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207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA

(Received 26 June 2014; accepted 21 August 2014; published online 15 September 2014)

In this work, we present a method, called the DQ scheme (where D and Q stand for dipole and
quadrupole, respectively), for transforming a set of adiabatic electronic states to diabatic states by
using the dipole and quadrupole moments to determine the transformation coefficients. It is more
broadly applicable than methods based only on the dipole moment; for example, it is not restricted to
electron transfer reactions, and it works with any electronic structure method and for molecules with
and without symmetry, and it is convenient in not requiring orbital transformations. We illustrate
this method by prototype applications to two cases, LiH and phenol, for which we compare the
results to those obtained by the fourfold-way diabatization scheme. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4894472]

I. INTRODUCTION

The Born-Oppenheimer approximation separates the
electronic and nuclear motion, and this separation leads to
electronically adiabatic states and potential energy surfaces
(PESs); approximations to the electronically adiabatic states
may be obtained by the standard electronic structure meth-
ods. Nuclear motion couples the adiabatic states through the
nuclear momentum. Obtaining analytical representations of
potential energy surfaces and couplings in the adiabatic rep-
resentation is difficult because the states and surfaces have
discontinuous first derivatives, and the momentum couplings
have singularities. This motivates transforming to another rep-
resentation. One might at first hope to transform to a represen-
tation with smooth surfaces and zero momentum couplings.
However, such a representation does not in general exist.1

However, one can find representations with smooth surfaces
and negligible momentum couplings, and a representation
with this property is called diabatic.2 Diabatic states do not
diagonalize the electronic Hamiltonian, and so they are cou-
pled by off-diagonal elements of the electronic Hamiltonian
operator. They are not unique, and a variety of approaches to
obtaining diabatic states have been proposed, although many
of them are not general. A general feature of diabatic states
is that they should be smooth functions of nuclear coordi-
nates since the nuclear momentum operator involves deriva-
tives with respect to nuclear coordinates, and these will not
be negligible if the state functions are not smooth and slowly
varying. In the present article, we propose a new way to obtain
diabatic states and we compare it to previous work. We limit
ourselves to methods in which diabatic states are defined as
linear combinations of the same number of adiabatic states.
We propose a general procedure in which we use standard
electronic structure methods to obtain a set of low-energy adi-
abatic states and then transform them to a diabatic basis that
spans the same space.

a)Authors to whom correspondence should be addressed. Electronic
addresses: gagliard@umn.edu and truhlar@umn.edu.

In general, the specification of electronic states requires
first defining an orbital basis, then defining many-electron
functions (usually called configuration state functions or
CSFs) in terms of these orbitals, and then specifying the states
as linear combinations of the CSFs. We note that the orbitals
and CSFs are not physical observables. One way to construct
diabatic states is to rotate the adiabatic states in such a way as
to directly minimize the nuclear-momentum couplings. This
way involves directly computing the couplings, which is cum-
bersome because they are (3N − 6)-dimensional vectors that
depend on electronic origin,3–5 do not necessarily vanish upon
atomization,2, 6 and are singular on (3N − 8)-dimensional
surfaces,7 where N is the number of atoms.

Another approach is transforming the adiabatic states
to states that are smooth functions of the internuclear
coordinates.8–21 Probably, the most straightforward way to
do this is to define smoothly varying orbitals (which may be
called diabatic molecular orbitals or DMOs) in terms of which
one may define smoothly varying CSFs to be used to define
the state functions, as is done in the configurational unifor-
mity method of Atchity and Ruedenberg11, 12 and in the four-
fold way,15–18 whose final step is configurational uniformity.
Many methods for enforcing smoothness depend on following
a path through configuration space, for example, by enforcing
high overlap with the diabatic states at the previous point in
space19 or by maximizing some function of the overlap of the
orbitals;20, 21 even for triatomic systems that have only three
internal coordinates, this becomes cumbersome if one wants
to generate a full potential energy surfaces, and for four or
more atoms, it becomes impractical. Methods that allow the
direct generation of diabatic states at a given geometry are
called direct diabatization and are preferred for this reason.

A third approach is to define diabatic states by using
physical observables without defining DMOs. Of the observ-
ables one could choose, the dipole moment has received much
attention both historically and recently,22–31 but we will show
that it is much more robust to use both the dipole moment
and the quadrupole moment. The historical context of these
methods will be discussed in Sec. II.

0021-9606/2014/141(11)/114104/11/$30.00 © 2014 AIP Publishing LLC141, 114104-1
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Our motivation for using information about the
quadrupole moment in addition to the dipole was to develop
a diabatization method that is more generally applicable than
schemes based only on the dipole. The dipole locates the
center of charge (first moment of the charge distribution),
which is important for charge transfer reactions, but the
quadrupole moment provides information about the shape of
the charge distribution that is more general and can extend
the applicability to photochemical reactions that are not clas-
sifiable as charge transfer processes. In Sec. II, in addition
to providing historical context, we will review the fourfold
way15–18 and Boys localization28 methods for diabatization
before discussing the new method, which we call the DQ
method, where D and Q stand for dipole and quadrupole,
respectively. The fourfold way, the Boys localization method,
and the DQ method are all direct; but the fourfold way
requires orbital transformations, whereas Boys localization
and the DQ method do not, which is more convenient and
requires less programming to extend the method to arbitrary
electronic structure methods. In Secs. III and IV, we will
provide computational details and results of these three
methods applied to two cases: LiH and phenol.

