 )γν

⊥

]

= 4
[

Re[Gn,n′G∗
n−1,n′−1]gµν

‖ + Gn−1,n′G∗
n,n′−1ε

µ
+ε

ν∗
− + [Gn−1,n′G∗

n,n′−1]∗εµ
−ε

ν∗
+

]

. (3.20)

The γ1’s in between J0,J0† and J1,J1† induce a spin flip, unlike the case in T1. Therefore,

the first term in the last line and the others are responsible for the interferences between
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the amplitudes for two spin-zero and spin-one di-lepton configurations, respectively, which

consist of fermion pairs with the same energy level but distinct spin combinations due to

the spin flipping (recall the spin degeneracy in each energy level). In the remaining two

traces T3 and T4, the mass terms do not survive, since one cannot hold an even number of

γµ
‖ and γµ

⊥ simultaneously. Therefore,

T3 = tr
[

γ1γµ
‖ /p

′
‖
J0J †

1 γ
ν
⊥

]

+ tr
[

γ1γµ
⊥/p

′
‖
J1J †

0 γ
ν
‖

]

= −2
√

2
[

Gn,n′G∗
n−1,n′p

′µ
‖ ε

ν
− + G∗

n,n′Gn−1,n′εµ
+p

′ν
‖

+ Gn−1,n′−1G∗
n,n′−1p

′µ
‖ ε

ν
+ + G∗

n−1,n′−1Gn,n′−1ε
µ
−p

′ν
‖

]

, (3.21a)

T4 = tr
[

/p‖
γµ

‖J0γ
1J †

1 γ
ν
⊥

]

+ tr
[

/p‖
γµ

⊥J1γ
1J †

0 γ
ν
‖

]

= −2
√

2
[

Gn,n′G∗
n,n′−1p

µ
‖ε

ν
+ + G∗

n,n′Gn,n′−1ε
µ
−p

ν
‖

+ Gn−1,n′−1G∗
n−1,n′p

µ
‖ε

ν
− + G∗

n−1,n′−1Gn−1,n′εµ
+p

ν
‖

]

. (3.21b)

As clear from the appearance of J0 coupled to J1 and vice versa, all those terms are for the

interferences between the amplitudes for two spin-zero and spin-one di-lepton configurations

having distinct fermion spin contents.

Getting all the above contributions together, we arrive at the lepton tensor in a mag-

netic field:

Lµν
n,n′ = (|Gn,n′ |2 + |Gn−1,n′−1|2)Lµν

‖ − 4(p‖ · p′
‖ +m2)

(

|Gn−1,n′ |2Qµν
+ + |Gn,n′−1|2Qµν

−

)

− 4|qB|
√
nn′ Re

[

2Gn,n′G∗
n−1,n′−1g

µν
‖ + Gn−1,n′G∗

n,n′−1ε
µ
+ε

ν
+

]

+ 8
√

n|qB| Re
[ (

G∗
n,n′Gn−1,n′ + Gn−1,n′−1G∗

n,n′−1

)

p′µ
‖ ε

ν
+

]

− 8
√

n′|qB| Re
[ (

Gn,n′G∗
n,n′−1 + G∗

n−1,n′−1Gn−1,n′

)

pµ
‖ε

ν
+

]

. (3.22)

The general form of the lepton tensor (3.22), together with the analytic expression for the

scalar form factor (3.7), is one of the main results of the present paper. We will further

inspect its basic behaviors and apply it to compute the di-lepton yields. To verify the cor-

rectness of the expression (3.22), we provide some consistency checks in appendix B.2. We

have confirmed the following three points: (i) |ǫµMµ
n,n′ |2 ∝ εµε

∗
νL

µν
n,n′ is a real-valued quan-

tity; (ii) Lµν
n,n′ satisfies the Ward identity, i.e., kµL

µν
n,n′ = kνL

µν
n,n′ = 0; (iii) The rotational

symmetry in the transverse plane is restored in εµε
∗
νL

µν
n,n′ for an arbitrary photon polar-

ization εµ in spite of the use of the Landau gauge, which apparently breaks the rotational

symmetry.

3.3 Polarization-projected lepton tensors

In the matrix element squared (3.12), the lepton tensor (3.22) appears in contraction

with photon polarization vectors εµ, ε∗
ν , and here we discuss the basic behaviors of the

contracted lepton tensors. The magnitudes of the contracted lepton tensors are controlled

by the square of the scalar form factor |Gn,n′ |2. For each photon polarization εµ = εµ
0,±,‖,

– 13 –
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we find

ε0
µε

0∗
ν L

µν
n,n′ = 2(ǫnǫ

′
n′ + pzp

′
z −m2)(|Gn,n′ |2 + |Gn−1,n′−1|2)

− 4|qB|
[

−|k⊥|2|Gn−1,n′ |2 + n|Gn,n′ |2 + n′|Gn−1,n′−1|2
]

,

ε+
µ ε

+∗
ν Lµν

n,n′ = 4(ǫnǫ
′
n′ − pzp

′
z +m2)|Gn,n′−1|2 ,

ε−
µ ε

−∗
ν Lµν

n,n′ = 4(ǫnǫ
′
n′ − pzp

′
z +m2)|Gn−1,n′ |2 ,

ε‖
µε

‖∗
ν L

µν
n,n′ = 2(ǫnǫ

′
n′ + pzp

′
z +m2)(|Gn,n′ |2 + |Gn−1,n′−1|2)

+ 4|qB|
[

−|k⊥|2|Gn−1,n′ |2 + n|Gn,n′ |2 + n′|Gn−1,n′−1|2
]

, (3.23)

where we used an identity [which follows from eq. (B.6)]:

2
√
nn′ Gn,n′G∗

n−1,n′−1 = −|k⊥|2|Gn−1,n′ |2 + n|Gn,n′ |2 + n′|Gn−1,n′−1|2 . (3.24)

Note that the two circularly (±) polarized photons give distinct contracted lepton tensors

(and thus distinct production number of di-leptons) because |Gn,n′−1|2 6= |Gn−1,n′ |2 unless

n = n′ [cf. identities (B.6)]. Note also that the contracted lepton tensors depend only on

the photon transverse momentum |k⊥| and do not depend explicitly on the longitudinal

variables k0 and kz. One may understand, therefore, that basic behaviors of the di-lepton

production are determined by the transverse variables in the system, rather than the lon-

gitudinal ones. This might look reasonable in the sense that magnetic fields never affect

the longitudinal motion. Nevertheless, the longitudinal variables do affect the production

through the kinematics, i.e., the delta function in front of the contracted lepton tensor

in the matrix element squared (3.12). We postpone to discuss effects of the longitudinal

variables and the kinematics until section 4.1.

To get a qualitative understanding of the contracted lepton tensors, we discuss basic be-

haviors of the square of the scalar form factor |Gn,n′ |2, whose explicit expression is given by

|Gn,n′ |2 = |k̄⊥|2|∆n|e−|k̄⊥|2
(

n!

n′!

)sgn(∆n) ∣

∣

∣L
|∆n|
min(n,n′)(|k̄⊥|2)

∣

∣

∣

2
. (3.25)

This form factor |Gn,n′ |2 behaves differently depending on the strength of the magnetic

field compared to the typical resolution scale set by the transverse photon momentum,

i.e., |k̄⊥|2 = |k⊥|2/|2qB|. |Gn,n′ |2 has peaks in the |k̄⊥| dependence originating from an

oscillation of the associated Laguerre polynomial, which is a reminiscent of the transverse

momentum conservation (recall the definition of Gn,n′ with the overlap among the wave

functions (3.4) that yields a delta function in the absence of a magnetic field). The struc-

ture of the peaks deviates from a delta function due to the fermion’s dressed wave functions

in a magnetic field. Further basic properties are summarized as follows.

