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We theoretically investigate mechanisms of higher-order harmonic generation in solid-state materials

under a high-intensity ac electric field. A new theoretical framework presented in this Letter holds the

legitimacy of Bloch’s theorem even under the influence of the high-intensity electric field and provides an

exact treatment of the diabatic processes of Bloch electrons. Utilizing this framework, we first discovered

that the diabatic processes, namely, ac Zener tunneling and semimetallization of semiconductors, are key

factors for nonperturbative mechanisms of HHG. These mechanisms are classified by the field intensity and

could be understood by an extended simple man model based on an analogy between tunnel ionization in

gaseous media and Zener tunneling in semiconductors. These conclusions would stimulate the universal

understanding of HHG mechanisms in both atomic and solid cases.

DOI: 10.1103/PhysRevLett.116.016601

Progress in the development of intense light sources has

paved the way for strong-electric-field physics and stimu-

lated investigations on nonperturbative nonlinear optical

phenomena. The most prominent matter of these investiga-

tions is higher-order harmonic generation (HHG) in gaseous

media and their potential utilities for optical technology, such

as attosecond pulse generation and molecular orbit tomog-

raphy, have been explored [1–3]. In recent years, HHG in

solid-state materials has been experimentally observed

focusing on characteristics different from those in atomic

cases [4–8]. The differences are based on the periodic

arrangement of atoms and collective properties of electrons

in solid-state materials. Actually, these experiments show a

band-gap dependence of a cutoff energy in HHG spectra

[4,5], whose definition is a threshold between a constant

intensity region (plateau region) and strong decay region,

while, in atomic cases, that is determined by the relation with

ionization energy of a single atom. Thus, HHG in solid-state

materials is expected to have a differentmechanism from that

in atomic cases, and a clear understanding of such a

mechanism will provide the possibility for opening new

research fields of high-intensity optical technology.

For a clear understanding of mechanisms of HHG in

solid-state materials, we should develop an exact treatment

on the dynamics of the collective electrons under a

high-intensity electric field. In solid-state materials where

a crystalline structure ensures the periodicity of the atomic

potential, Bloch’s theorem enables us to reduce the col-

lective behavior of electrons to a single quasiparticle, which

is called the Bloch electron [9]. Based on this scheme, we

expect an exact investigation of the dynamics of Bloch

electrons under the high-intensity ac electric field will

unravel mechanisms of HHG. The high-intensity ac electric

field causes a concurrence of excitation and transport

processes of Bloch electrons, and therefore, the simulta-

neous treatment of these processes is necessary whose

considerations enable discussions on diabatic processes of

Bloch electrons such as Zener tunneling [10]. However, in

spite of the simplicity of this problem, previous studies

[5,11–17] have not provided reasonable treatments yet

because of their invalid assumptions in constructing

frameworks which would be summarized as follows.

In constructing the frameworks, we should take care of

the legitimacy of Bloch’s theorem under an influence of

the high-intensity electric field. If the electric field is

introduced in the form of a nonperiodic scalar potential

ϕ ¼ −eEðtÞ · x, the periodicity of atomic potential would

be damaged and justification of Bloch’s theorem is no

longer expected to be adequate. Here, e is the electron

charge, EðtÞ the external electric field, and x the position of
the electrons. In this case, Bloch functions cannot be

regarded as a complete basis set and concepts of band

structures and Bloch electrons become invalid [18,19].

These invalidities would greatly affect theoretical treat-

ments of diabatic processes, as referred to in the previous

works [18,19], and their influence on the perspective of

HHG becomes emphasized especially when employing the
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high-intensity ac electric field. In spite of these failures,

some previous works [5,11,12], where transport processes

are introduced by the scalar potential, constructed their

theoretical frameworks based on assumptions of the com-

pleteness of Bloch functions as well as the concepts of band

structures and Bloch electrons. For a correct perspective of

HHG in the Bloch electron picture, it is essential to hold the

periodicity of atomic potential even under an influence of

the high-intensity electric field.