II. THEORY

II.A. Notation

In this article, we only consider diabatization methods in
which N diabatic states span the same space as N selected
adiabatic states, which may be (but need not necessarily be)
the N lowest-energy adiabatic states. Given N adiabatic states,
{ψ I}, we express diabatic states, {φA}, as a linear combina-
tion of these N states

φA =

N
∑

I=1

ψITIA, I = 1, . . . , N. (1)

The diabatic energy matrix, U, is computed from the adiabatic
energy matrix, V, as

UAB =
∑

I

TIAVITIB, (2)

where the transformation matrix T depends on the diabatiza-
tion method used.

II.B. Review of the fourfold way

The fourfold way15–18 is a general diabatization scheme
based on configurational uniformity12 and is currently avail-
able for transforming complete-active-space self-consistent
field (CASSCF)32 adiabatic states or multiconfiguration
quasidegenerate perturbation theory (MC-QDPT) adiabatic
states obtained with a CASSCF reference wave function.33

It has been presented previously15–18 and applied successfully
to a number of problems.34–40 We will also apply it here for
comparison with the new DQ method. In this section, we re-
view the key elements of the fourfold way. To enforce config-
urational uniformity, the adiabatic states need to be written as
a linear combination of CSFs expressed in terms of DMOs,
and one must choose diabatic prototype states; then the elec-

tronic states are transformed to have maximum resemblance
to the diabatic prototype states. Thus, there are two transfor-
mations involved, in particular an orbital transformation to
yield DMOs and a CSF transformation to yield diabatic states.

The generation of smooth DMOs is the key feature of
the fourfold way method. The DMOs of the inactive and vir-
tual orbitals are assumed to be equivalent to the canonical
MOs from the CASSCF calculations, and those for the active
space are obtained by rotating the active MOs in a sys-
tematic way by a scheme called the fourfold way, which
generates DMOs by satisfying the threefold-density-matrix
criterion and, if needed, the maximum-overlap-reference-
MOs (MORMO) criterion, which is the fourth element.

The threefold-density-matrix criterion is satisfied by
maximizing a three-term functional

D3 = αNDNO + αRDON + αT DT D, (3)

which is a weighted sum of three functionals, where each α is
a weight. The three terms are the state-averaged natural orbital
term (DNO), the sum of the squares of the orbital occupation
numbers for all states (DON), and a term based on the tran-
sition density matrix (DTD). The details and physical motiva-
tion for these terms can be found in the original papers.15–18

If one generates DMOs from only the threefold-density crite-
rion, which is sometimes sufficient, the method reduces to the
threefold way.

The MORMO criterion in the fourfold way is also re-
ferred to as the reference-orbital overlap term, DRO, and it is
usually needed to resolve degeneracies, for example, in cases
involving two or more nonbonding p orbitals on the same cen-
ter (one or both of these p orbitals might be bonding at some
geometries and nonbonding at others, but to obtain global po-
tential energy surfaces we need a global transformation to
DMOs, so the transformation must also be valid in regions
where both are nonbonding). If reference orbitals are needed,
one must first choose λ reference DMOs (where λ is usually
1 or 2) as linear combinations of active orbitals at a reference
geometry (Rref), then determine the λ DMOs at any other ge-
ometry R by maximizing the reference-overlap term41

DRO =

∣

∣

∣

∣

∑

i

∑

j

ki(Rref)kj (R)ξi(R)|ξj (R)

∣

∣

∣

∣

2

, (4)

where ξi(R) is an atomic (contracted) basis function at the
geometry R, and ki is a MO coefficient. The remaining DMOs
are generated through the threefold-density-matrix criterion.

It is particularly notable that the fourfold way is not lim-
ited to two-center, two-state electron transfer problems, which
have been the motivation for many of the diabatization meth-
ods that have been proposed, but rather it is designed to treat
more general problems in photochemistry. The fourfold-way
diabatization has been found to work for all systems to which
we have tried to apply it.15–18, 34–40 The main drawback is
that the proper choice of reference orbitals and the determi-
nation of prototype CSFs for the configurational uniformity
step require system-dependent decisions that can be time-
consuming and may require expert knowledge of the system
at hand. The latter is not entirely unexpected since practical
methods involving multiconfiguration reference functions and
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excited states usually require system-dependent expertise and
often require delicate choices about how to treat the various
orbitals.42–44

II.C. Review of the Boys localization diabatization
method

In contrast to the fourfold way, which is based mainly
on smoothness, one may also base a diabatization scheme on
localization.25–30 We begin by reviewing the Boys localiza-
tion scheme developed by Subotnik et al.28 because the DQ
method may be considered an extension of that scheme. The
Boys localization scheme was originally developed for local-
izing orbitals,45, 46 and it was extended to the localization of
many-electron states by Subotnik et al.28 This scheme defines
the rotation matrix T of Eq. (1) such that it maximizes the
magnitude of the dipole moment difference between diabatic
states

fBoys =
∑

A,B

|〈φA|µ|φA〉 − 〈φB |µ|φB〉|2. (5)