When |k̄⊥| . 1 (i.e., |k⊥| is small and/or |qB| is large relative to each other), |Gn,n′ |2
is suppressed by the power factor |k̄⊥|2|∆n|. The suppression becomes larger for a larger

|∆n|, and |Gn,n′ |2 eventually vanishes in the limit |k̄⊥| → 0, unless ∆n = 0. Indeed, one

can show that

lim
|k̄⊥|→0

|Gn,n′ |2 = δn,n′

[

Lmin(n,n′)(0)
]2

= δn,n′ , (3.26)
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where L0
n(0) = 1. This behavior is anticipated from the definition (3.4), which just reduces

to the orthonormal relation for the transverse wave function φn,py in the limit |k̄⊥| →
0. Intuitively, this property can be understood from the reminiscent of the transverse-

momentum conservation mentioned above. A dynamical photon with |k⊥| 6= 0 (|k⊥| = 0)

produces a di-lepton carrying a nonzero transverse momentum in total, and hence the

produced fermion and anti-fermion would have distinct (the same) magnitudes of transverse

momentum. This implies that a larger transverse-momentum difference in the produced

fermions requires a larger photon transverse momentum. Therefore, production of di-lepton

with a large |∆n| is suppressed in a small |k̄⊥|.
In the opposite regime |k̄⊥| & 1, |Gn,n′ |2 is suppressed exponentially by the factor

of e−|k̄⊥|2 . This suppression originates from the exponentially small overlap between the

fermion and anti-fermion wave functions in the transverse plane, which are squeezed around

the center of the cyclotron motion with length scale ∼ 1/
√

|qB| (i.e., the Landau quanti-

zation). To be specific, let us take the Landau gauge as an example. In this gauge, the

fermion momentum, and thus the photon momentum, is related to the center coordinate

of the cyclotron motion as ky = py − p′
y = qB(xc − x′

c) [see eq. (3.5)]. Thus, peaks of the

fermions’ transverse wave functions recede from each other when the photon momentum

ky becomes large. The other component kx appears in eq. (3.4) as the Fourier mode of the

overlap between the fermions’ transverse wave functions. The Fourier power spectrum is

exponentially suppressed when the resolution scale kx is much larger than the structure of

the fermions’ transverse wave functions, whose characteristic scale is given by the inverse

of the cyclotron radius ∼ 1/
√

|qB|. Thus, we get the factor of e−|k̄⊥|2 .

4 Di-lepton production by a single photon

We provide more detailed discussions about the di-lepton production by a single photon

with fixed momentum and polarization in a magnetic field. The di-lepton spectrum is

given by the squared amplitude (3.9) with the lepton tensor obtained in eq. (3.22). We

demonstrate that the di-lepton spectrum becomes anisotropic with respect to the magnetic-

field direction and exhibits discrete and spike structures due to the kinematics in the Landau

quantization and that the production with a lowest-Landau level fermion or anti-fermion

is strictly prohibited, depending on the photon polarization and/or the fermion mass due

to the conservation of spin or chirality. Note that in realistic situations such as ultra-

peripheral heavy-ion collisions, one should consider a photon source or distribution and

convolute it with the di-lepton production rate to make some predictions, which will be

discussed in a forthcoming publication.

Before proceeding, we recall that the transverse momentum p
(′)
y is canonical momen-

tum and is a gauge-dependent quantity in the Landau gauge (2.21). Also, the transverse

components of the kinetic momentum are not conserved, as one can imagine from the clas-

sical cyclotron motion. These facts mean that each component of the transverse fermion

momenta p
(′)
x and p

(′)
y is not a good quantum number nor measurable. Within the current

set-up of problem with a constant magnetic field, one can only measure the norm of the

kinetic transverse momentum, assuming that the magnetic field is adiabatically damped

out in the asymptotic future.
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4.1 Spikes in the longitudinal-momentum distribution

We first discuss how the Landau quantization manifests itself in kinematics (or more specif-

ically, the energy-momentum conservation) in the photon-to-di-lepton conversion process.

We show that the fermion and anti-fermions’ longitudinal momenta can only take discrete

values because of the kinematics, resulting in spike structures in the distribution.

The kinematical constraints are incorporated in the delta function in the squared

amplitude (3.9). Because of the delta function, the di-lepton production occurs only when

k0 = ǫn + ǫ′n′ (4.1)

is satisfied, which is nothing but the energy conservation. Noting the longitudinal momen-

tum conservation p′
z = kz − pz, one can explicitly solve the condition (4.1) and finds that

the kinematically allowed pz for given k0, kz reads

pz =
kz(k2

‖ +m2
n −m2

n′)± k0

√

(

k2
‖ − (m2

n +m2
n′)

)2 − 4m2
nm

2
n′

2k2
‖

≡ p±
n,n′ , (4.2)

where

mn ≡ ǫn(pz = 0) =
√

m2 + 2n|qB|. (4.3)

It is evident that only two discrete values are allowed for pz = p+
n,n′ and p−

n,n′ (accordingly,

p′
z = kz − p±

n,n′ ≡ p′±
n,n′), once photon momenta k0, kz and the Landau levels n, n′ are spec-

ified. In other words, while magnetic fields do not directly quantize fermions’ longitudinal

momenta, the energy-momentum conservation and the Landau quantization force the lon-

gitudinal momenta to take discrete values. For p±
n,n′ to be real-valued, the inside of the

square root must be non-negative. This condition sets a threshold energy of the incident

photon as6

k2
‖ ≥ (mn +mn′)2 . (4.4)

The right-hand side is the smallest possible invariant mass of a di-lepton. As the system

is boost invariant along the magnetic field, k2
‖ on the left-hand side is boost invariant and

gives the minimum photon energy for the di-lepton production in the Lorentz frame such

that kz = 0. Note that both of the two on-shell momenta p±
n,n′ take the same limiting value

at the threshold energy (4.4) as

p±
n,n′ → kz

mn

mn +mn′
. (4.5)

We discuss more details about the discretized fermion’s on-shell longitudinal momen-

tum p±
n,n′ . The left column in figure 2 shows p±

n,n′ as a function of the photon energy

6This semi-positivity condition itself admits another region k2
‖ ≤ (mn − mn′ )2, which is, how-

ever, not compatible with the energy conservation (4.1). The energy conservation tells us that k2
‖ =

(
√

p2
z + 2n|qB| + m2 +

√

(kz − pz)2 + 2n′|qB| + m2)2 ≥ (mn + mn′ )2, where we evaluated the boost-

invariant quantity k2
‖ in the Lorentz frame such that kz = 0.
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normalized by the fermion mass k0/m. The photon momentum kz and the magnetic

field strength |qB| are also normalized in the same manner and are fixed in each plot as

(kz/m, |qB|/m2) = (0, 1) [first row], (0, 3) [second row], and (3, 3) [third row]. Each colored

curve corresponds to each pair of Landau levels (n, n′). The solid and dotted curves show

p+
n,n′ and p−

n,n′ , respectively. The threshold energy (4.4) is the point where p+
n,n′ = p−

n,n′

holds [cf. eq. (4.5)], i.e., where the solid and dotted curves merge. We find the following:

• The di-lepton spectrum converted from a photon carrying a fixed energy k0/m is

given as a superposition of p±
n,n′ allowed for each pair of (n, n′). The spectrum is

given as a set of intersections among the curves and a vertical line at k0/m = const.,

and looks like a bunch of spikes with a vanishing width. Namely, the produced di-

leptons exhibit a discrete spike spectrum in the longitudinal direction. As we vary

other continuous parameters and/or consider convolution with some photon source,

the spikes may acquire a finite width. An incident photon carrying a larger energy can

be converted to di-leptons in higher Landau levels. Those are the common features

in the three panels.

• When kz = 0 (first and second rows), the plots are symmetric in the reflection with

respect to the horizontal axis because p+
n,n′ + p−

n,n′ = kz = 0 due to the momentum

conservation. When kz > 0 (third row), the spectrum is shifted to the positive

pz direction. This is a boost effect by the finite kz with respect to the center-of-

momentum frame of a di-lepton where kz = pz + p′
z = 0 (see figure 3). Also, there

are two-fold degeneracies p±
n,n′ = p±

n′,n for kz = 0 because of the reflection symmetry,

while they are resolved by nonzero kz 6= 0.

• Since the spacings of the energy levels in the Landau quantization increase with

|qB| (which we call Landau-level spacings), we find larger spacings between adjacent

p±
n,n′ ’s in the second and third rows (|qB|/m2 = 3) as compared to the first row

(|qB|/m2 = 1). In particular, in a very strong magnetic field such that |qB| >
[(

√

|k2
‖| −m)2 −m2]/2, only the lowest Landau level n = n′ = 0 can contribute to

the di-lepton production, and there are only two discrete spikes in the longitudinal

pz-distribution at pz = p±
0,0 = [kz ± sgn(k2

‖)k0
√

1− 4m2/k2
‖]/2. Note that the lowest-

Landau energy level ǫ0 is independent of qB, and p±
0,0 stays in the low-energy regime

even in the (infinitely) strong-field limit. For weak magnetic fields, the spacings

between p±
n,n′ ’s get smaller, i.e., many Landau levels can contribute to the di-lepton

production, which smears out the spike structures.

