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Background

Approaches to discretization of continuous variables have long been discussed alongside 

their pros and cons. Altman et al. [1] and Bennette et al. [2] both discuss the relevance 

and impact of categorizing continuous variables and reducing the cardinality of categori-

cal variables. Liao et al. [3] compares various categorization techniques in the context 

of classification tasks in medical domains, without using domain knowledge of field 

experts. Considerable advances in data mining are being driven by symbolic approaches, 

particularly those rooted in bioinformatic, compression and pattern mining research, 

including contributions pertaining to the analysis of symbolic sequences, text or basket 
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transactions. �e relevance of discretization meets both descriptive and predictive ends, 

encompassing state-of-the-art approaches such as pattern-based biclustering [4] and 

associative models such as XGBoost [5].

In this work we present DI2, a Python library that extends non-parametric tests to find 

the best fitting distribution for a given variable and discretize it accordingly. DI2 offers 

three major contributions: (i) corrections to the empirical distribution before statistical 

fitting to guarantee a more robust approximation of candidate distributions; (ii) efficient 

statistical fitting of 100 theoretical probability distributions; and, finally, (iii) assignment 

of multiple items according to the proximity of values to the boundaries of discretiza-

tion, a possibility supported by numerous symbolic approaches [4, 6, 7]. �e assignment 

of multiple items [8], generally referred as multi-item discretization, conferes the pos-

sibility to avail the wealth of data structures and algorithms from the text processing 

and bioinformatics communities without the risks of the well-studied item-boundaries 

problem.

Discretization methods have wide taxonomy [9] with a determinant division in: (1) 

supervised, where the method uses the class variable to bin the data, and, (2) unsuper-

vised, where the method is independent of the class variable. DI2 places itself on the 

latter, it works independently of the class variable. Other characteristics of DI2 are: (1) 

static, where discretization of the variables takes place prior to an algorithm; (2) global, 

uses information about the variable as a whole to make the partitions and can still be 

applied with a scarce number of observations; (3) direct and splitting, splits the whole 

range of values into k intervals simultaneously; and (4) multivariate and univariate, DI2 

can use either the whole dataset to create the intervals and discretize each variable or 

use each variable individually to create the respective intervals.

Some examples of unsupervised discretization methods are Proportional Discre-

tization (PD), Fixed Frequency Discretization (FFD) [10], equal-width/frequency (also 

known as uniform and quantile) and k-means [11]. In this work, DI2 is compared with 

such classic discretization methods. �ese are illustrated in Figs. 1, 2, and 3.

Normalization and feature scaling

While not mandatory, DI2 supports: min-max scaling,

Fig. 1 Illustration of equal-frequency method with 9 points along an axis and 3 categories. This method is 

based on the frequency of the items, where each category has the same number of items, in order to set the 

intervals

Fig. 2 Illustration of equal-width method with 9 points along an axis and 3 categories. This method is based 

on the range taken by the items, where each category has the same width interval
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where X is an ordered set of observed values, and Xmax and Xmin are the maximum and 

minimum value within X; z-score standardization for normally distributed observations 

[12],

where X is an ordered set of observed values, x is the sample mean, and Sn is the sample 

variance; and mean normalization,

where X is an ordered set of observed values, x is the sample mean, and Xmax and Xmin 

are the maximum and minimum value within X.

Statistical hypotheses

In order to discretize the data into intervals, DI2 provides two statistical hypothesis 

tests: (1) χ̃2 test [13], and (2) Kolmogorov–Smirnov goodness-of-fit test [14].

In the aforementioned tests, the empirical distribution is matched with a theoreti-

cal continuous distribution1, provided by the SciPy open-source library [15], where 

the parameters are estimated through maximum likelihood estimation function. We 

consider the null hypothesis to be “the empirical probability distribution matches 

the theoretical probability distribution”. Considering a significance level of 0.05 and 

the number of degrees of freedom to be the number of categories inputted by the 

user minus one minus the number of estimated parameters [16] (excluding scale and 

location parameters). If the χ̃2 statistic is higher than the critical value at 0.05 we 

reject the hypothesis. The same logic is applied to the Kolmogorov–Smirnov statis-