This scheme may be motivated by its appropriateness for
treating two-state, two-center electron transfer, for which it
maximizes the localization of charge on the left in one state
(state with the most negative dipole moment) and the local-
ization of charge on the right in the other state (state with
maximum positive dipole moment). However, Subotnik and
co-workers showed that it is also applicable to more general
problems.31, 47–49 As shown in the Appendix, Eq. (5) is equiv-
alent to maximizing the sum of the squares of the magnitudes
of the dipole moments

fBoys =
∑

A

|〈φA|µ|φA〉|2 ≡
∑

A

|µAA|2. (6)

The Boys localization scheme is only able to differentiate be-
tween electronic states of differing dipole moment. Thus, this
method can have difficulty when there are more diabatic states
than charge centers. For this reason, it was recommended to
rediagonalize any sub-block of the Hamiltonian that corre-
sponds to the same charge center.25, 28 This is a complicating
feature that can be unsatisfactory if the charge accumulation
on various centers is a function of geometry; however, the
method is still very convenient because it can be used with
any electronic structure method and only uses the adiabatic
dipole matrix as input without requiring orbital transforma-
tions.

To further motivate the use of methods like Boys local-
ization for diabatization, we next discuss the older method
of Werner and Meyer.24 In this method, diabatic states are
defined as those that satisfy 〈φA|µ|φB〉 = 0, which are inter-
preted as charge-localized states. Diagonalizing µ fulfills this
criterion. This method is straightforward and works for more
than two states. However, unless the direction of µAB is de-
termined by symmetry (in which case we call the axis with
a nonzero component the z axis), one cannot diagonalize all
components of the dipole vector with the same transforma-
tion. Therefore, when there is more than one nonzero compo-
nent of 〈φA|µ|φB〉, the Werner-Meyer method will not work
or at least becomes ambiguous (as to which component is to

be diagonalized), and this is a serious shortcoming for appli-
cation to arbitrary geometries of polyatomic molecules, which
prevents the method from being useful for calculating diabatic
potential energy surfaces in most cases. The Boys localiza-
tion scheme for diabatization reduces to the Werner-Meyer
method when only one component of 〈φA|µ|φB〉 is nonzero
by symmetry, but it provides a generalization that does not
depend on axis choice for arbitrary geometries of polyatomic
molecules.

Another method that may be considered to be a gen-
eralization of the Werner-Meyer method is the generalized
Mulliken-Hush (GMH) method.25 This method is very simi-
lar to the Werner-Meyer method, but instead of diagonalizing
the dipole operator along a pre-chosen axis, one diagonalizes
µ • υ, where

v =
µII − µJJ

|µII − µJJ |
, (7)

for two states. This method reduces to Werner-Meyer when
the direction of v is determined by symmetry but is an im-
provement over Werner-Meyer because one can now treat
states that have more than one nonzero component for
µ. However, the choice of v for more than two states is
not straightforward and is often not sufficient.26 The GMH
method was developed for electron transfer, so rediagonaliz-
ing any sub-block of the Hamiltonian that corresponded to
multiple diabatic states on the same charge center is recom-
mended as in Boys localization diabatization.

Localization may be considered as maximizing differ-
ences in the first moments of the charge distributions of the
various states, and more generally we can base diabatization
on maximization of other well-defined characteristics of the
charge distributions. However, in order to be applied conve-
niently and unambiguously to all points on an entire potential
energy surface, the function to be maximized should be in-
dependent of the orientation of the axes. The above analysis
should make clear that a key advantage of Boys localization26

over the previous methods is that it uses the magnitude of the
dipole moment rather than the dipole moment vector, so there
are no difficulties regarding the components of the dipole mo-
ment or the choice of axes. Furthermore, it is also directly ap-
plicable to more than two states. The magnitude of the dipole
moment is a nonlinear function of its components, so an itera-
tive procedure is needed rather than a diagonalization, but that
is not an impediment to widespread use. However, as will be
shown below, we found that – due to the already mentioned
shortcoming that the dipole moment is sometimes insufficient
to distinguish diabatic states – Boys diabatization does not
always yield useful diabatic states, so we developed a new
method that is similar in structure to Boys localization but ap-
plicable to more general cases.

II.D. DQ diabatization method

Before introducing the new method, we remind the reader
that two possible definitions of the quadrupole moment tensor
are in use, the so-called primitive quadrupole moment and the
traceless quadrupole moment.51–55 In the present article, we
will use the primitive quadrupole moment, which is defined
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by

Q =
∑

i

qi r i r i, (8)

where the sum is over particles (electrons and nuclei), and qi

is the charge on particle i. The traceless quadrupole moment
is obtained by subtracting the trace but will not be used here.