4.2 Zenith-angle distribution

One can predict the zenith-angle distribution measured from the direction of the magnetic

field (see figure 3):

φ±
n,n′(k‖)≡ tan−1

√

ǫ2n−(p±
n,n′)2−m2

p±
n,n′

, φ′±
n,n′(k‖)≡ tan−1

√

ǫ′2n′−(p′±
n,n′)2−m2

p′±
n,n′

, (4.6)
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For (kz/m, |qB|/m2) = (0, 1)
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For (kz/m, |qB|/m2) = (3, 3)

0 2 4 6 8

-3

-2

-1

0

1

2

3

k0/m

p
n
,n
'

±
/m

(n,n')
(0,0)

(1,0)

(0,1)

(2,0)

(0,2)

(1,1)

(3,0)

(0,3)

(4,0)

(0,4)
0 2 4 6 8

0

π
4

π
2

3 π
4

π

k0/m

ϕ n,n'±

(n,n')
(0,0)

(1,0)

(0,1)

(2,0)

(0,2)

(1,1)

(3,0)

(0,3)

(4,0)

(0,4)

Figure 2. The longitudinal momentum p±
n,n′ (left) and zenith angle φ±

n,n′ (right) allowed for the di-

lepton to take, when converted from a photon carrying energy k0 and momentum kz with parameter

sets: (kz/m, |qB|/m2) = (0, 1) [first row], (0, 3) [second row], and (3, 3) [third row]. Only the first

ten pairs of Landau levels are shown in ascending order with respect to the threshold energy (4.4)

from red (which is always the lowest Landau level pair n = n′ = 0) to blue.
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pz

0 pn,n'
+pn,n'

-

ϕn,n'+

ϕn,n'-

ϵn2 -pn,n'± 2 - m2 = 2 n qB

kz=0

qB

0

kz>0

Figure 3. A schematic picture of the on-shell fermion momentum p±
n,n′ and the corresponding

zenith angle φ±
n,n′ for a vanishing photon longitudinal momentum kz = 0 (left) and the boost effect

by a nonzero kz > 0 (right). Shown is the case for n = n′ where the two cones appear in the same

size at kz = 0.

for a fermion and anti-fermion, respectively. The numerator
√

ǫ
(′) 2

n(′) − (p
(′)±
n,n′)2 −m2 =

√

2n(′)|qB| corresponds to the magnitude of the transverse momentum under the Lan-

dau quantization. The range of the angle is defined as 0 ≤ φ
(′)±
n,n′ ≤ π. Both of φ±

n,n′ and

φ′±
n,n′ are discrete quantities for a given photon momentum because of the discretization

of ǫ(′) and p
(′)
z , and each of them takes two values corresponding to p

(′)±
n,n′ . Note that φ′±

n,n′

is obtained from φ±
n,n′ just by exchanging the labels as n ↔ n′ and + ↔ −, because

p′±
n,n′ = p∓

n′,n under those exchanges as a manifestation of the CP symmetry. Thus, it is

sufficient to focus on φ±
n,n′ in the following. Remark again that one cannot predict the

azimuthal-angle distribution, which is equivalent to predicting k⊥-distribution (not |k⊥|-
distribution), within the current set-up of the problem with a constant magnetic field. To

get this information, one needs to know when the produced fermions are released from

the cyclotron motion, implying that one has to go beyond the constant magnetic field and

solve the dynamics with a time-dependent magnetic field damped out in time. This is a

dynamical and process-dependent issue beyond the scope of the present work.

The right column in figure 2 shows the zenith-angle distribution φ±
n,n′ . The plotting

style is the same as the left column for p±
n,n′ , and one may enjoy correspondences between

p±
n,n′ and φ±

n,n′ in the left and right columns. We find the following:

• In the lowest Landau level n = 0, the produced fermion moves precisely along the

magnetic-field direction, and thus φ±
0,n′ = 0 and π for sgnφ±

0,n′ > 0 and < 0, re-

spectively. On the other hand, fermions with higher Landau levels are emitted with

a finite transverse momentum, and hence 0 < φ±
n,n′(k‖) < π. Note that there are

discontinuous jumps in the lowest Landau level n = 0 for kz 6= 0 in the third row.

This behavior just originates from the change of the sign of p−
n,n′ (p+

n,n′) for kz > 0

(kz < 0) due to the boost effect; see the left column. Those jumps, however, do not

occur for massless fermions in the lowest Landau level, as the Lorentz boost cannot

change the sign of their momenta.
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• The zenith-angle distribution is limited to few discrete directions when the photon

energy is small, where fermions can take only a few number of low-lying Landau

levels due to the threshold condition (4.4). As we increase the photon energy, more

number of higher Landau levels start contributing to the production. This results in

the smearing of the spike structures in the zenith-angle distribution with narrower

spacings.

• Comparing panels in the first (|qB|/m2 = 1) and second (|qB|/m2 = 3) rows, we

understand that major effects of strong magnetic fields are two-fold: (i) shift of

φ±
n,n′ to higher photon energies, and (ii) squeezing of φ±

n,n′ → π/2. Namely, (i) the

photon threshold energy (4.4) is lifted up except for the lowest Landau level when

|qB| is increased. Therefore, the contributions from higher Landau levels are shifted

to higher photon energies (rightward), and we find only the lowest-Landau level

contribution in the strong field limit
√

|qB| ≫ k2
‖. (ii) Under a stronger magnetic

field, a larger portion of the photon energy need to be converted to the fermion

transverse energy
√

2n|qB|. Only the remaining portion can be converted to the

longitudinal momentum pz, and thus the magnitude of pz is reduced. Therefore, the

angle φ±
n,n′ for each pair of Landau levels approaches π/2 as we increase |qB|. This

tendency is seen as squeezing of a bunch of curves toward the center at π/2.

• When kz = 0 (the first and second rows) and thus p+
n,n′ = −p−

n,n′ , we find that

φ+
n,n′ + φ−

n,n′ = π holds. This is a consequence of the reflection symmetry with

respect to the transverse plane or a flip of the magnetic-field direction (cf. figure 3).

When kz > 0 (the third row), the reflection symmetry is broken and the curves in

the plot become asymmetric with respect to the horizontal axis. This originates from

the positive increase of p±
n,n′ in the left column and is a consequence of the Lorentz

boost of the cones in the longitudinal direction (see figure 3), i.e., one of the cones

shrinks while the other expands.

We emphasize that the kinematics in the Landau quantization is essential in the above ob-

servations. Thus, the results obtained in the last two subsections 4.1 and 4.2 are insensitive

to the size of the transverse photon momentum |k⊥|, as the kinematics is determined by the

longitudinal variables k0 and kz only. The di-lepton production acquires |k⊥|-dependence

only via the scalar form factor Gn,n′ , as we have discussed in section 3.3 and will further

demonstrate below.

4.3 Inclusive photon-to-di-lepton conversion rate

Having explained the basic behaviors of the contracted lepton tensors in section 3.3 and

the kinematics of the di-lepton production in sections 4.1 and 4.2, we discuss more details

about the di-lepton production by investigating the inclusive photon-to-di-lepton conver-
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sion rate D. It is obtained by integrating the squared amplitude (3.9) as

Dλ(k) ≡
∑

n,n′

∑

s,s′

∫

dpzdpy

(2π)2(2ǫn)

∫ dp′
zdp

′
y

(2π)2(2ǫn′)

|εµqMµ|2
2k0(2π)3δ(3)(0)

=
∑

n,n′






q2T
|qB|
2π

∑

pz=p±
n,n′

Θ( k2
‖ − (mn +mn′)2 )

8k0|pzǫ′n′ − (kz − pz)ǫn|
[ελ

µε
λ∗
ν Lµν

n,n′ ]
∣

∣

∣

p′
z=kz−pz







≡
∑

n,n′

Dn,n′

λ (k) , (4.7)

where we used
∫

dpy = |qB|Lx and introduced λ = 0,±, ‖ and Θ, representing the four

photon polarization mode and a step function, respectively. We also used

δ(ǫn + ǫ′n′ − k0) =
∑

α=±

δ(pz − pα
n,n′)

∣

∣

∣

∣

∣

ǫnǫ
′
n′

pzǫ′n′ − (kz − pz)ǫn

∣

∣

∣

∣

∣

Θ( k2
‖ − (mn +mn′)2 ) , (4.8)

which accounts for the kinematics discussed in the previous subsections. As explained in

section 3, the coupling between the lepton tensor (3.22) and an incident photon depends

on the photon polarization mode via the tensor structures such as Lµν
‖ and Qµν

± . Plugging

eq. (3.23) into eq. (4.7), we obtain the polarization-projected conversion rates

Dn,n′

0 = q2T
|qB|
2π

∑

pz=p±
n,n′

Θ( k2
‖ − (mn +mn′)2 )

4k0|pzǫ′n′ − (kz − pz)ǫn|
[

(ǫnǫ
′
n′ + pzp

′
z −m2)(|Gn,n′ |2 + |Gn−1,n′−1|2)