tic. The expected distribution of each category used in the χ̃2 test corresponds to 

the number of inputted categories by the user. The user can either choose the χ̃2 or 

the Kolmogorov–Smirnov goodness-of-fit as the primary fitting test. Both statisti-

cal tests yield properties of interest. While Kolmogorov–Smirnov does not provide 

an exhaustive characterization of the differences between the reference and empiri-

cal probability distributions as its statistic is derived from the highest distant point 

between the cumulative distributions, χ̃2 is dependent on the selected number of 

(1)X
′
=

X − Xmin

Xmax − Xmin

,

(2)X
′
=

X − x

Sn
,

(3)X
′
=

X − x

Xmax − Xmin

.

Fig. 3 Illustration of K-means method with 9 points along an axis and 3 categories. This method is based in 

the k-means clustering, where each category is defined by a centroid

1 https:// docs. scipy. org/ doc/ scipy/ refer ence/ stats. html.

https://docs.scipy.org/doc/scipy/reference/stats.html
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categories to assess the goodness of fitting. Having these concerns in mind, χ̃2 test is 

suggested as the default option unless a high number of data instances are available. 

In this latter case, the Kolmogorov–Smirnov test provides a finer-grained view as it 

more accurately models the empirical cumulative distribution.

DI2 informs the user of the selected distribution per column, the statistic of the 

applied test, and whether the computed statistic passes the goodness-of-fit test. One of 

the following scenarios can occur: (1) at least one theoretical distribution passes the sta-

tistical test, or (2) no theoretical distribution passes the statistical test. In both cases, 

the distribution with the lowest test statistic is chosen. �e second scenario might be 

intentional. Consider the following, if the user knows that the empirical distribution is a 

sample from a population that follows a normal distribution, he can input the theoretical 

continuous distributions accordingly (normal distribution and its variants).

Outlier correction

�e Kolmogorov–Smirnov goodness-of-fit test can optionally be used to remove up to 

5% outlier points, from the empirical distribution, according to the theoretical continu-

ous distribution under assessment. Kolmogorov–Smirnov goodness-of-fit test returns a 

statistic (D statistic) measuring the maximum distance between the empirical and theo-

retical distributions,

where n is the number of observations, j is the index of a given observation, and F is the 

frequency of observation Xj . �e first inner max function is referred as D-plus statistic, 

while the second inner max function is termed D-minus statistic. Using the D statis-

tic we can pinpoint where the farthest point between the distributions is and remove 

it. After up to 5% of the observations have been removed, the iteration with the best 

Kolmogorov–Smirnov statistic is picked (from 0 outliers removed to up to 5%). �e 

data produced by outlier removal is then used to run the main statistical hypothesis test 

picked ( χ̃2 or Kolmogorov–Smirnov). �is correction guarantees the absence of penali-

zations caused by abrupt yet spurious deviations driven by the selected histogram gran-

ularity and help consolidate the choice of the theoretical continuous distribution. �e 

outlier observations are only temporarily removed to fine tune the statistical hypothesis 

tests previously mentioned. Once the best fitting distribution is selected and category 

borders imputed, the library returns the original data (with all the outliers and missing 

values), not yielding impact on the remaining variables or subsequent data mining tasks.

Multi-item discretization

After selecting the theoretical probability distribution that best fits the continuous variable, 

DI2 proceeds with the discretization. Given a desirable number of categories (bins), mul-

tiple cut-off points are generated using the inverse cumulative distribution function of the 

theoretical distribution. �e cut-off points guarantee an approximately uniform frequency 

of observations per category, although empirical-theoretical distribution differences can 

underlie imbalances. �e possibility to parameterize the number of bins is offered since in 

(4)D = max

{

max
1≤j≤n

{

j

n
− F(Xj)

}

, max
1≤j≤n

{

F(Xj) −
(j − 1)

n

}}

,
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some application domains the desirable number is known a priori (e.g. well-defined number 

of gene activation levels for expression data analysis).