We now define the function to be maximized as

fDQ =
∑

A

(|〈|φA|µ|φA|〉|2) +
∑

j

αj |tr〈φA| Q( j )|φA〉|
2
)

≡
∑

A

(

|µAA|2 +
∑

j

αj

∣

∣tr Q
(j )
AA

∣

∣

2
)

, (9)

where αj is a parameter (with units, in atomic units, of a−2
0 ,

where 1 a0 ≡ 1 bohr), j denotes a choice of origin for the
quadrupole integrals, and tr denotes a trace. In this work, we
encountered no cases where multiple choices of origin were
needed, so we will drop the j after Sec. II. With this formu-
lation, fDQ is invariant to the choice of coordinate system. It
is origin dependent if the dipole moment or molecular charge
is nonzero. This method maintains many of the desirable fea-
tures of Boys localization and requires only the dipole mo-
ment matrix and the trace-of-the-quadrupole-moment matrix
as input. As we show in Sec. IV, this can enable one to avoid
a posteriori subdiagonalization of the Hamiltonian because
the quadrupole is often able to differentiate diabatic states
with charge concentrated on the same charge center. Thus,
the method is applicable to a more general class of reactions.

II.E. DQ diabatization for two states

In the case of two adiabatic states, Eq. (1) can be written
as

(

φA

φB

)

=

(

cos θ sin θ

− sin θ cos θ

)(

ψI

ψJ

)

. (10)

When (10) is plugged into (9), we can rewrite the functional
to be maximized in terms of adiabatic matrix elements and θ

fDQ = f a
DQ + A +

√

A2 + B2 cos (4 (θ − γ )) , (11)

where

f a
DQ = |µII |

2 + |µJJ |2 +
∑

j

(

αj

∣

∣tr Q
(j )
II

∣

∣

2
+ αj

∣

∣tr Q
(j )
JJ

∣

∣

2)

≡ |µII |
2 + |µJJ |2 +

∑

j

(

αj

∣

∣M
(j )
II

∣

∣

2
+ αj

∣

∣M
(j )
JJ

∣

∣

2)
,

(12)

A = −
1

4
|µII |

2 −
1

4
|µJJ |2 + |µIJ |2 +

1

2
µII · µJJ

−
∑

j

(

αj

4

∣

∣M
(j )
II

∣

∣

2
−

αj

4

∣

∣M
(j )
JJ

∣

∣

2
+ αj

∣

∣M
(j )
IJ

∣

∣

2

+
αj

2
M

(j )
II M

(j )
JJ

)

, (13)

B = µII · µIJ − µIJ · µJJ

+
∑

j

(

αjM
(j )
II M

(j )
IJ − αjM

(j )
IJ M

(j )
JJ

)

, (14)

γ = Arctan

(

−B

A

)

. (15)

Then fDQ will be at a maximum when θ = γ, γ + 1
2π ,. . . ,

and γ can be found by solving the nonlinear equation
∂f

DQ

∂θ
|θ=γ = 0.

II.F. DQ diabatization for N states

The DQ method is straightforwardly generalized to
the N-state case in precisely the same way as Boys
localization.28, 56

III. COMPUTATIONAL DETAILS

III.A. LiH

The first three 1�+ states of LiH were investigated. The
three adiabatic potential energy curves (Vj, for j = 1–3) were
computed by state-averaged CASSCF50 averaging over three
states (SA(3)-CASSCF) with equal weights for each of the
three low-energy states and with the aug-cc-pVTZ68(a) basis
set with Molcas 7.8.57 The wave function was constrained
to have C2v spatial symmetry, and calculations were done in
the A1 irreducible representation. The active space consists of
two electrons in five orbitals, which nominally correspond to
1sH, 2sLi, and 2pLi; this active space is denoted as CAS(2,5).
As functions of internuclear distance, the Li 2px and 2py or-
bitals change character to H 2px and H 2py and have occupa-
tion numbers less than 0.005 at all geometries.

We carried out diabatization by the Boys method, by the
DQ method with more than one choice of the parameter α,
and by the fourfold way. The dipole matrices needed for Boys
localization and the DQ method and the quadrupole matrices
needed for the DQ method were computed with the RASSI
module58 of Molcas 7.8.57 The origin for the quadrupole mo-
ment was taken as the Li atom because an origin on or close to
the Li atom is needed upon dissociation in order to differenti-
ate between the state-dependent charge distributions on Li.

In the fourfold-way calculations, the threefold den-
sity matrix criterion does not need to be augmented by a
reference-orbital overlap term in this case, so the fourfold way
reduces to the threefold way for this system. The threefold-
way diabatization was performed in the GAMESS64 software
package with the 2013 patch. There were only three dominant
CSFs, and each constitutes its own diabatic prototype group
for the configurational uniformity step.

III.B. Phenol

We applied the DQ diabatization method to a typical path
for phenol photodissociation, and we compare the results to
those obtained by the fourfold way. In the same way as in our
previous study,40, 67 the planar ground-state minimum-energy
structure of phenol was optimized with Cs symmetry by the
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CASSCF method using the aug-cc-pVTZ basis set.68 The ac-
tive space includes 12 active electrons and 11 active orbitals
and is denoted as CAS(12,11); the active space consists of
three π , three π*, and one each of σCO, σOH, σ ∗

CO, and σ ∗
CO,

and pz orbitals (where the pz orbital is a lone pair orbital on
oxygen with the C-1, C-2, and C-3 atoms of the phenyl ring
placed in the xy plane). The adiabatic PESs of the three states
(1ππ , 1ππ*, and 1πσ*) were calculated by using the state-
averaged CASSCF method with the same weight for each
of the three states; this is denoted as SA(3)-CASSCF(12,11).
These calculations employed the jul-cc-pVDZ69 basis set. The
dipole and quadrupole moments needed for DQ calculations
were obtained using the RASSI module58 of Molcas 7.8,57

and the origin of the quadrupole moment is the center of nu-
clear mass of the phenoxyl subsystem of phenol. The choice
of origin was made due to the delocalized nature of the π or-
bitals on the phenoxyl subsystem.