− 2|qB|
(

−|k̄⊥|2|Gn−1,n′ |2 + n|Gn,n′ |2 + n′|Gn−1,n′−1|2
) ]

p′
z=kz−pz

,

(4.9a)

Dn,n′

+ = q2T
|qB|
2π

∑

pz=p±
n,n′

Θ( k2
‖ − (mn +mn′)2 )

4k0|pzǫ′n′ − (kz − pz)ǫn|
[

2(ǫnǫ
′
n′ − pzp

′
z +m2)|Gn,n′−1|2

]

p′
z=kz−pz

,

(4.9b)

Dn,n′

− = q2T
|qB|
2π

∑

pz=p±
n,n′

Θ( k2
‖ − (mn +mn′)2 )

4k0|pzǫ′n′ − (kz − pz)ǫn|
[

2(ǫnǫ
′
n′ − pzp

′
z +m2)|Gn−1,n′ |2

]

p′
z=kz−pz

,

(4.9c)

Dn,n′

‖ = q2T
|qB|
2π

∑

pz=p±
n,n′

Θ( k2
‖ − (mn +mn′)2 )

4k0|pzǫ′n′ − (kz − pz)ǫn|
[

(ǫnǫ
′
n′ + pzp

′
z +m2)(|Gn,n′ |2 + |Gn−1,n′−1|2)

+ 2|qB|
(

−|k̄⊥|2|Gn−1,n′ |2 + n|Gn,n′ |2 + n′|Gn−1,n′−1|2
) ]

p′
z=kz−pz

.

(4.9d)

Note that Dn,n′

+ = Dn′,n
− (but Dn,n′

+ 6= Dn,n′

− in general) and that D+ = D− after the

summation over n, n′. This is a natural manifestation of the fact that the lepton tensor does

not contain any parity-breaking effect. At the algebraic level, one can show those identities
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by using the facts that |Gn,n′−1|2 = |Gn′−1,n|2 [cf. eq. (3.6)] and that the denominator

|pzǫ
′
n′ − (kz − pz)ǫn| as well as the other parts is invariant with respect to simultaneous

interchanges between n, n′ and between p±
n,n′ , p

∓
n,n′ (cf. p±

n′,n = kz − p∓
n,n′).

In the following, we examine dependences of the conversion rates Dλ on the physical

parameters such as the photon momentum and the magnetic field strength. We normalize

all the dimensionful parameters by the fermion mass assuming that m 6= 0, except in

section 4.3.4 where we discuss the massless limit (m→ 0).

4.3.1 Photon-energy dependence

We show the photon-energy dependence of the conversion rates Dλ in figure 4, with different

sets of photon longitudinal momentum kz/m and magnetic field strength |qB|/m2. The

photon transverse momentum is fixed at |k⊥|/m = 1, and dependences on |k⊥| will be

discussed in section 4.3.2. In each plot, the colored curves show contributions from each

pair of Landau levels Dn,n′

λ (the lowest Landau level pair n = n′ = 0 is in red, and the

color changes to blue as we go to higher Landau level pairs), while the black curve shows

the total contribution summed over the Landau levels Dλ. Note that we plotted D± in a

single plot because Dn,n′

+ = Dn′,n
− and D+ = D−, as we remarked below eq. (4.9).

The most important message of figure 4 is that there are an infinite number of thresh-

olds for the di-lepton production, at which points the conversion rates exhibit resonant

behaviors, i.e., the spike structures as a function of k0. This is essentially the same as the

cyclotron resonances in quantum mechanics under a weak magnetic field, and the presence

of such thresholds is a direct manifestation of the Landau quantization. The locations of

the thresholds are given by eq. (4.4) and are specified by the colored dots on the hori-

zontal axis in the plots. One observes that the interval between two adjacent thresholds,

that is nothing but the Landau-level spacing, increases as one increases the magnetic field

strength, as is evident from the comparison between the first row (|qB|/m2 = 1) and the

second and third rows (|qB|/m2 = 3) in figure 4. Also, comparing the second (kz/m = 0)

and third (kz/m = 3) rows in figure 4, one notices that the locations of the thresholds shift

to higher photon energies when the photon longitudinal momentum is nonvanishing kz 6= 0.

This is because a nonzero kz requires a nonzero di-lepton longitudinal momentum for the

momentum conservation, which costs an additional energy for the di-lepton production.

Next, we look more closely into the resonant behaviors at the thresholds and analyt-

ically show that the heights of the spikes are divergent if m 6= 0. As the boost-invariant

photon energy k2
‖ approaches each threshold (4.4) from the above k2

‖ → (mn +mn′)2 + 0+,

the on-shell fermion longitudinal momentum (4.2) behaves as

p±
n,n′ = kz

mn

mn +mn′
± k0

√
mnmn′

(mn +mn′)2
δk‖ +O(δk2

‖) , (4.10)

where δk2
‖ → 0+ is the deviation from the threshold such that

δk‖ ≡
√

k2
‖ − (mn +mn′)2 . (4.11)

Then, the common factor in the denominators of the conversion rates (4.9) goes to zero as

|pzǫ
′
n′ − (kz − pz)ǫn| =

√
mnmn′δk‖ +O(δk3

‖)→ 0+ . (4.12)
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Figure 4. Photon-energy dependences of the conversion rates: D0 (left), D± (middle), and D‖

(right). The photon transverse momentum is fixed at |k⊥|/m = 1, and the other parameters are at

(kz/m, |qB|/m2) = (0, 1) [first row], (0, 3) [second row], and (3, 3) [third row]. The colored dots on

the horizontal axes indicate the threshold energies (4.4) in ascending order from red, representing

the lowest threshold for the lowest Landau level pair n = n′ = 0, to blue for higher Landau level

pairs. The colored lines originating from each dot show the contributions from each Landau level

pair Dn,n′

λ . The black lines show the total contribution summed over the Landau levels Dλ.

Therefore, the conversion rates diverge ∼ (numerator)/δk‖ → ∞ as the photon energy

approaches every threshold, unless the numerator is O(δk‖). The numerator is always

O(1) for m 6= 0 but can be O(δk‖) for m = 0 because of the linear dispersion of the lowest

Landau level, as we will discuss in section 4.3.4. This divergent behavior is seen as the

spike structures in figure 4, and its inverse square-root dependence (∼ 1/δk‖) is a typical

threshold behavior in the (1+1) dimensions.

We remark that the di-lepton production with a lowest Landau level fermion and/or

anti-fermion (i.e., n or n′ = 0) is prohibited for particular photon polarization modes,
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and the corresponding conversion rates are vanishing even above the threshold.7 Namely,

circularly polarized photons with λ = + (λ = −) do not couple to n′ = 0 anti-fermion

(n = 0 fermion), andDn,0
+ = D0,n′

− = 0 for any n, n′. Physically, this is because those photon

polarization modes carry nonzero spin components ±1 along the magnetic field, whereas

the di-lepton states with n or n′ = 0 carry either spin zero or ∓1 [recall discussions below

eq. (3.14)]. On the other hand, photons with λ = 0, ‖ can couple to di-leptons with n or

n′ = 0, since those photons can have the same spin state as that of di-leptons. Yet the case

of D0,0
0 is somewhat exceptional in that it is vanishing at kz = 0. Indeed, when n = n′ = 0,

a factor in the numerator of D0,0
0 can be evaluated as ǫnǫ

′
n′ +pzp

′
z−m2 = k2

z/2+O(δk2
‖) and

the other numerator factors are O(1). Taking into account the denominator factor (4.12),

we find D0,0
0 ∝ k2

z/(δk‖
√
mnmn′), which is vanishing at kz = 0.

4.3.2 Transverse-momentum dependence

We provide quantitative discussions about the |k⊥|-dependence of the conversion rates (4.9),

which is determined by the scalar form factor |Gn,n′ |2 (i.e., the overlap between the pro-

duced fermion and anti-fermion transverse wave functions); see section 3.3 for analytical

discussions. Figure 5 demonstrates that the conversion rate for each pair of Landau levels

Dn,n′

λ is suppressed for large values of |k⊥| → ∞ and exhibits the peaked structure, which is

the reminiscent of the transverse momentum conservation modified by the magnetic field.

The peak location is determined by the Landau levels appearing as indices of the Laguerre

polynomials in |Gn,n′ |2. We took n = 1 and n′ = 0, 1, 2, 3, 4, 5 just for a demonstration.