�e optimal number of bins can be alternatively hyperparameterized. In supervised 

settings, cross-validation on training data can be pursued to this end. Similarly, in unsu-

pervised settings, different cardinalities can be assessed against a well-defined quality cri-

teria (e.g. silhouette in clustering solutions or number of statistically significant patterns 

in biclustering solutions) to estimate the number of bins. Alternatives for parameteriz-

ing the number of bins, including heuristic searches have been suggested [17]. In clinical 

domains, Maslove et al. [18] used an heuristic for determining the number of bins when 

discretizing data with unsupervised methods.

Unlike other well-known unsupervised discretization methods,(e.g. the aforemen-

tioned methods) DI2 supports multi-item assignments by identifying border values for 

each category, this is exemplified in Figure 4. Note also that in the presence of algorithms 

able to handle multi-items derived from category borders, the items-boundary problem 

associated with different bin choices is ameliorated. To this end, the user can optionally 

also define a boundary proximity percentage (between 0 and 50%, 20% being the default) 

to affect the distance from category borders. Let us introduce an example: the discretiza-

tion of a variable following a Normal distribution, N(0, 1), with three categories. �e cut-

off points are − 0.43 and 0.43. To allow the presence of border values, observations with 

values near the frontiers of discretization are assigned with two categories. By default, a 

proximity of 20% to a discretization boundary is assumed for the assignment of multiple 

items. Proximity percentage is estimated by dividing the area under the probability dis-

tribution curve between the observation and the closest discretization boundary by the 

area between the discretization boundaries of the observation’s category. In the given 

example, observations falling between − 0.63 and − 0.43, as well as between − 0.43 and 

− 0.26, are assigned with two items. It can also be observed that the proximity percent-

ages translate into border boundaries (smaller brackets) being placed to the left and right 

of the discretization boundary (medium-sized brackets).

Implementation

DI2 tool is fully implemented in Python 3.72 (Additional file 1). DI2 is provided as an 

open-source method at GitHub with well-annotated APIs and notebook tutorials for a 

practical illustration of its major functionalities. �e algorithm workflow is shown in 

Algorithm  1 and the Kolmogorov–Smirnov correction is shown in Algorithm  2. DI2 

workflow is further shown in Figure 5. All the code was executed on a computer with 

Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM.

Fig. 4 Illustration example of discretization with 9 points along an axis and 3 categories considering border 

values (values which belong to 2 categories)

2 DI2 currently uses the following libraries: pandas 1.2.4, scipy 1.5.1, and numpy 1.20.2
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Algorithm 1: DI2 main algorithm

Input: dataset, number of bins
Optional input: statistical test=“chi2”, multi item cutoff margin=0.2, kolmogorov opt=True,

normalizer=“min max”, distributions=[...], single column discretization=True
Output: The dataset discretized
y normalized = [ ];
if single column discretization then

for column in dataset.columns do

y normalized = normalization(dataset[column],normalizer);
main operation(distributions, kolmogorov opt, number of bins, statistical test, y normalized);

end

else

for column in dataset.columns do

y normalized.append(normalization(dataset[column],normalizer));
end

main operation(distributions, kolmogorov opt, number of bins, statistical test, y normalized);

end

Function main operation(distributions, kolmogorov opt, number of bins, statistical test,

y normalized):
dist list = [ ];
for distribution in distributions do

results = [ ];
if statistical test == “chi2” then

if kolmogorov opt then

results = kolmogorov goodness of fit(y normalized, distribution, kolmogorov opt);
results = chi squared goodness of fit(results[1], distribution, number of bins);

else

results = chi squared goodness of fit(y normalized, distribution, number of bins);
end

else

results = kolmogorov goodness of fit(y normalized, distribution, kolmogorov opt);
end

dist list.append(“distribution”: distribution, “statistic”: statistical test, “statistic value”: results[0],
“data”: results[1], “num estimated parameters”: results[2])

end

best dist, data used = get best distribution();
dataset[column] = discretize(best dist, multi item cutoff margin, data used, dataset[column],

number of bins, y normalized);

return

Input

DI2

Normalization

Calculate best fitting distribution

Outlier
removal

Distribution
fitting

Compare with
current best

Next
distribution

inline

Create copy of
data

Multi-item
boundary

delimitation

Discretization Discretized
dataset

Hyper parameterization

V1,1 ... V1,n

... ... ...