In the simultaneous treatments of excitation and trans-

port processes of Bloch electrons, we also should take care

of the justification of the classical kinetic equation

ℏk̇ðtÞ ¼ −eEðtÞ, where ℏ and k is the reduced Planck

constant and Bloch wave vector. This equation is usually

assumed in the treatments of transport processes of Bloch

electrons and can be employed in theoretical frameworks

by simple replacement of the Bloch wave vector k with

k − ðe=ℏcÞAðtÞ, where the electric field is described as

EðtÞ ¼ −ð1=cÞ∂AðtÞ=∂t. Here, c and AðtÞ are the velocity
of light and a vector potential. For the simultaneous

treatments of excitation and transport processes, the pre-

vious works [13–16] utilized this replacement in order to

introduce transport processes of Bloch electrons, while

excitation processes are involved in the usual dipole

transition. However, as indicated by several researchers

[20,21], this replacement is true only for single-band

processes and should be violated by excitation processes

such as Rabi flopping [22]. In the present situation, Bloch

electron states are always described as a superposition of

ground and excited states, and consequently, we should

conclude that the previous works could not provide an

accurate perspective of HHG due to an inaccurate expres-

sion of nonperturbative interaction of Bloch electrons.

Moreover, the physical interpretation of the HHG mecha-

nism based on Bloch oscillations [4,5,17], whose concept is

true only for single-band processes, is no longer expected

to be adequate. For the correct perspective, the theoretical

frameworks should be constructed without assuming the

conventional replacement of the Bloch wave vector.

In this Letter, avoiding invalid assumptions employed in

the previous works [5,11–17], we clarify the nonperturba-

tive mechanisms of HHG in solid-state materials. To treat

the competition between excitation and transport processes

of Bloch electrons accurately, our theoretical framework

started from the Hamiltonian H ¼ ð1=2m0Þ½p − e=

cAðtÞ�2 þ ΣiVðx − RiÞ, where Bloch’s theorem has not

been applied yet. Here, m0 is the electron mass, p the

momentum of bare electrons, and Vðx − RiÞ the periodic

core potential of atoms located at Ri. In this model, we

employed a homogeneous electric field in the form of a

vector potential rather than a scalar one, as has been

proposed by Krieger and Iafrate in the case of the dc

electric field [19]. An advantage of this treatment is that the

Hamiltonian maintains its periodicity even including an

influence of the high-intensity electric field. This ensures

the validity of Bloch’s theorem under the high-intensity

electric field, and consequently, Bloch functions are

expected to be a complete basis set and concepts of band

structures and Bloch electrons become adequate. The

legitimacy of Bloch’s theorem, including the high-intensity

electric field, enables us to expect that there will be

temporally changed band structures linked to an ac electric

field, whereas the Bloch wave vector k will not change and

be a kinetic constant [21]. We should take care of the

Hamiltonian not always leading to the classical kinetic

equation for the Bloch wave vector ℏk̇ðtÞ ¼ −eEðtÞ,
especially when treating excitation and transport processes

together. Based on this scheme, we first discovered that

diabatic processes, namely, ac Zener tunneling and semi-

metallization of semiconductors, determine the character-

istics of HHG in solid-state materials. These considerations

would provide new understanding of the fundamental

mechanisms of HHG in semiconductors.

In constructing our theoretical framework, we suppose

two-dimensional semiconductors which are referred to in

the recent experiment [5], while conclusions presented in

this Letter have no dependence on the dimensionality.

Starting from this assumption and focusing only on con-

duction and valence bands, we could introduce a

Hamiltonian described by H ¼ H0 þHI [23], where

H0 ¼ Σk½ðE
e
k þ Eg=2Þe

†

kek þ ðEh
k þ Eg=2Þh

†

−kh−k�; ð1Þ

HI ¼ ℏΩRðtÞΣk cos θkðe
†

kek þ h†
−kh−k − 1Þ

þ iℏΩRðtÞΣk sin θkðe
†

kh
†

−k − h−kekÞ: ð2Þ

Here, Eσ
k ¼ ℏ

2k2=2mσðσ ¼ e; hÞ are the kinetic energies

of electrons and holes, Eg is the band-gap energy, ekðhkÞ

and e†kðh
†

kÞ are the annihilation and creation operators of

electrons (holes), θk is the argument of the Bloch wave

vector k, and ΩRðtÞ ¼ ΩR0 exp½−ðt − t0Þ
2=τ2� cosðω0tÞ is

the Rabi frequency [28] where the intensity of the electric

field is renormalized in ΩR0. Throughout this Letter, we

will fix the parameters of the incident electric field as t0 ¼
12π=ω0 and τ ¼ 4π=ω0. The first term on the right hand