Among those cases, one finds that D1,0
+ = 0 identically due to the reason for spin configura-

tions as we have remarked in section 4.3.1. One also finds that the conversion rates vanish

in the limit of |k⊥| → 0 except for D1,2
+ , D1,0

− , and D1,1
‖ . This is a consequence of the prop-

erty discussed around eq. (3.26); in general, only Dn,n
0 , Dn,n+1

+ , Dn+1,n
− , and Dn,n

‖ can be

nonvanishing in the limit of |k⊥| → 0. Note that the indices of the form factor Gn,n′ appear-

ing in the conversion rates (4.9) are not necessarily (n, n′) but are shifted by some terms,

because the di-lepton spin configurations are different depending on the photon polariza-

tions. When one further takes the limit of kz → 0, Dn,n
0 , and thus D1,1

0 in figure 5, vanishes

because Dn,n
0 ∝ ǫnǫ′n + pzp

′
z −m2 − 2n|qB| = O(k2

z), while the other three stay finite.

The Landau-level summed conversion rates Dλ, shown in figure 6, exhibit an oscillating

behavior, resulting from superposition of the peaks in each Landau-level contribution Dn,n′

λ .

The structure of the oscillation changes as the parameters vary, i.e., the oscillation becomes

(i) finer for larger photon energies k0 and (ii) more moderate for stronger magnetic fields.

Those changes are attributed to the number of Landau levels that can be excited with a

given photon energy. Namely, the larger photon energy can excite the more higher Landau

levels, so that the oscillation acquires a finer structure with contributions of higher modes.

Also, the number of contributing Landau levels decreases as we increase |qB|/m2, with

which the Landau-level spacing increases. In particular, only the lowest-lying pair of the

Landau levels, (n, n′) = (1, 0) or (0, 1), can contribute when the photon energy is small and

7Note that we here concentrate on the massive case (m 6= 0). There are further prohibitions in the

massless limit m → 0 due to a chirality reason, which we will show in section 4.3.4.
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Figure 5. Photon transverse momentum |k⊥|-dependences of the conversion rates Dn,n′

λ . The

Landau level of the fermion is fixed at n = 1, while that of the anti-fermion runs on n′ = 0, 1, 2, 3, 4, 5.

Other parameters are fixed at |qB|/m2 = 1, k0/m = 10, and kz/m = 0.

the magnetic field is strong (e.g., the red line in the bottom right panel for k0/m = 3 and

|qB|/m2 = 3). Note that the conversion rates Dλ fall off in a large |k⊥|/m, and they fall

off slower for larger k0. This is because larger k0 can excite higher Landau levels having

large |∆n|, which are favorably produced with a large |k⊥| because of the reminiscent of

the transverse momentum conservation.

4.3.3 Magnetic-field dependence

We discuss dependences on the magnetic field strength. As shown in figure 7, the conversion

rates Dλ have spike structures with respect to the magnetic field strength |qB| as well

and there exists an upper limit |qB|max for each pair of Landau levels above which the

production is prohibited. Those behaviors are determined by the threshold condition (4.4),

which tells us that fewer Landau levels can contribute to the production as the magnetic

field strength |qB|, and accordingly the Landau-level spacing, is increased. Namely, when

|qB| is increased from a certain value with a fixed photon energy k0 (or equivalently k2
‖),

peaks appear when every pair of higher Landau levels stop contributing to the di-lepton

production at |qB| = |qB|max. In the end (i.e, in the strong field limit), only the lowest-

lying pair with n = n′ = 0 can satisfy the threshold condition (4.4), which is independent
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Figure 6. The photon transverse momentum |k⊥|-dependences of the conversion rates summed

over the Landau levels Dλ at kz/m = 0. The lines with different colors distinguish the photon

energy k0/m = 3, 5, 7, and 9. The magnetic field strengths are taken as |qB|/m2 = 1 (top) and = 3

(bottom).

of |qB| for this pair and is satisfied as long as k2
‖ ≥ 4m. In other words, there is no upper

limit |qB|max for n = n′ = 0. For the other pairs of Landau levels, one can find the upper

limit |qB|max by solving the threshold condition (4.4) in terms of |qB| as

|qB|max =



























k2
‖ − 4m2

8n
for n = n′ 6= 0

(n+ n′)k2
‖ − 2

√

(n− n′)2m2k2
‖ + nn′k4

‖

2(n− n′)2
for n 6= n′

, (4.13)

where k4
‖ = (k2

‖)2 and k2
‖ > 4m2 are understood. |qB|max is an increasing function of k0

or k2
‖, meaning that more energetic photons can excite more energetic di-leptons under

stronger |qB|. Note that the positivity of the upper limits |qB|max (4.13) is guaranteed as

long as k2
‖ > 4m2.

The summed conversion rates Dλ as well as the contributions from each pair of the

Landau levels Dn,n′

λ increase with qB, roughly, linearly. This is because the phase-space

volume in a constant magnetic field is proportional to the magnetic field strength as
∫

d2p⊥ ∝ |qB|
2π

∑

n, where the factor |qB|/2π is the so-called the Landau degeneracy factor

and is a manifestation of the Landau quantization.
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Figure 7. The magnetic-field dependence of the conversion rates D0 (left), D± (middle), and D‖

(right). The parameters are fixed as k0/m = 3, |k⊥|/m = 1 and kz/m = 0. The colored dots

on the horizontal axes indicate the upper limits for the magnetic field strength |qB|max (4.13) in

descending order from red (which is always for the lowest Landau level pair n = n′ = 0) to blue.

The colored lines originating from each dot show the contributions from each Landau level pair

Dn,n′

λ , and the black lines the total value summed over the Landau levels Dλ.
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Figure 8. The conversion rates D0 (left), D± (middle), and D‖ (right) in the massless limit m = 0,

plotted against the photon energy k0/|qB|1/2. The other parameters are fixed at |k⊥|/|qB|1/2 = 1

and kz/|qB|1/2 = 0. As in figure 4, the colored dots on the horizontal axes indicate the threshold

energies (4.4) in ascending order from red to blue. The colored lines originating from each dot show

the contributions from each Landau level pair Dn,n′

λ , and the black lines the total value summed

over the Landau levels Dλ.

4.3.4 Massless limit

So far, we have used the fermion mass parameter m just to make the other dimensionful

quantities (such as the photon energy k0 and the magnetic field strength |qB|) dimension-

less. Such a treatment makes sense only when m 6= 0, and we here discuss the massless limit

(m→ 0) separately. While the basic features of the di-lepton production are unchanged in

the massless limit, we highlight several differences as demonstrated in figure 8.

In the massless limit, the di-lepton production in the lowest Landau level pair n=n′ =0

is strictly prohibited, regardless of the photon polarization λ. The physical reason behind

this prohibition is the absence of the chirality mixing in a strictly massless theory. Namely,

fermions and anti-fermions in the lowest Landau level belong to different chirality eigen-

states in a massless theory, and are not directly coupled with each other. One can un-

derstand this statement from the spin polarization and the kinematics. Spin in the lowest

Landau level is polarized due to the Zeeman effect, and thus the spins of fermions and

– 27 –



J
H
E
P
0
1
(
2
0
2
1
)
0
9
3

anti-fermions are polarized in the opposite direction to each other. In addition, if di-lepton

production occurred, the produced fermion and anti-fermion would recede from each other

in a back-to-back direction in the center-of-momentum frame of the di-lepton,8 indicat-

ing that the fermion and anti-fermion would have the same helicity. Indeed, a fermion

and an anti-fermion carrying the same helicity are created/annihilated by Weyl spinors in

different chirality eigenstates. Therefore, the di-lepton production in the lowest Landau

level cannot occur, unless there is mixing between the right and left chirality eigenstates

via a finite mass term. In case of vector theories, di-fermion production in this massless

channel also contradicts with the chiral symmetry or the conservation of axial charge (at

the classical level). A similar prohibition mechanism is known as “helicity suppression” in

the leptonic decay of charged pions [45, 46]. At the algebraic level, this statement can be

recognized as follows: there are three scalar form factors, Gn,n′ , Gn−1,n′ , and Gn−1,n′−1, in

the conversion rates (4.9), among which only Gn,n′ can be nonvanishing for n = n′ = 0.

However, the coefficients in front of |G0,0|2 identically vanishes in the massless limit, i.e.,

ǫ0ǫ
′
0 + pzp

′
z ± m2 = O(m2). Thus, D0,0

λ = 0 holds for any photon polarization λ. This

limiting behavior coincides with the above prohibition mechanism in a strictly massless

theory (in spite of the fact that the naive massless limit does not reproduce the correct

dispersion relation of the lowest Landau level in a massless theory ǫ0 = ±pz with signs for

the right and left chirality).