Vm,1 ... Vm,n

Y1 ... Yn

X1

...

Xm

dataset

Output

Fig. 5 The flowchart of DI2. From data input, passing through data normalization, fitting of categories, and 

finally discretization

Table 1 Variables of the breast-tissue dataset and their respective description

Variables Type Description

I0 Continuous Impedivity (ohm) at zero frequency

PA500 Continuous Phase angle at 500 KHz

HFS Continuous High-frequency slope of phase angle

DA Continuous Impedance distance between spectral ends

Area Continuous Area under spectrum

A/DA Continuous Area normalized by DA

Max IP Continuous IP maximum of the spectrum

DR Continuous Distance between I0 and real part of the maxi-

mum frequency point

P Continuous Length of the spectral curve

Class Categorical Carcinoma, fibro-adenoma, mastopathy, glandu-

lar, connective, adipose
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Algorithm 2: Kolmogorov outlier correction

Input: empirical distribution, theoretical distribution, outlier removal flag
Output: The statistic of Kolmogorov test and the corresponding data
N5 = size(empirical distribution) × 0.05 if outlier removal flag else 1;
results = [];
i = 0;
while i < N5 do

Estimate Parameters(theoretical distribution);
D plus = D minus = [];
idx max d plus = idx max d minus = [];
calculate d minus(D minus, idx max d minus);
calculate d plus(D plus, idx max d plus);
if len(results) == 0 then

results = [max(D plus[idx max d plus], D minus[idx max d minus]), empirical distribution.copy()];
else

ks = max(D plus[idx max d plus], D minus[idx max d minus]);
if ks < results[0] then

results = [ks, empirical distribution.copy()];
end

end

if D plus[idx max d plus] > D minus[idx max d minus] then

delete empirical distribution[idx max d plus];
else

delete empirical distribution[idx max d minus];
end

++i;

end

return results;

.

Results and discussion

In order to illustrate some of the DI2 properties, we considered two published data-

sets: (1) the breast-tissue dataset [19], containing electrical impedance measure-

ments in samples of freshly excised tissue from the breast, and (2) the yeast dataset 

[20], containing molecular statistics variables. Both of these are available at the UCI 

Machine Learning repository [21] and a more detailed variable explanation is pre-

sented in Tables 1 and 2.

DI2 is executed with χ̃2 as the main statistical test, with and without Kolmogorov 

outlier removal, with single and whole column discretization, and 3, 5 and 7 cate-

gories per variable outputted. Predictive performance is further assessed against raw 

continuous data. �e acronyms for the probability distributions referred throughout 

this section are described in Table 3.

Case study: breast-tissue dataset

�e breast-tissue dataset contains 106 data instances and 10 variables (9 continuous and 

1 categorical), presented in Table 1. �e gathered results show the decisions placed by 

DI2 in the absence and presence of Kolmogorov–Smirnov optimization.

Table  4 shows the distributions yielding best fit for each continuous variable of the 

dataset. Variables “I0”, “PA500”, “A/DA”, “DR”, and “P” remained unchanged with a 

removal of up to 5% of outlier points. Variables “HFS” and “Area” produced better results 

in the χ̃2 test with the removal of outliers solidifying the distribution choice. Finally, the 

fitting choice changed for variables “DA” and “Max IP” under the χ̃2 test, revealing a 

more solid choice from the analysis of the residuals.

Considering “DA” variable, Fig.  6a, b show its Q-Q (quantile-quantile) plot, offering 

a view on the adequacy of the statistical fitting. In this context, we depict histograms 

for the empirical data with 100 bins (blue dots), to better visualize the impact of outlier 
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removal, and the best theoretical distribution picked without and with Kolmogorov–

Smirnov correction (red line). A moderate improvement from Fig. 6a, b can be detected, 

with the empirical quantiles (blue dots) being closer to the theoretical continuous quan-

tiles (red line).

After the fitting stage, cut-off points are calculated to produce the final categories. 