For comparison, the fourfold-way diabatizations were
performed by the HONDOPLUS5.270 program package at the
same level, that is, SA(3)-CASSCF(12,11)/jul-cc-pVDZ. The
details of fourfold way applied to phenol can be found in a
previous paper,40 so we do not repeat those details here.

IV. APPLICATIONS

Boys localization has performed well for a variety of
charge-transfer cases.28, 47–49 A pedagogical test case for the
performance of Boys localization is provided by the first
four states of square He+

4 .28 In the adiabatic representation,
the charge is delocalized over the molecule, and the first
four states are not energetically degenerate. However, upon
Boys diabatization, one obtains charge-localized states with
degenerate energies. In the present article, we consider two
more difficult cases. We employ the Boys localization method
without block diagonalization because we want to test the
method in the context of polyatomic potential energy curves
where block diagonalization at some geometries but not oth-
ers would produce discontinuous potential energy surfaces.

IV.A. LiH

Ionic-covalent crossings have been widely studied in the
alkali hydrides.59–63 The first three 1�+ states of LiH consist
of two covalent states and one ionic state. The ionic diabatic
state has a 1s2

H valence configuration and will be denoted state
I. The covalent states have the valence configurations 2sLi1sH
(diabatic state S) and 2pLi1sH (diabatic state P), respectively.

Figure 1 compares diabatic energies (Ui) of the (a) three-
fold way, (b) Boys localization, and (c) the DQ Scheme with
α = 0.1 a−2

0 for the three lowest-energy 1�+ states of LiH
(U1 corresponds to the I state, U2 to the S state, and U3 to
the P state). The threefold way results in smooth diabats that
nicely agree with the adiabats away from crossings as seen in
Figure 1(a). Because of the excellent performance of the
threefold way in this case, we use it as the reference for com-
parison. The Boys localization method unacceptably mixes
the S and P states at large Li–H distances and shows non-
smooth behavior at small Li–H distances. The DQ method

FIG. 1. The adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) po-
tential energy curves of the three lowest-energy 1�+states for LiH. The adi-
abatic states were computed at the SA(3)-CAS(2,5)SCF/aug-cc-pVTZ level
of theory and diabatized with (a) the 3-fold way, (b) Boys localization, and
(c) the DQ method with α = 0.1a−2

0 .

with α = 0.1 a−2
0 gives smoother curves than Boys localiza-

tion but still mixes the S and P states at large Li–H distances.
Figure 2(a) shows that the behavior can be fixed for RLiH
> 4 Å by increasing α to 0.5 a−2

0 but at the cost of making
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FIG. 2. The adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) poten-
tial energy curves of the three lowest-energy 1�+states for LiH. The adia-
batic states are the same as in Fig. 1, and the diabatic states are obtained by
the DQ scheme with (a) α = 0.5a−2

0 , (b) α given by Eq. (16), and (c) α given
by Eq. (17).

the curves less smooth at small Li–H distances. Figure 2(b)
agrees with the fourfold way at both small and large Li–H
distances by making α a monotonically increasing function,

α = A[1 − exp(−BRLi–H)], (16)

TABLE I. The diabatic-state dipole moments (Debye) and the adiabatic and
diabatic energies (eV) of LiH obtained by the Boys method, the DQ scheme
with two α values, and the threefold way for a Li–H distance of 6.00 Å.a

Diabatic energies

DQ DQ Threefold
Dipole Adiabats Boys (α = 0.1 a−2

0 ) (α = 0.5 a−2
0 ) way

State S 0.06 0.00 0.88 0.80 0.03 0.00
State P 0.00 1.82 0.96 1.04 1.81 1.84
State I 28.00 3.40 3.36 3.37 3.37 3.39

aThe energies are relative to the energy of state S at 20 Å, which is essentially the same
as ∞, where state S is the lowest-energy state.

where A = 0.5 a−2
0 ; B = 0.2 Å−1. Figure 2(c) shows even

smoother diabatic curves can be obtained by fine adjustment
of α, yielding

α = A − C exp[−B(RLi–H − D)2], (17)

where A = 0.5 a−2
0 ; B = 1.0 Å−2; C = 0.4 a−2

0 ; and D = 3 Å.
We view Figure 2(b) as the best compromise between accu-
racy and simplicity, and it is encouraging that we get good
results with such a simple function because optimization of a
nonmonotonic α could be difficult for polyatomics.