Another distinct feature in the massless limit is that the resonances at the thresholds

take finite values, unlike m 6= 0 case that we have discussed in section 4.3.1. Remember

the discussion below eq. (4.12), in which we claimed that even if the common denominator

factor in the conversion rates (4.9) is vanishing |pzǫ
′
n′− (kz−pz)ǫn| = O(δk‖), the rates are

not necessarily divergent if the other factors in the numerator are also vanishing. This is

actually the case in the massless limit m→ 0 when either fermion or anti-fermion is in the

lowest Landau level (i.e., n or n′ = 0), as shown in figure 8. Indeed, the common numerator

factors ǫnǫ
′
n′ + pzp

′
z ±m2 become O(δk‖) because of the linear dispersion relation of the

lowest Landau level in the massless limit ǫ0 = |p±
0,n′ | → O(δk‖) and ǫ′0 = |p′±

n,0| → O(δk‖)

at the thresholds.

5 Summary and outlook

5.1 Summary

We have studied the di-lepton production rate from a single photon under a constant strong

magnetic field. In section 3, we have analytically evaluated the squared matrix element for

the photon-to-di-lepton conversion vertex by the use of the Ritus-basis formalism (reviewed

in section 2), in which the mode expansion is organized with the eigenstates of the Dirac

operator. This means that the Dirac operator is diagonalized without any perturbative

expansion with respect to the interaction with the strong magnetic field. Therefore, we

have taken into account the interactions between the di-lepton and the strong magnetic

8One can safely take the center-of-momentum frame kz = 0, since the incident photon must be time-like

in the (1 + 1)-dimensional sense k2
‖ > 0 to produce di-leptons because of the threshold condition eq. (4.4).
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field to all orders in the QED coupling constant non-perturbatively (see figure 1). This

treatment is necessary when the magnetic field is so strong that its strength compensates

the smallness of the coupling constant. On the other hand, we have included the coupling

of the incident dynamical photon to the di-lepton at the leading order in the coupling

constant and regards mutual interactions between the fermion and anti-fermion as higher-

order corrections. These perturbative treatments are justified as long as the QED coupling

constant is small, as in the usual perturbation theory.

The squared matrix element (3.9) is given as a product of the lepton tensor Lµν
n,n′ and

delta functions, accounting for the kinematics of the production process (i.e., the energy

and momentum conservation). We have established the analytical expression of the lepton

tensor (3.22) together with the scalar form factor (3.7) to all order of the Landau-level

summation. Those analytical expressions enable us to write down an explicit formula for

the conversion rates of a single photon into a di-lepton D [e.g., eq. (4.9) for the polarization-

projected ones]. Notably, we have confirmed in appendix B that the obtained lepton tensor

and thus the conversion rates possess the rotational invariance with respect to the direction

of the magnetic field and the gauge invariances with respect to both the incident dynamical

photon and the external magnetic field, although our calculation has been carried out in

the Landau gauge that superficially breaks those symmetries in intermediate steps of the

calculation. Those rigorous consistency checks qualify our results.

In section 4, we have discussed quantitative aspects of the di-lepton production. First,

we have discussed how the kinematics of the production process affects the di-lepton spec-

trum in the final state. We have shown that not only the transverse momentum of the

produced fermions |p⊥| →
√

2n|qB| but also the longitudinal one pz → p±
n,n′ is discretized,

because of the energy conservation. As a result, the di-lepton spectrum has spike structures

in the longitudinal-momentum distribution as well as in the (Landau-quantized) transverse-

momentum distribution. We have also discussed the di-lepton spectrum in terms of the

zenith angle φ that is defined as the emission angle of the fermions measured from the

magnetic-field direction and thus succeeds the spike structures.

Finally, we have investigated the inclusive conversion rates D of a single photon, car-

rying a fixed polarization and momentum, into di-leptons. The conversion rates exhibit

spikes located at the threshold photon energy specified by each pair of the Landau levels.

In case of a massive fermion (m 6= 0), the height of the spikes is infinite for any pair of

Landau levels (n, n′); this is a typical threshold behavior in the (1 + 1)-dimensions. On

the other hand, in the massless case, the height is finite when either of a pair is in the

lowest Landau level (n = 0 or n′ = 0). In particular, the di-lepton production is strictly

prohibited for massless fermions when both of a pair is in the lowest Landau levels, which is

an analogue of the so-called helicity suppression. We have confirmed all these fundamental

behaviors with analytic expressions.

5.2 Outlook

Having established the fundamental formulas with clear physical interpretations, one can

proceed to investigate phenomenological consequences in, e.g., relativistic heavy-ion colli-

sions, neutron stars/magnetars, and high-intensity lasers. We emphasize that our di-lepton
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production rate predicts not only the photon attenuation rate captured by a complex-

valued refractive index but also the entire di-lepton spectrum within a constant magnetic

field with the complete resolution of the photon-polarization dependences. This differential

information is necessary, for example, to consider a cascade (or avalanche) process in which

the photon-to-di-lepton conversion and its reciprocal reaction occur successively together

with other magnetic-field-induced processes such as the cyclotron radiation. Our results

pave the way toward tracking energy and momentum distributions all the way through

a cascade process induced by a strong magnetic field. More specifically, if one uses, for

example, a kinetic equation to describe the cascade process, our results provide a collision

kernel. Such a cascade process is not only interesting in its own as characteristic dynamics

in a strong magnetic field but also important for understanding actual physics observables

as we mention briefly below.

One of the most interesting applications of our results is relativistic heavy-ion collisions.

Relativistic heavy-ion collisions induces the ever strongest magnetic field in the present uni-

verse, which is of the order of |qB| = O(1 GeV2) just after a collision of the two ions. The

magnetic-field strength depends on the collision geometry and becomes larger for smaller

impact parameters b ց, larger collision energies
√
s ր and larger atomic numbers of the

nuclei Z ր (see, e.g., a review article [47] and references therein). In particular, ultra-

peripheral events provide clear cuts of electromagnetic processes without contaminations

from QCD processes and/or medium effects (see refs. [48–53] for recent theoretical propos-

als and refs. [25–29] for significant progress in the recent measurements with RHIC and the

LHC). Among others, one can study the longitudinal momentum and/or the zenith-angle φ

distribution of di-leptons with respect to those parameters. Also, the fermion-mass depen-

dence of the di-lepton production rate may be an interesting signature of the magnetic-field

effects in analogue with the helicity suppression which explains the dominance of the muon

channel over the electron channel in charged-pion decay modes [45, 46]. In relativistic

heavy-ion collisions, electrons can be regarded as massless particles as compared to the

typical energy scales of the problem, whereas the muon mass is comparable in magnitude

as typical QCD scales such as the pion mass. Therefore, the “helicity suppression” of the

electron pair production in the lowest-Landau levels could give rise to significant modifi-

cations in the low-energy di-lepton spectra. In analogy with the pion decay modes, muons

are more abundantly produced than electrons in between the lowest and the second-lowest

energy thresholds specified by the muon mass and the magnetic-field strength, respectively.

We will report quantitative estimates of those effects in a forthcoming paper.

Another interesting application is neutron stars. Neutron stars, in particular the so-

called magnetars, may have stable strong magnetic fields close to or beyond the critical

field strength of QED eBcr ≡ m2
e in their magnetospheres with me being the electron

mass [31, 54, 55]. Our results imply a strong polarization dependence in photons emitted

from the stars with strong magnetic fields eB & eBcr, where only the parallel polarization

mode (λ =‖) can produce di-leptons, while the strong polarization dependence may be

smeared out in the stars with weaker magnetic fields eB . eBcr. This could serve as a

complementary method to estimate strengths and/or distributions of magnetic fields, which

have been commonly estimated via the so-called P-Ṗ diagram from observation [31, 54, 55].
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Also, our results indicate that strong magnetic-field effects such as the threshold effects

become more prominent near the low-lying Landau-level thresholds than the higher thresh-

olds. To get quantitative understanding of the above expectations, however, it is important

to take into account the aforementioned cascade process induced by a strong magnetic field,

which may amplify the strong-magnetic field effects. We leave this as a future work.

Finally, we discuss implications for laser physics. Thanks to the recent developments in

lasers (e.g., chirped pulse amplification technique [18–20]), available electromagnetic field

strength is rapidly rising and may reach the critical value eBcr in the future. One of the

possible experimental setups to test our predictions is to combine an intense laser with an

electron accelerator, by which energetic photons are supplied via Compton backscatterings

(cf. ref. [56]). At the present, the available magnetic field strength is limited to eB . 10−3×
eBcr [57]. In this weak-field regime, the vacuum dichroism may be controlled solely by the

quantum non-linearity parameter χ ≡
√

|kµFµν |2/m3 rather than the field strength eB (or

the Lorentz invariants F ≡ FµνF
µν/2m4 = (B2 −E2)/m4 and FµνF̃

µν/4m4 = E ·B/m4)

and may be described essentially within the locally constant crossed field approximation,

in which χ 6= 0,F = G = 0 [58]. As the magnetic field strength increases, the pair of the

Lorentz invariants approaches a different class such that F & 1,G = 0. In this class, such

an approximate treatment breaks down and our calculation becomes more appropriate.