Figure 5c compares different discretization options: quantile, uniform, and the two best 

fitting theoretical continuous distributions (without and with Kolmogorov–Smirnov 

optimization). Category cut-off points are marked as red lines, and the border val-

ues cut-off points in yellow. �is analysis shows how critical discretization can be for 

determining the inclusion or exclusion of high density bins. �e ability of DI2 to assign 

multiple items using borders can thus be explored by symbolic approaches to mitigate 

vulnerabilities inherent to the discretization process [22, 23].

Table 2 Variables of the yeast dataset and their respective description

Variables Type Description

Sequence Text Accession number

mcg Continuous McGeoch’s method for signal sequence recognition

gvh Continuous von Heijne’s method for signal sequence recognition

alm Continuous Score of the ALOM membrane spanning region prediction program

mit Continuous Discriminant score of amino acid content of N-terminal regions

erl Binary Presence of retention signals in the endoplasmic reticulum lumen

pox Continuous Peroxisomal targeting signal in the C-terminus

vac Continuous Discriminant score of aminoacid content of vacuolar/extracellular proteins

nuc Continuous Discriminant score of nuclear localization signals

Class Categorical Localization site of protein.

Table 3 Theoretical probability distribution acronyms (for full list visit https:// docs. scipy. org/ doc/ 

scipy/ refer ence/ stats. html—SciPy statistical functions)

Distribution acronym Description

Alpha Alpha continuous random variable

Exponnorm Exponentially modified Normal continuous random variable

Foldcauchy Folded Cauchy continuous random variable

Recipinvgauss Reciprocal inverse Gaussian continuous random variable

Frechet_r Frechet right (or Weibull minimum) continuous random variable

Mielke Mielke Beta-Kappa / Dagum continuous random variable

Johnsonsu Johnson SU continuous random variable

Johnsonsb Johnson SB continuous random variable

Genextreme Generalized extreme value continuous random variable

chi2 Chi-squared continuous random variable

genlogistic Generalized logistic continuous random variable

Laplace Laplace continuous random variable

Genhalflogistic Generalized half-logistic continuous random variable

Gengamma Generalized gamma continuous random variable

Pearson3 Pearson type III continuous random variable

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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Case study: yeast dataset

�e yeast dataset contains 1484 data instances and 10 variables, including the sample 

identification, class, and 8 molecular statistics variables (Table 2). In the previous analy-

sis, breast-tissue dataset was considered to compared DI2 category cut-off points against 

alternative unsupervised discretization procedures – quantile (equal-frequency) and 

uniform (equal-width). �e yeast data is used to comprehensively assess the predictive 

capabilities of discretization approaches, including the k-means method.

Fig. 6 Distribution matching of DA variable from breast-tissue againt two statistical distributions 

(recipinvgauss in a and chi2 in b, as well as the corresponding discretization boundaries and border values in 

V.c
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Table  5 displays the results of the statistical tests produced by DI2 when applied to 

each variable independently and the whole dataset together, considering 5 categories per 

variable. As presented in Table 5, the empirical distribution of a variable does not always 

match a known theoretical distribution with statistical significance (e.g. variable “alm”). 

Nonetheless, the theoretical distribution with the lowest test statistic is still selected in 

an effort to ameliorate bad discretization decisions by preventing critically misadjusted 

probability distributions.

Figure 7a displays the distribution of values in the variable “mit” before outlier removal 

(brown and blue area of histogram) and after outlier removal (brown area of histogram). 

Figure  7b compares the distribution of the categories of all the discretization tech-

niques (DI2, quantile, uniform, and k-means), and further assesses the impact of outlier 

removal had in categorizing the data in different executions of DI2. Figure  8 presents 

the frequency distribution of observation per category, as well as intermediate categories 

produced by DI2’s border values.

�e performed analysis for the yeast dataset shows how critical the category border, 

previously discussed in more detail with the breast-tissue dataset, can be. �e ability of 

DI2 to assign multiple items using borders can be explored by symbolic approaches to 

mitigate vulnerabilities inherent to the discretization process as discussed in the follow-

ing subsection.