side in Eq. (2) indicates the intraband transition in which

the Bloch wave vector k is a kinetic constant and it can

be renormalized in the single-particle energy ϵσk, where

ϵσkðtÞ ¼ Eσ
k þ Eg=2þ ℏΩRðtÞ cos θk. These modifications

caused by an ac electric field mean a temporal variation of

the band structure, which is consistent with the above

discussion. The variations can be derived from temporal

changes of diagonal matrix elements originating from the

light-matter interaction that is usually ignored in nonlinear

optics [22,28]. Moreover, comparing with the Landau-

Zener model [29], we can interpret the Hamiltonian to

include diabatic processes such as above-threshold ioniza-

tion and Zener tunneling [10]. The second term of the right

side in Eq. (2) indicates a dipole transition causing multi-

photon absorption and Rabi flopping, which are nonlinear

optical phenomena [22,28]. The factors sin θk and cos θk
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are derived from the form factor reflecting microscopic

information on the arrangement of atoms in crystals.

Considering the above-mentioned Hamiltonian, we can

derive time evolution equations for populations fσk ¼
hσ†kσki and polarization Pk ¼ hh†

−keki with the Bloch wave
vector k as

i
∂

∂t
Pk ¼ ½ϵekðtÞ þ ϵhkðtÞ�Pk

þ iΩRðtÞ sin θk½1 − fek − fhk� − iγtPk; ð3Þ
∂

∂t
fσk ¼ 2ImiΩRðtÞ sin θkP

†

k − γlf
σ
k: ð4Þ

Here, γt and γl are the transverse and longitudinal relax-

ation constants, and throughout this study, they will be

fixed to γt ¼ 0.1ω0 and γl ¼ 0.01ω0, respectively. These

values are estimated by the recent experimental situation

[5] where the incident frequency is several tens of terahertz,

while the dephasing and the energy relaxation time are

regarded as a few tens of femtoseconds and a few pico-

seconds, respectively. The numerical solutions of these

equations give the time evolutions of distributions of the

carrier densities and polarization in two-dimensional k

space. The distributions arise from a dipole transition under

the anisotropic modification of the band structure charac-

terized by the factor ℏΩRðtÞ cos θk, and consequently, they

show anisotropic behavior in k space linked to the direction

of the electric field [23]. Therefore, we expect that the

intraband processes lead to carrier transport (wave packet

dynamics), and the time evolution of the current can be

calculated using the definition JðtÞ ¼ −ch∂HI=∂Ai ¼P
k½ð1 − fek − fhkÞ cos θk − 2ImðPkÞ sin θk�. Accordingly,

we can derive higher-order harmonic spectra from the

definition IðωÞ ¼ jωJðωÞj2, where JðωÞ is the Fourier

transform of JðtÞ, and discuss the dependence of higher-

order harmonic spectra on the intensity of the incident

electric field corresponding to the Rabi frequency ΩR0.

The numerical results show that the characteristics of

HHG are changed, depending on the Rabi frequency. In this

study, we always assume a situation where ω0 ≪ Eg=ℏ. At

the beginning, in themultiphoton absorption regimewhere a

perturbative treatment of light-matter interaction is assured

[Fig. 1(a)], we could identify the well-known characteristics

in HHG spectra [Fig. 2(a)], i.e., the conventional relation of

nonlinear optics IN ∝ jPN j
2 ∝ jE0j

2N [22] and strong gen-

eration of only odd-order harmonics which is explained by

HHG emitted in each half-cycle period of the incident

electric field [1]. With increasing the Rabi frequency,

unconventional nonperturbative mechanisms of HHG

should be emphasized, as shown in Figs. 1(b) and

1(c), where excitation processes are dominated by Zener

tunneling and semimetallization processes, respectively. To

understand these regimes easily, in these figures, we assume

uniform modifications of band structures described by

ϵσkðtÞ ¼ Eσ
k þ Eg=2þ ℏΩRðtÞ, while the anisotropic factor

cos θk only causes dynamics of the wave packet in k space.