Table I shows how well each diabatization method is able
to differentiate between the three states of LiH at 6.00 Å.
All methods are capable of separating ionic and covalent
states. The Boys localization method is unable to differenti-
ate between the two covalent states, which can be explained
by their nearly identical dipole moments. The DQ results are
shown for two values of α. With α = 0.1 a−2

0 , the quadrupole
terms are too small to separate the S and P states; however,
α = 0.5 a−2

0 rectifies this. The DQ method is in very good
agreement with the threefold way at this geometry when we
use α = 0.5 a−2

0 .
For U3, the threefold way in Figure 1(a) is much

smoother than for DQ with any value of α. This is due to the
avoided crossing in V3 near 3 Å. A MO occupied in the dom-
inant CSF of V3 changes from 2s′ to 2pz character (the prime
indicates that the MO is more diffuse than the one with 2s

character), which abruptly changes the trace of the quadrupole
by a factor of two. This does not noticeably affect the three-
fold way because MO uniformity is enforced through the
threefold-density criterion. The abrupt change in quadrupole
near 3 Å also reflects why fitting α to a Gaussian centered at
that region gives the best results as shown in Figure 2(c).

The above analysis shows that there are two main defi-
ciencies in Boys localization for LiH. The first is the incorrect
dissociation of U2 and U3. The second is the bump in U1 and
U3 at 2.0 Å. As already mentioned, we do not diagonalize
the sub-block of the diabatic Hamiltonian that corresponds
to multiple states on the same charge center as suggested in
Refs. 25 and 28. This would fix the behavior of U2 and U3
near dissociation; however, one is not able to apply this a

posteriori correction in regions of covalency since at inter-
mediate distances it is not clear where each state is centered.
This is the case for LiH at 2.0 Å. We conclude that the Boys
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FIG. 3. Same as Fig. 2 except the DQ results are obtained with α = 0.3 a−2
0 .

localization, while suitable for two-state, two-center electron
transfer problems and probably for some more general prob-
lems in special cases, is not necessarily an acceptable method
for more complex cases, but it also shows that the DQ method
is largely able to remove its deficiencies by making the param-
eter α a function of RLi–H. In fact, results obtained with con-
stant α = 0.3 a−2

0 are almost as satisfactory as those obtained
with the exponentially increasing α; this is shown in Figure 3,
and Figure 4 compares the best constant α, the best monoton-
ically increasing α obtained with two-parameter exponential
function, and the best four-parameter Gaussian function for
α. The success of the DQ method with a one-, two-, or four-
parameter optimized α is very encouraging because the DQ
method is simpler than the threefold or fourfold way in that it
does not require an orbital transformation step.

The squared diabatic couplings (Ujj′
2 where j = 1, 2, and

3 correspond, respectively, to the I, S, and P states of LiH)
with (a) the threefold way, (b) Boys localization, and (c) the
DQ method are reported in Figure 5. There is no quantita-
tive agreement between the three methods; however, there are
similar trends. The Boys method does not yield well-behaved
couplings, especially in the crossing regions, where the mag-

FIG. 4. Forms of α as functions of geometry.

FIG. 5. Squares of the diabatic couplings [(U12)2, (U13)2, and (U23)2] be-
tween the three lowest-energy 1�+ states for LiH. The adiabatic states were
computed at the SA(3)-CAS(2,5)SCF/aug-cc-pVTZ level of theory and di-
abatized with (a) the threefold way, (b) Boys localization, and (c) the DQ
method with α = 0.3a−2

0 .

nitudes are sporadic as shown in Figure 5(b). The large U12
and U23 coupling are due to the method’s inability to separate
states S and P at dissociation, which was shown in Figure 1(b).
The large U13 coupling near 2 Å correlates with the bumps in
U1 and U3 at 2.0 Å in Figure 1(b). The U13 coupling has a
sharp peak around 3 Å in the DQ method, which corresponds
to the U1/U3 crossing in Figures 3. The behavior between 2.0
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and 3.0 Å of U12 and U13 changes noticeably (not shown) as
a function α, which correlates to differences in smoothness
in this region as shown above. Nevertheless, if we compare
our results obtained with the optimum constant value of α

(Figure 5(c)) with the threefold way (Figure 5(a)), there are
many similarities. The U12 coupling has a small local maxi-
mum at 2.5 Å for the threefold way and at 2.25 Å for DQ fol-
lowed by a larger peak at 3.25 Å for the threefold way and at
3 Å for DQ. It is important to note that the trends are shifted
by 0.25 Å, which correlates with the shift of 0.25 Å in the
potential energy curve crossings in Figures 1(a) and 3. The
U23 coupling for both methods agrees when RLi–H is less than
2.5 Å; however, at distances greater than 2.5 Å, the DQ
method results in a slowly changing curve while the three-
fold way U23 coupling is a near-zero constant. For the meth-
ods unable to properly dissociate LiH (Boys and DQ with α

= 0.1 a−2
0 ), U23 is far from zero at RLiH = 6 Å, as illustrated

for the former in Figure 5(b) (increasing α from 0 to 0.3 a−2
0

decreases U 2
23 from 0.9 eV2 to 0.3 eV2 at RLiH = 6 Å).