Predictive performance

To assess the predictive impact of DI2, we reuse the yeast dataset, applying a cross-

validation scheme with 10 folds, and six supervised classification methods: Naive Bayes 

[24], Random Forest [25], support vector machines using Sequential Minimal Optimiza-

tion (SMO) [26], C4.5 [27], Multinomial Logistic Regression Model (MLRM) [28] and 

FleBiC [29]. Discretization procedures are applied with 3, 5 and 7 categories per vari-

able. To preserve the soundness of assessments, the discretization thresholds are learned 

Table 4 Best fitting distributions for each continuous variable, without and with Kolmogorov–

Smirnov correction

Both χ̃2 (primary) and KS statistics are shown

Variables Without 
opt.

χ̃
2 statistic p-value 

>0.05 
( χ̃2)

D statistic With opt. χ̃
2 statistic p-value 

>0.05 
( χ̃2)

D statistic

I0 alpha 8.8 False 0.12 alpha 8.8 False 0.11

PA500 exponnorm 2.98 True 0.07 expon-
norm

2.98 True 0.07

HFS foldcauchy 2.25 True 0.07 foldcauchy 1.57 True 0.07

DA recipinv-
gauss

1.6 True 0.06 chi2 1.01 True 0.06

Area frechet_r 0.5 True 0.07 frechet_r 0.25 True 0.05

A/DA mielke 1.17 True 0.06 mielke 1.17 True 0.05

Max IP johnsonsu 4.72 True 0.05 alpha 1.09 True 0.07

DR johnsonsb 1.2 True 0.05 johnsonsb 1.2 True 0.05

P genex-
treme

5.13 True 0.09 genex-
treme

5.13 True 0.09
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only on the training data per fold. �e testing data instances are then discretized using 

the learned discretization thresholds from training data.

Figure 9 presents the results of the aforementioned models with the original numerical 

data and a discretization of 5 categories per variable. In each model, DI2, with configura-

tions of single column discretization and outlier removal, is among the top performing 

procedure. In particular, the C4.5 model, DI2, with configurations of combined column 

discretization, achieved the highest accuracy compared with other discretization meth-

ods. Considering Naïve Bayes and SMO models, DI2 achieves competitive performance 

against the original numerical data, with a generally higher average accuracy for single 

column discretizations, yet not yielding statistically significant improvements.

Figure 10 displays the average accuracy achieved by each model with a discretization 

of 3 and 7 categories per variable. Results considering 3 and 7 categories were not as 

Fig. 7 Variable “mit” distribution (a). Categories distribution after k-means, quantile, uniform, and DI2 

discretization (b)
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optimal as with 5 categories, in terms of accuracy. Nonetheless, these results further 

encourage hyperparameterization to find an optimal number of bins.

In order to fully test out the potential of DI2, we now considered border values. 

FleBiC [29] is a classifier able to place decisions based on multi-item assignments. 

Other approaches, such as BicPAMS [4] (a patterned-based biclustering algorithm), 

can be alternatively consider to accommodate border values and thus minimize 

potential discretization drawbacks. FleBiC is here executed as a stand-alone classi-

fier and as an adjunct classifier to guide decisions of Random Forests, where deci-

sions are derived from both the probabilistic outputs of FleBiC (50%) and Random 

Forests (50%), which will be denoted by FleBiC Hybrid. Figure 11 shows the results 

of FleBiC and FleBiC Hybrid. In terms of average accuracy (Figure 11.a), both FleBiC 

and FleBiC Hybrid yield higher predictive accuracy with DI2 method than with other 

Fig. 8 Variable “mit” categories distribution after DI2 discretization with different settings with border 

values. Single column discretization with Kolmogorov–Smirnov outlier removal (light blue columns), single 

column discretization without Kolmogorov–Smirnov outlier removal (dark blue columns), whole dataset 

discretization with Kolmogorov–Smirnov outlier removal (light purple columns), whole discretization without 

Kolmogorov–Smirnov outlier removal (dark purple columns)
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discretization methods. Within the different settings of DI2, the best predictive 

accuracy is achieved for FleBiC Hybrid when the predictive model considers border 

values. Figure  12 presents the results when considering 3 and 7 categories. Finally, 

when considering the sensitivity of the NUC outcome (Figure 11.b), we can see that 

the incorporation of border values plays a decisive role, making it possible to break 

through a ceiling on the NUC predictability against discretization methods unable 

to consider border values. More details on the relevance of border values to improve 

the sensitivity of other classes are provided in supplementary material. �is analysis 

shows that the use of border values can yield significant improvements.