The threshold of the field intensity between the multiphoton

absorption regime and the ac Zener regime can be found as

the boundary when a perturbative theory becomes inad-

equate, which is derived as ΩR0 ¼ 0.5ω0 [30], while that

between the ac Zener regime and the semimetal regime can

be estimated as the boundary when the sum of the renor-

malized single-particle energy is zero: ϵek¼0
þ ϵhk¼0

¼ 0, i.e.,

Eg=2ℏ ¼ ΩR0. In the following, we will discuss the char-

acteristics and mechanisms of HHG in each regime.

Figure 2(b) shows the higher-order harmonic spectra in

the ac Zener regime, where the band-gap energies are Eg ¼
10ℏω0 (blue line) and Eg ¼ 5ℏω0 (red line) in the case of

ΩR0 ¼ 2ω0. We find that the spectra are divided into plateau

and decay regions, and the plateau region becomes broader

with increasing band-gap energy. This mechanism can be

understood by an analogy between Zener tunneling and

tunnel ionization processes in gaseous media [1]. The

threshold between the plateau and decay regions is called

cutoff energy, which corresponds to the maximum energy of

the electron-hole pair accelerated by the electric field

after the pair excitation. We will consider a simple man

model [1,31] in semiconductors, as shown in Fig. 3(a), and

estimate the cutoff energy EC as EC¼2×ð ~Eg=2þℏΩR0þ

3.2UpÞ¼Egþ2×3.2Up, where ~Eg ¼ Eg − 2ℏΩR0 is the

renormalized band-gap energy modulated by the effect of

intraband transition and Up is a ponderomotive energy

which represents the quiver energy of a free particle

averaged over one cycle. Here, the factor 2 is derived from

the two kinds of particles (electrons and holes). In addition,

considering the correspondence of the ac Stark shift and the

ponderomotive shift, we can introduce the relation jUpj ¼
ð1=4ÞℏΩR0 [30], and then the cutoff energy can be derived as

EC ≈ Eg þ 1.6ℏΩR0. This equation reveals that the cutoff

energy shifts toward the higher-energy side, in short, the

plateau region becomes broader, as the bang-gap energy

becomes larger. Assuming an experimental situation where

an ac electric field of 30 THz is applied to GaSe and the

perturbative treatments are becoming inadequate, we

can expect the Rabi frequency and band-gap energy to be

(b) AC Zener regime (a) multiphoton absorption regime (c) Semimetal regime 

FIG. 1. Schematic diagrams of HHG mechanisms depending

on the electric field intensity. (a) Multiphoton absorption regime,

(b) ac Zener regime, and (c) semimetal regime. Red and blue lines

show band dispersion with and without modification due to an

external electric field. Green lines show excitation processes of

Bloch electrons.
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ΩR0 ≈ 0.5ω0 and Eg ≈ 16ℏω0. Accordingly, we can con-

clude that the cutoff energy is roughly determined by the

band-gap energy, which is consistent with recent experi-

mental results [5].

Figure 2(c) shows the higher-order harmonic spectra in

the semimetal regime, where the band-gap energies are

Eg ¼ 10ℏω0 (blue line) and Eg ¼ 5ℏω0 (red line) in the

case of ΩR0 ¼ 8ω0. Different from multiphoton absorption

and ac Zener regimes, the higher-order harmonics show a

characteristic of white spectrum which masks the odd-order

harmonics, and, moreover, the cutoff energy no longer

depends on the band-gap energy. The generation of the

white higher-order harmonics means the emission law in

each half cycle is broken. This half-cycle emission law can

also be interpreted as temporal interference of HHG waves

emitted dependently in a half cycle of the incident electric

field [32,33]. On the basis of this idea, the breaking of the

emission law is due to the overlap between the conduction

and valence bands by the semimetallization for a long

interval, which disturbs the interference that generates only

odd-order harmonic spectra. To explain the independence

of the cutoff energy from the band-gap energy, we extend

the simple man model, as shown in Fig. 3(b). In this model,

carriers are generated when the band gap becomes zero,

after which they are accelerated and finally recombine.

From such processes, we can derive the cutoff energy as

EC ¼ 2 × ðℏΩR0 þ 3.2UpÞ ≈ 3.6ℏΩR0, and this equation

reveals that the cutoff energy no longer depends on the

band-gap energy. These considerations are based on simple

two-band models and their justification is assured by a

condition that the band-gap energy is much smaller than

energy differences between the first and the second con-

duction bands. Therefore, our results would be identified in

experiments with several materials such as GaAs and InN.