It is certainly not a general expectation that one can al-
ways expect the results to be good enough for dynamics cal-
culations, and in fact we expect that there will be cases where
the more difficult fourfold way will still be required, but on
the systems tested so far, the method has performed well. The
disagreement in the U23 couplings at small internuclear dis-
tances is not considered serious because couplings are mainly
important for dynamics in regions close to where the two di-
abatic states cross; states S and P do not cross. One point to
keep in mind here, though, is that variability in coupling in
regions where the states are not strongly coupled is not com-
pletely unexpected. When the gap between states is large, the
results are not sensitive to the precise magnitude of the cou-
pling. This means that the inverse problem of determining the
coupling is becoming ill-conditioned, i.e., the couplings are
less well determined in the regions where they do not have a
large effect.

In Sec. IV.B, we consider a much more difficult problem,
the potential energy surfaces for photodissociation of phenol.

IV.B. Phenol

Photodissociation of phenol to phenoxyl radical and hy-
drogen atom is a nonadiabatic process in which the crossings
of PESs of three states [1ππ (S0), 1ππ* (S1), and 1πσ*(S2)]
along the O–H fission coordinate play important roles.65 At
high enough photoexcitation energy, the initially populated
bright 1ππ* state can switch to the dark higher-energy 1πσ*
state at a crossing or avoided crossing. The system can then
follow the repulsive 1πσ* state potential energy surface along
the hydrogen detachment reaction coordinate to the photo-
products of phenoxyl radical and hydrogen atom; along the
way it passes through a crossing or avoided crossing region
with S0. Knowledge of the global diabatic PESs and their cou-
plings would allow informative dynamics simulations of this
process.65(b), 65(d), 66

Recently,40, 67 we have successfully obtained smooth dia-
batic PESs and couplings for phenol along several important
reaction coordinates by using a direct diabatization method
based on the fourfold way. Such diabatic calculations for phe-

TABLE II. The dipole moments (Debye) and adiabatic and diabatic ener-
gies (eV) obtained by the Boys method, the DQ scheme with two α values,
and the fourfold way for the 1ππ , 1ππ*, and 1πσ* states for a geometry
with a C–C–O–H torsion angle of 30◦ and an O–H distance of 0.964 Å.a

Diabats

DQ DQ Fourfold
Dipole Adiabats Boys (α = 1 a−2

0 ) (α = 10 a−2
0 ) way

1ππ 1.63 0.04 2.71 1.47 0.08 0.04
1ππ* 1.45 5.08 2.43 3.66 5.05 5.08
1πσ* 9.93 5.77 5.73 5.74 5.74 5.76

aThe other geometric parameters are fixed at their values at the planar ground-state equi-
librium geometry. The energies are relative energies with respect to the energy of the
ground-state equilibrium geometry.

nol require great care in constructing the DMOs because the
extent of conjugation of the oxygen atom p orbitals to the
ring is a sensitive function of the reaction coordinates (which
are primarily the O–H fission coordinate and the C–C–O–H
torsion coordinate), so that one must carefully define a refer-
ence orbital to obtain smooth DMOs, and one must include
2–7 configurations in each dominant CSF list for the diabatic
states of interest. By doing this one obtains smooth DMOs,
smooth diabatic state functions, and smooth diabatic poten-
tials and couplings.

The diabatization method based on Boys localization28

has its roots in the treatment of charge transfer reactions
and does not yield qualitatively correct diabatic states for the
photodissociation of phenol. The 1ππ and 1ππ* states have
very similar dipole moments so that the Boys method, being
based on dipole moments, has no handle on which to base an
adiabatic-to-diabatic transformation. The new DQ diabatiza-
tion method, by taking account of the traces of the quadrupole
tensors in addition to the magnitudes of the dipole vectors, so
that one takes account of higher-order characteristics of the
charge distributions as well as their first moments, provides a
convenient and straightforward method of broader applicabil-
ity, and here we test it for phenol.

Table II lists the adiabatic energies and diabatic energies
of the 1ππ , 1ππ*, and 1πσ* states, obtained by the Boys,
DQ, and fourfold way methods, for a geometry with C–C–
O–H torsion angle (τ ) of 30◦, in which the other internal co-
ordinates are fixed at their values at the ground-state equi-
librium geometry—in particular the O–H distance (RO–H) is
0.964 Å. The energies in the table are relative to the energy
of the planar ground-state equilibrium geometry of phenol.
For the equilibrium value of RO–H, the three states are well
separated, and their adiabats are very similar to their diabats.
However, because of the similar dipoles of the 1ππ and 1ππ*
states, Boys localization diabatization cannot distinguish the
two states. Table II shows that the DQ method with α = 1
a−2

0 improves the diabats, and with α = 10 a−2
0 it reproduces

the diabatic PESs of the three involved states obtained by the
fourfold way.