To assess if the previous differences in predictive accuracy are statistically signifi-

cant, a one-tailed paired t-test is applied. We consider the alternative hypothesis 

(p-value < 0.05) to be “DI2 is superior to the identified discretization procedure using 

the same classifier”. Results obtained considering the discretization of 5 categories per 

variable are presented in Table  6. DI2 shows statistically significant improvements 

Table 5 Best fitting distributions for each continuous variable, without and with Kolmogorov–

Smirnov outlier removal, considering 5 categories per variable

Variables Without 
opt.

χ̃
2 

statistic

p-value 
>0.05 
( χ̃2)

D statistic With opt. χ̃
2 

statistic

p-value 
>0.05 
( χ̃2)

D statistic

mcg foldcauchy 3.72 True 0.08 exponnorm 3.18 True 0.02

gvh genlogistic 3.57 True 0.03 genlogistic 2.02 True 0.02

alm genlogistic 17.00 False 0.05 genlogistic 12.08 False 0.03

mit expon-
norm

19.23 False 0.05 exponnorm 6.11 True 0.03

pox chi2 4.4 × 10
−14 True 0.99 gengamma 4.2 × 10

−14 True 0.99

vac laplace 20.99 False 0.08 pearson3 14.18 False 1.00

nuc expon-
norm

1116.63 False 0.26 mielke 795.28 False 0.26

all vari-
ables

genhalflo-
gistic

45.69 False 0.25 genhalflo-
gistic

10.25 False 0.21

Fig. 9 Average accuracy per classifier and discretization method available without border values and 

considering 5 categories per variable(for more information consult Additional file 2). From left to right in each 

group of bars: K-means, Quartile, Uniform, DI2 (single, kol. correction), DI2 (single), DI2 (whole, kol. correction), 

DI2 (whole) and original data
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against uniform discretization in all classification models. DI2, with single column 

and optimized single column configurations, despite displaying competitive predic-

tive accuracy in most of the classifiers against k-means and quantile discretizations, 

it does not show statistically significant improvement. However, when considering 

FleBiC, DI2 outperformed all remaining discretization methods, with or without bor-

der values (p-value<0.05). In FleBiC Hybrid, DI2 also outperformed all other discre-

tization methods with the exception of quantile discretization when no border values 

are considered.

�e benefits of discretization go beyond the previously assessed predictive settings. 

In the context of deep learning approaches, Rabanser et al. [30] surveyed the effect of 

data input and output transformations on the predictive performance of several neural 

forecasting architectures, concluding that the WaveNet model, when input data is dis-

cretized, yields best results.

Fig. 10 Accuracy when executing different models with multiple discretization methods. From left to right 

the bars are: K-means, Quartile, Uniform, DI2 (single, kol. correction) without border values and original data



Page 15 of 19Alexandre et al. BMC Bioinformatics          (2021) 22:426  

Scalability

�e execution time of DI2 is presented in Fig.  13. Figure  13a displays the efficiency 

according to the number of tested theoretical distributions (from fastest to slowest in 

terms of parameter estimation) using the yeast dataset (1484 observations). Figure 13.b 

depicts how the computational time varies in accordance with the number of observa-

tions for the DI2 default setting, considering the yeast data with all variables.

Conclusion

�is work proposed a new unsupervised method for data discretization, DI2, that 

takes into account the underlying data regularities, the presence of outlier values dis-

rupting expected regularities, as well as the relevance of border values. A tool for the 

Fig. 11 Accuracy when executing different FleBiC versions, and Sensitivity of when predicting class NUC, 

with multiple discretization methods considering 5 categories per variable (for more information consult 

Additional file 2). From left to right the bars are: K-means, Quartile, Uniform, DI2 (single, kol. correction), DI2 

(single), DI2 (border values, single, kol. correction) and DI2 (border values, single)
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Fig. 12 Accuracy when executing different FleBiC versions with multiple discretization methods considering 

7 categories per variable. From left to right the bars are: original data, K-means, Quantile, Uniform, DI2 (single, 

kol. correction), DI2 (single), DI2 (border values, single, kol. correction), DI2 (border values, single)