Figures 4(a) and 4(b) show the dependence of the cutoff

frequency ωC on the Rabi frequency, as estimated from the

numerical results (purple solid circles) and the simple man

model (blue and red lines) in the cases of (a) Eg ¼ 5ℏω0

and (b) Eg ¼ 10ℏω0. In the numerical calculation, the

cutoff frequency ωC is determined as the threshold energy

between the plateau and decay regions, where the plateau

region is defined from a condition that the harmonic

intensities become less than 10% compared with the

previous and later orders. We found a crossover between

ac Zener and semimetal regimes from the dependence of

the cutoff energy on the Rabi frequency.

Finally, we will clarify the dephasing effect on the HHG

spectra whose importance is discussed in the previous

works [13,14]. The increasing dephasing effects enable us

to presume the disappearance of temporal interference of

HHG waves, each of which is emitted dependently in a half

cycle. Therefore, when employing the dephasing value of

γt ≈ ω0, we expect the HHG spectra to be characterized by
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FIG. 2. Higher harmonic spectra generated from two-dimensional semiconductors: (a) Multiphoton absorption regime, (b) ac Zener

regime, and (c) semimetal regime. Red and blue lines show spectra in the case of Eg ¼ 5ℏω0 and Eg ¼ 10ℏω0, respectively.

(a) Simple man model in AC Zener regime (b) Simple man model in semimetal regime

1. Zener tunneling

3. Recombination

2. Propagation

1. Pair generation

      in semimetal

3. Recombination

2. Propagation

FIG. 3. Schematic diagram of simple man models in (a) ac

Zener regime and (b) semimetal regime. In these figures, the

simple man models are composed of three steps: (1) generation of

carriers, (2) acceleration, and (3) recombination. The main

difference between these diagrams is caused by generation

processes. In the ac Zener regime, carriers are excited by Zener

tunneling, while in the semimetallization regime, carriers are

excited when the band gap becomes closed.
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FIG. 4. The cutoff-frequency transition from ac Zener to

semimetal regimes depending on the Rabi frequency in the case

of Eg ¼ 10ℏω0 and Eg ¼ 5ℏω0. Blue and red lines show cutoff

laws in ac Zener and semimetallization regimes. Purple dots

indicate the cutoff frequency estimated from numerical results.
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the single-cycle excitation processes, and consequently, the

spectra widths become broader [34]. We identified this

conjecture by performing our numerical calculations. This

characteristic becomes important when considering HHG

in the semimetal regime. In this regime, the increasing

dephasing effect changes noisy continuumlike spectra into

clean odd-ordered ones. We emphasize that the cutoff laws

derived in this Letter are not influenced by the dephasing

effect as long as a range of 0 ≤ γt ≤ ω0 is being considered,

which covers recent experimental situations [4–8].

In this Letter, based on an exact treatment of diabatic

processes of Bloch electrons, we first discovered non-

perturbative mechanisms of HHG in solid-state materials.

In our theoretical framework, employing an external

electric field in the form of a vector potential rather than

the scalar one, the justification of Bloch’s theorem is

ensured even under the influence of the high-intensity

electric field. In this scheme, temporally changed band

structures linked to an ac electric field characterize diabatic

processes of Bloch electrons. Utilizing this framework, we

revealed these diabatic processes, namely, ac Zener tunnel-

ing and the semimetallization of semiconductors, determine

properties of HHG spectra whose cutoff laws are in the

form of EC ¼ Eg þ 1.6ℏΩR0 and EC ¼ 3.6ℏΩR0, respec-

tively. The cutoff laws could be understood based on

analogies between Zener tunneling and tunnel ionization

processes, as well as semimetallization of semiconductors

and over-the-barrier ionization processes [30,35], where

band-gap energy and Bloch electrons correspond to the

ionization energy and bare electrons, respectively. The

analogies presented in this Letter would provide possibil-

ities for the universal understanding of HHG mechanisms

in both atomic and solid cases, and consequently, propose

the availability of the same method for coherent control

such as a polarization gating [2,36].
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