One then would observe the strong-magnetic field effects such as the discrete spectra and

squeezed zenith-angle distributions of di-leptons. In general, the cascade process would take

place, giving rise to some modifications to our lowest order prediction. Such modifications

become important for laser fields with a sufficiently large spatial extension, while it would

be suppressed for those with a small spatial extension comparable to or smaller than the

typical mean-free path for radiative processes under strong magnetic fields.
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A Dirac fermions in magnetic fields

A.1 Wave function in the Landau gauge

We derive the wave function in the Landau gauge (2.21) on the basis of the coordinate

representation of the creation and annihilation operators (2.6). Since a constant magnetic

field does not affect the dynamics in the parallel direction, we focus on the transverse part

of the wave function φ.

First, notice that the gauge field (2.21) is independent of the y coordinate, and the

canonical momentum py is a conserved quantity. Therefore, py is a good quantum number

that can be used to label the energy eigenstates. Consequently, the plane-wave part can

be factorized as

φn,py (x, y) = 〈x, y|n, py〉 = eipyyφ̃n,py (x) . (A.1)

Nevertheless, the energy spectrum (2.11) is independent of this conserved momentum and

thus is infinite-fold degenerated for any value of py. This is naturally expected from the

gauge invariance of the energy spectrum since the conservation of py is a specific property

in the Landau gauge. [Remember that we obtained the energy spectrum (2.11) in a gauge-

invariant way.] Such a degeneracy originates from the fact that the translation of the

cyclotron orbits in perpendicular to a constant magnetic field does not cost energy. As

seen below, the conserved canonical momentum divided by the field strength xc = py/qB

serves as the center coordinate of the cyclotron orbits aligned in the x direction.

We shall find the explicitly form φ̃0,py (x) = 〈x|0, py〉. The wave function of the ground

state can be obtained by solving an equation

〈x|â|0, py〉 = 0 . (A.2)

In the Landau gauge, the coordinate representation of the annihilation operator is given by

â = −i ℓ√
2

(

∂

∂x
+ ℓ−2(x̂− xc)

)

= −i 1√
2
e− ξ2

2
∂

∂ξ
e

ξ2

2 , (A.3)

where ξ = (x− xc)/ℓ and ℓ = 1/
√

|qB|. The derivative is assumed to act on what follows

on the right as well as on the Gaussian. The explicit form of the above condition reads

∂

∂ξ

(

e
ξ2

2 φ̃0,py

)

= 0 , (A.4)

which one can solve as

φ̃0,py (ξ) = CLe
− ξ2

2 . (A.5)

The factor of CL = (ℓπ
1
2 )−1/2 comes from the normalization

∫

dx|φ̃0,py (ξ)|2 = 1 . (A.6)
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As familiar in quantum mechanics, the wave function of higher Landau levels can be

obtained by multiplying the creation operators as

φ̃n,py (ξ) = 〈x|(a
†)n

√
n!
|0, py〉 , (A.7)

with the coordinate representation of the creation operator

â† = −i ℓf√
2

(

∂

∂x
− ℓ−2

f (x̂− xc)

)

= −i 1√
2
e

ξ2

2
∂

∂ξ
e− ξ2

2 . (A.8)

Therefore, the wave function for the general Landau level is obtained as

φ̃n,py (ξ) =
1√
n!

(

− i√
2

)n

e
ξ2

2
∂n

∂ξn

(

e− ξ2

2 φ̃0,py (ξ)

)

= CL
in√
2nn!

e− ξ2

2 Hn(ξ) , (A.9)

where the Hermite polynomial Hn is defined by Hn(ξ) = (−1)ne+ξ2 ∂n

∂ξn e−ξ2

Summarizing, we have obtained the wave function for the general Landau level n:

φn,py (ξ, y) = eipyy in
√

1

2nn!π
1
2 ℓf

Hn(ξ) , (A.10)

which is eq. (3.5) in the main text. Notice that xc is the center coordinate of the harmonic

oscillation in the x direction. The other center coordinate yc does not appear in the wave

function. Besides an obvious reason specific to the Landau gauge (2.21), a more essential

reason for the absence of yc is that the translation of the cyclotron orbits in the x and y

directions do not commute with each other due to the Aharonov-Bohm phase. Therefore,

one can take only one polynomial of xc and yc to label the energy eigenstates. The choice

of either xc or yc corresponds to the Landau gauge, while x2
c + y2

c corresponds to another

popular gauge, that is, the symmetric gauge.

The density of degenerated states can be counted in a finite box. Since 0 ≤ xc ≤ Lx,

we have 0 ≤ py ≤ |qB|Lx when sgn(qB) > 0 and −|qB|Lx ≤ py ≤ 0 when sgn(qB) < 0.

Therefore, we get the density of states in each Landau level

1

Lx

∫ |qB|Lx

0

dpy

2π
=
|qB|
2π

. (A.11)

In addition, one should attach the spin degeneracy factor 2 for higher Landau levels.

A.2 Canonical anti-commutation relation for the Dirac field

We show that the anti-commutation relations for the fermion creation and annihilation

operators (2.23) are consistent with the equal-time canonical anti-commutation relation

for the Dirac field. This can be straightforwardly shown as follows. Plugging the Ritus-

basis mode expansion (2.20) into the equal-time anti-commutator, we have

{ψ(x), ψ†(x′)}x0=x′0 =
∑

κ=1,2

∞
∑

n=0

∫

dpz

2π

∫

dpy

2π

1

2ǫn
Rn,py (x⊥)

× [e−ip‖·(x−x′)uκ(pn)ūκ(pn) + eip‖·(x−x′)vκ(p̄n)v̄κ(p̄n)]R†
n,py

(x′
⊥)γ0 .

(A.12)
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Then, by using the completeness of the wave function (2.18), one can arrange the Dirac

spinors as

{ψ(x), ψ†(x′)}x0=x′0

=
∞

∑

n=0

∫

dpz

2π

∫

dpy

2π

1

2ǫn
Rn,py (x⊥)

[

e−ip‖·(x−x′)(/pn
+m) + eip‖·(x−x′)(/̄pn

−m)
]

R†
n,py

(x′
⊥)γ0

=
∞

∑

n=0

∫

dpy

2π
Rn,py (x⊥)R†

n,py
(x′

⊥)

∫

dpz

2π
e−ip‖·(x−x′)

= δ(3)(x− x′)In , (A.13)

where we introduced a “unit matrix”

In =

{

P+ (n = 0)

1lspinor (n ≥ 1)
. (A.14)

To reach the last line, we used an identity

∞
∑

n=0

∫

dpy

2π
Rn,py (x⊥)R†

n,py
(x′

⊥)

=
∞

∑

n=0

∫

dpy

2π

[

φn,py (x⊥)φ∗
n,py

(x′
⊥)P+ + φn−1,py (x⊥)φ∗

n−1,py
(x′

⊥)P−

]

= δ(2)(x⊥ − x′
⊥)In , (A.15)

where we explicitly wrote the label py in the fermion transverse fermion function φn,py for

clarity [which was suppressed in the main text for simplicity, as stated below eq. (2.12)].

This is a manifestation of the completeness in the Landau quantization with the Landau

gauge (2.21),

∞
∑

n=0

∫

dpy

2π
φn,py (x⊥)φ∗

n,py
(x′

⊥) =
∞

∑

n=0

∫

dpy

2π
〈x⊥|n,py〉〈n,py|x′

⊥〉= δ(2)(x⊥−x′
⊥) , (A.16)

and of the spin projection operators P+ + P− = 1 in all the energy levels but the ground

state. Therefore, eq. (A.13) indicates that the Dirac field ψ satisfies the canonical anti-

commutation relation for a Dirac fermion in the higher Landau levels (n ≥ 1) and that for

a Weyl fermion in the ground state (n = 0). In the latter, either upper or lower component

of the Dirac spinor is projected out by P+ on the both sides of the equation, depending on

sgn(qB).