Table 6 Gathered p-values from statistically testing the superiority of DI2 with respect to predictive 

accuracy against alternative discretization procedures, and original data, using one-tailed paired 

t-test and considering 5 categories per variable (complementary information in Additional file 3)

DI2 is assessed without and with border values, single column and whole dataset, and in the absence and presence of 

outlier removal

Bold values indicate that the accuracy achieved using DI2 discretization is statistically superior against the corresponding 

discretization

DI2 (single) DI2 (single, optimized)

K-means Quantile Uniform Original K-means Quantile Uniform Original

Naïve Bayes 0.686 0.897 0.005 0.719 0.287 0.431 0.002 0.325

Random Forest 0.404 0.921 0.101 0.998 0.126 0.653 0.016 0.998

SMO 0.980 0.968 0.014 0.456 0.790 0.773 0.017 0.441

C4.5 0.500 0.345 0.044 0.965 0.230 0.194 0.013 0.891

MLRM 0.500 0.907 0.009 0.803 0.316 0.821 0.013 0.588

FleBiC 0.001 0.007 1.9E−08 – 2.1E−05 1.0E−04 6.7E−09 –

FleBiC Hybrid 5.4E−04 0.693 5.2E−05 – 0.030 0.873 2.0E−04 –

DI2 (whole) DI2 (whole, optimized)

K-means Quantile Uniform Original K-means Quantile Uniform Original

Naïve Bayes 0.948 0.991 0.020 0.965 0.662 0.822 0.004 0.712

Random Forest 0.066 0.426 0.012 0.992 0.074 0.666 0.195 0.999

SMO 0.906 0.914 0.042 0.641 0.805 0.813 0.026 0.406

C4.5 0.085 0.072 0.004 0.702 0.687 0.500 0.028 0.958

MLRM 0.952 0.986 0.148 0.993 0.721 0.896 0.047 0.942

DI2 (borders, single) DI2 (borders, single, optimized)

K-means Quantile Uniform Original K-means Quantile Uniform Original

FleBiC 8.0E−05 7.3E−05 1.5E−08 – 0.002 0.016 9.1E−08 –

FleBiC Hybrid 1.4E−05 0.001 4.3E−06 – 6.1E−04 0.084 1.0E−04 –
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autonomous, prior-free discretization of biological data with arbitrarily skewed variable 

distributions is provided to this end.

Our study showed that DI2 is a viable and robust discretization procedure when com-

pared against well-established unsupervised discretization methods. Statistical tests 

applied to assess differences in performance confirm that DI2 generally outperforms 

alternative discretization methods with statistical significance. �e combined use of 

DI2 within classification tasks results in either competitive or superior levels of predic-

tive accuracy. DI2 as the unique feature of allowing the incorporation of border values. 

FleBiC, a classifier able to accommodate border values, achieved statistically significant 

performance improvements in the presence of multi-item assignments.

Fig. 13 Computational time efficiency of DI2 (without outlier removal) according to the number of 

underlying probability distributions (a) and number of observations. Candidate distributions (from 0 to 

95) are added with respect to ascending computational time, i.e. from fastest to slowest estimation of the 

theoretical distribution’s parameters
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Availability and requirements

Project name: DI2: prior-free and multi-item discretization.

Software homepage: https:// github. com/ Jupit ersMi ght/ DI2.

Programming language: Python.

Other requirements: python 3.7, pandas 1.2.4, scipy 1.5.1 and numpy 1.20.2.

License: MIT License.

Any restrictions to use by non-academics: None.

Abbreviations

DI2: Distribution Discretizer; Quantile: Equal-frequency; Uniform: Equal-width; Q-Q plot: Quantile–Quantile plot; FleBiC: 

Flexible Biclustering-based Classifier; BicPAMS: Biclustering based on PAttern Mining Software.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04329-8.

Additional �le 1. Folder containing DI2 and an example in Jupyter Notebook using Breast Tissue dataset example.

Additional �le 2. File with the average accuracy achieved by models with discretization method considering 5 

categories.

Additional �le 3. File with the accuracy achieved in cross validation by each discretization method in each model 

considering 5 categories.
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