Figures 6 and 7 present results as functions of the O–
H distance, RO-H, with the C–C–O–H torsion angle, τ , equal
to 30◦ and the other internal coordinates fixed at their val-
ues at the planar ground-state equilibrium geometry. The
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FIG. 6. Adiabatic (V1, V2, and V3) and diabatic (U1, U2, and U3) poten-
tial energy surfaces along RO–H coordinate of phenol at C–C–O–H torsion
angle of 30◦, with the other internal coordinates fixed at the ground-state
equilibrium geometry. The energies are relative to the energy of the planar
ground-state equilibrium geometry. The DQ calculations are carried out using
α = 10 a−2

0 .

diabatic and adiabatic PESs (Uj and Vj, respectively, for
j = 1–3) are shown in Fig. 6, and the squares of the diabatic
couplings (Ujj′

2) are in Fig. 7. For O–H distances shorter than

1.44 Å, the three diabatic surfaces have the following char-
acter: U1 is 1ππ , U2 is 1ππ*, and U3 is 1πσ*; however, at
RO–H = 1.44 Å, due to another crossing with a higher en-
ergy 1πσ* state, the U2 surface starts to represent that higher
energy 21πσ* state and has 1πσ* character for larger RO–H.
Figure 6 shows that the diabatic PESs obtained by the DQ
method with α = 10 a−2

0 agree very well with those obtained
by the fourfold way. Figure 7 shows that the DQ method al-
ways overestimates the couplings compared to fourfold way,
especially for RO–H < 1.50 Å, where the DQ U12 and U13 cou-
plings are significantly larger than the fourfold way ones, but
we should keep in mind that the diabatic couplings are signif-
icant for the dynamics mainly when the surfaces are strongly

FIG. 7. Squares of the diabatic couplings [(U12)2, (U13)2, and (U23)2] along
the O–H bond stretching coordinate of phenol at a C–C–O–H torsion angle of
30◦, with the other internal coordinates fixed at the ground-state equilibrium
geometry. The DQ calculations were carried out with α = 10 a−2

0 .

interacting. For RO–H < 1.50 Å, the U1 and U2 surfaces are
well separated, as are the U1 and U3 surfaces, and the overes-
timations of U12 and U13 couplings may have little influence
on the dynamics simulations. The U13 couplings obtained by
two methods agree well in the strong interaction region (RO–H
= 1.70–2.20 Å) of the U1 and U3 surfaces. The U23 couplings
obtained by DQ method are about twice as large as those in
the fourfold way around the crossing region (RO–H = 1.10–
1.30 Å) of the U2 and U3 curves, but they have similar trends,
and the values are still reasonable. Due to the high-energy
crossing of the third and fourth PESs, there is a small bump
in the (U23)2 curves for RO–H = 1.50 Å. This bump would
not affect the photodissociation dynamics very much because
it happens in the weak interaction region of the U2 and U3
surfaces where the U23 coupling is not important. Therefore,
the results presented here indicate that the DQ method with
α = 10 a−2

0 provides a suitable diabatization method for sim-
ulating the photodissociation of phenol.

V. CONCLUSION

In this paper, we have presented a new diabatization
method, called the DQ method, that uses the magnitude of
the dipole vector and the trace of the quadrupole tensor to
transform adiabatic states to diabatic states. It is a straightfor-
ward scheme, applicable with any electronic structure method
and not restricted to two-state problems or electron trans-
fer systems. We applied this method to two cases: LiH and
phenol.

The results for LiH show that a constant value for the sin-
gle parameter α can give much better results than Boys local-
ization, and a two-parameter exponentially increasing func-
tion for α can give results almost as good as those obtained by
the threefold way (the fourfold way reduces to the threefold
way for LiH). Our results for phenol are very encouraging
because we obtain very comparable results with the fourfold
way and DQ. In such a case, the DQ method has real advan-
tages because it does not require specifying reference orbitals
and making orbital transformations.

A very attractive feature of the DQ method is its ease of
application; no orbital transformations are required, and the
information required from electronic structure calculations at
a given geometry would fit on the back of an envelope: N

adiabatic energies, the N × N dipole transition matrix, and
the N × N transition matrix of the sum of the diagonal ele-
ments of the primitive quadruple (for a specific origin of the
coordinate system, but independent of the orientation of the
axes; note that both N × N transition matrices are symmet-
ric, so for N = 3, this amounts to 15 numbers). Therefore, the
method can be applied with any electronic structure method
for which these matrices are available. One of our objectives
for a diabatization method is that it should be able to treat gen-
eral reactions, not just two-state, electron transfer reactions,
whereas the dipole method should not be expected to be use-
ful for cases where the states do not differ by charge transfer.
The phenol test case is therefore an important challenge. The
success of the DQ method, coupled to the ease of application
of the DQ method, is very encouraging.
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APPENDIX: EQUIVALENCE OF BOYS FORMULATIONS

There is more than one fomulation of the Boys local-
ization method for MOs.45, 46, 71 This appendix shows that
two formulations that are equivalent for MOs are analogously
equivalent for many-electron states. Let us begin by rewriting
Eq. (5) as

fBoys =
∑

A,B

|〈φA|µ|φA〉 − 〈φB |µ|φB〉|2

=
∑

A,B

|〈φA|µ|φA〉|2 + |〈φB |µ|φB〉|2

− 2〈φA|µ|φA〉 · 〈φB |µ|φB〉

∝
∑

A

|〈φA|µ|φA〉|2 −

∣

∣

∣

∣

∑

A

〈φA|µ|φA〉

∣

∣

∣

∣

2

. (A1)

The second term in the last expression is the square of the
trace of a matrix. Because the trace of a matrix is invariant to
unitary transformations, the second term will have no effect
on the function during maximization. Thus,

fBoys ∝
∑

A

|〈φA|µ|φA〉|2. (A2)
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