Incidentally, one can also show an identity
∫

d2x⊥Rn,py (x⊥)R†
n′,p′

y
(x⊥)

=

∫

d2x⊥

[

φn,py (x⊥)φ∗
n′,p′

y
(x⊥)P+ + φn−1,py (x⊥)φ∗

n′−1,p′
y
(x⊥)P−

]

= 2πδ(py − p′
y)δn,n′In , (A.17)

according to the orthogonality among the Landau levels:
∫

d2x⊥φn,py (x⊥)φ∗
n′,p′

y
(x⊥) =

∫

d2x⊥〈x⊥|n, py〉〈n′, p′
y|x⊥〉 = 2πδ(py − p′

y)δn,n′ . (A.18)
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B Consistency checks for the conversion amplitude

B.1 The Ward identity at each pair of Landau levels

We discuss the Ward identity for the amplitude Mµ. In general, according to the Dirac

equation in an external field,

(i /Dext −m)ψ = 0 , ψ̄(i
←−
/D∗

ext +m) = 0, (B.1)

we find the current conservation law,

i∂µ(ψ̄γµψ) = ψ̄(−qA∗
ext −m)ψ + ψ̄(qAext +m)ψ = 0 , (B.2)

where we used A∗
ext = Aext. Comparing the current conservation law (B.2) with the

definition of the amplitude Mµ (3.1), one understands

0 = kµMµ. (B.3)

This is the Ward identity for the amplitude Mµ.

We explicitly confirm the Ward identity for the amplitude (B.3) after the Landau-level

decomposition is performed. Contracting the amplitude Mµ with the photon momentum

kµ, we get

kµMµ = (2π)3δ(2)(k‖−p‖−p′
‖)δ(ky−py +p′

y)

×
[

ūκ(pn)/p‖
J0vκ′(p̄′

n′)+ūκ(pn)J0/p
′
‖
vκ′(p̄′

n′)+ūκ(pn)/k⊥J1vκ′(p̄′
n′)

]

(B.4)

= (2π)3δ(2)(k‖−p‖−p′
‖)δ(ky−py +p′

y)×
√

2|qB|ūκ(pn)γ1(Ξ+
n,n′P++Ξ−

n,n′P−)vκ′(p̄′
n′) ,

where we used the Dirac equations (2.16a) and (2.16b), the eigenvalue relation of the spin

operator i sgn(qB)γ1γ2P± = ±P±, and [γµ
‖ ,J0,1] = 0. In the second line, the coefficients

of P± can be arranged as

Ξ+
n,n′ ≡

√
nGn,n′ −

√
n′Gn−1,n′−1 − |k̄⊥|ei sgn(qB)θ⊥Gn−1,n′ , (B.5a)

Ξ−
n,n′ ≡

√
nGn−1,n′−1 −

√
n′Gn,n′ − |k̄⊥|e−i sgn(qB)θ⊥Gn,n′−1 . (B.5b)

Below, we prove two identities:

Ξ+
n,n′ = 0 , Ξ−

n,n′ = 0 , (B.6)

which will indicate that the amplitude Mµ satisfies the Ward identity (B.3) for each pair

of n and n′. To do this, we use the explicit form of the scalar form factor Gn,n′ (3.7), with

which one can arrange the first two terms in eq. (B.5a) as

√
nGn,n′ −

√
n′Gn−1,n′−1

= e
i

kx(py+p′
y)

2qB e− 1
2

|k̄⊥|2(−1)∆ne−i sgn(qB)∆n θ⊥ |k̄⊥||∆n|

√

n!

n′!

1√
n

[

nL∆n
n − n′L∆n

n−1

]

= e
i

kx(py+p′
y)

2qB e− 1
2

|k̄⊥|2(−1)∆ne−i sgn(qB)∆n θ⊥ |k̄⊥||∆n|

√

n!

n′!

1√
n

[

−|k̄⊥|2L∆n+1
n−1

]

= |k̄⊥|ei sgn(qB)θ⊥Gn−1,n′ , (B.7)
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where, to reach the second line, we used [59]

zLk+1
n−1(z) = −

[

nLk
n(z)− (n+ k)Lk

n−1(z)
]

. (B.8)

This proves the identity Ξ+
n,n′ = 0 in eq. (B.6). Similarly, by arranging the first two terms

in eq. (B.5b), one obtains

√
nGn−1,n′−1 −

√
n′Gn,n′ = g(−1)∆ne−i sgn(qB)∆n θ⊥ |k̄⊥||∆n|

√

n!

n′!
(−
√
n′)

[

L∆n
n − L∆n

n−1

]

= g(−1)∆n−1e−i sgn(qB)∆n θ⊥ |k̄⊥||∆n|

√

n!

(n′ − 1)!
L∆n−1

n

= |k̄⊥|e−i sgn(qB)θ⊥Gn,n′−1 , (B.9)

where we used [59]

Lk
n(z) = Lk+1

n (z)− Lk+1
n−1(z) . (B.10)

Therefore, we have proven the remaining identity Ξ−
n,n′ = 0 in eq. (B.6). This completes

the proof of the Ward identity (B.3).

B.2 Gauge and rotational invariances of the squared amplitude

We confirm the following three points as consistency checks for the main formula (3.22): (i)

the amplitude square |ǫµMµ|2 ∝ εµε
∗
νL

µν is a real-valued quantity; (ii) the lepton tensor

Lµν satisfies the Ward identity, i.e., kµL
µν = kνL

µν = 0 [which follows from the current

conservation law (B.2)], and (iii) εµε
∗
νL

µν has the rotational symmetry in the transverse

plane for an arbitrary photon polarization εµ.

(i) The condition that εµε
∗
νL

µν be a real-valued quantity for an arbitrary photon po-

larization (without a polarization sum) is satisfied if εµε
∗
νL

µν = [εµε
∗
νL

µν ]∗. This

requires that the lepton tensor Lµν to be an Hermitian matrix:

Lµν = L∗νµ . (B.11)

Since we have L∗νµ
‖ = Lµν

‖ , εµ∗
± = εµ

∓, and Q∗νµ
± = Qµν

± , our lepton tensor Lµν (3.22)

transforms as a Hermitian matrix as required.

(ii) Next, we examine the Ward identity for the lepton tensor kµL
µν = kνL

µν = 0.

The contraction between Lµν and the photon momentum kµ results in the following

combinations

kµL
µν
‖ = 4|qB|(np′ν

‖ + n′pν
‖) , (B.12a)

k · p‖ = (p‖ · p′
‖ +m2) + 2n|qB| , (B.12b)

k · p′
‖ = (p‖ · p′

‖ +m2) + 2n′|qB| , (B.12c)

k · ε± = −
√

|qB| |k̄⊥|e±i sgn(qB)θ⊥ , (B.12d)

kµQµν
± =

√

|qB| |k̄⊥|e±i sgn(qB)θ⊥εν∗
± , (B.12e)
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where we used the on-shell conditions p2
‖ = m2 + 2n|qB| and p′2

‖ = m2 + 2n′|qB|. By

using those expressions, we obtain

kµL
µν = −2

√

2n′|qB| (Ξ+
n,n′G∗

n−1,n′−1 + Ξ−
n,n′G∗

n,n′)pν
‖

+ 2
√

2n|qB| (Ξ+
n,n′G∗

n,n′ + Ξ−
n,n′G∗

n−1,n′−1)p′ν
‖

+ 4
√

|qB| G∗
n,n′−1

[

(p‖ · p′
‖ +m2)Ξ−

n,n′ − 2|qB|
√
nn′Ξ+

n,n′

]

εν
+

+ 4
√

|qB| G∗
n−1,n′

[

(p‖ · p′
‖ +m2)Ξ+

n,n′ − 2|qB|
√
nn′Ξ−

n,n′

]

εν
− . (B.13)

Since all those terms are proportional to Ξ±
nn′ that satisfy the identities (B.6), the

contraction between the lepton tensor and the photon momentum vanishes, i.e.,

kµL
µν = 0 . (B.14)

This also implies that kνL
µν = (kνL

νµ)∗ = 0 for a real-valued photon momentum kµ,

according to the Hermitian property in eq. (B.11).

(iii) Finally, notice that all the θ⊥ dependences in the lepton tensor Lµν (3.22) come in the

following combination [see also the explicit form of the scalar form factor Gn,n′ (3.7)

and use εµ∗
± = εµ

∓]

|k⊥|e−i sgn(qB)θ⊥εν
+Aν =

1√
2
k∗

⊥A⊥ , (B.15)

where Aµ is a photon field to be contracted with the lepton tensor. On the right-hand

side of the above equation, we defined k∗
⊥ = kx−i sgn(qB)ky, A⊥ = Ax+i sgn(qB)Ay.

From this expression, it is clear that the lepton tensor Lµν has the rotational invari-

ance in the transverse plane when contracted with an arbitrary photon polarization.

While the wave function in the Landau gauge explicitly breaks the rotational in-

variance, it has been restored in the physical quantity as expected, serving as a

consistency check of the gauge invariance.
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