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Abstract Diabetes and hypertension frequently occur to-
gether. There is substantial overlap between diabetes and
hypertension in etiology and disease mechanisms. Obesity,
inflammation, oxidative stress, and insulin resistance are
thought to be the common pathways. Recent advances in
the understanding of these pathways have provided new
insights and perspectives. Physical activity plays an impor-
tant protective role in the two diseases. Knowing the com-
mon causes and disease mechanisms allows a more effective
and proactive approach in their prevention and treatment.
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Introduction

Hypertension and diabetes are two of the leading risk factors
for atherosclerosis and its complications, including heart
attacks and strokes. There is substantial overlap between
diabetes and hypertension, reflecting substantial overlap in
their etiology and disease mechanisms. In the Hong Kong
Cardiovascular Risk Factor Prevalence Study, only 42% of
people with diabetes had normal blood pressure and only

56% of people with hypertension had normal glucose toler-
ance [1•]. In the US population, hypertension occurs in
approximately 30% of patients with type 1 diabetes and in
50% to 80% of patients with type 2 diabetes [2]. A prospec-
tive cohort study in the United States reported that type 2
diabetes mellitus was almost 2.5 times as likely to develop
in subjects with hypertension as in subjects with normal
blood pressure [3]. In reality, diabetes and hypertension
are found in the same individual more often than would
occur by chance, whereas the overlap between dysglycemia
and raised blood pressure is even more substantial than that
between diabetes and hypertension [4]. This suggests either
shared genetic or environmental factors in the etiology [1•].

Etiology

Genetics

Genome scans involving thousands of subjects and controls
have revealed a large number of genes with small effects, as
opposed to a small number of genes with large effects
anticipated originally [5, 6]. Genetic variants in the gene
encoding angiotensinogen, adrenomedullin, apolipoprotein,
and α-adducin have been reported to be associated with
common conditions such as diabetes, hypertension, dysgly-
cemia, or metabolic syndrome [7–10].

In Hong Kong studies of single nucleotide polymor-
phisms (SNPs), SNPs that predict the development of dia-
betes were found also to predict the development of
hypertension [11–14]. In genome scans in Hong Kong Chi-
nese individuals, the region associated with diabetes was
also associated with the metabolic syndrome, which
includes hypertension as a component [15, 16]. A recent
study at Columbia University on somatic gene conversion
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and deletion suggested that multitudes of common SNPs are
involved [17•].

Besides the genetic aspect, another very important aspect
for the onset of diabetes and hypertension is environmental.
Environmental factors include the period in utero and lifestyle
factors such as diet and physical activity. Gestational diabetes,
fetal malnutrition, and high birth weight are three factors that
may predispose the fetus to cardiometabolic syndrome in
adulthood [18, 19•, 20]. High intake of sodium, alcohol, and
unsaturated fat, smoking, lack of physical activity, and mental
stress are examples of an unhealthy lifestyle.

It is now realized that insulin resistance, which predicts
type 2 diabetes, also has a role in the development of hyper-
tension [21]. Indeed, hypertension and diabetes substantially
share common pathways such as obesity, inflammation, oxi-
dative stress, insulin resistance, and mental stress.

Obesity

Obesity, a global health problem, has been identified as the
most important risk factor for hypertension and diabetes
[22]. Obese persons have a significantly higher risk of
hypertension and type 2 diabetes [23•]. Studies of obesity
in Western countries where there is a high prevalence have
led to a greater understanding of the phenomenon of risk
factor clustering and of the pathophysiologic links among
hypertension, obesity, diabetes. Obesity is generally consid-
ered as the combined result of dysfunction of feeding center
in the brain, imbalance in energy intake and expenditure,
and genetic variations. Obesity is largely determined by
genes; approximately 50% to 90% of the variation in weight
is the result of genetic predisposition according to twin
studies [24, 25]

The obese (ob) gene that was discovered in 1950 was
the first gene identified to be related to the onset of
obesity [26]. From then on, researchers have sought to
identify the genetic factors of obesity in addition to
studying metabolic physiology. Genome-wide association
studies have revealed a number of genes influencing the
susceptibility to obesity [27–29]. The FTO gene, promot-
ing obesity and overeating, was one of the key obesity
susceptibility genes. Together with the GNDPA 2 gene,
they predict persistent central obesity in the Chinese
population [10]. Other likely diabetes-related genes in-
clude BCDIN3D/FAIM2, SH2B1, and KCTD15 [29–32]
as well as CRTC3, which has been shown to slow down
the speed of fat oxidation [33].

It is not surprising to find that diabetes and obesity share
some common susceptibility genes. As obesity is a common
factor in the etiology of hypertension and diabetes [1•], we
would expect that hypertension, diabetes, and obesity not
only share common pathophysiologic pathways but also
common susceptibility genes.

Inflammation and Oxidative Stress

A low-grade inflammatory process occurs in both diabetes
and hypertension [34–38]. Even chronic periodontitis is a
latent factor in the development of diabetes, hypertension,
cardiovascular diseases, and the metabolic syndrome
[39–45]. In some ways, diabetes and hypertension could
be considered as chronic inflammatory diseases.

Inflammatory markers (eg, C-reactive protein (CRP)) are
increased in patients with diabetes, hypertension, and the
metabolic syndrome, and also predict the development of
these diseases [46–48]. The local renin-angiotensin-
aldosterone system (RAAS) plays a very important role in
vascular pathophysiology. Angiotensin-converting enzyme
(ACE) is expressed in the shoulder of coronary artery pla-
ques. Angiotensin II (Ang II) is to a large degree responsible
for triggering vascular inflammation and inducing oxidative
stress [49]. It stimulates NADH/NADPH oxidase, and acti-
vates Rho/Rho kinase, protein kinase C (PKC), and
mitogen-activated protein kinase (MAPK) [50–53]. Also,
Ang II down-regulates proinflammatory transcription fac-
tors such as nuclear factor-κB (NF-κB), resulting in the
generation and secretion of reactive oxygen species (ROS),
inflammatory cytokines (eg, interleukin-6 [IL-6]), chemo-
kines, and adhesion molecules [54, 55]. These actions lead
to endothelial dysfunction and vascular injury.

Gene regulatory network analysis has revealed oxidative
stress as a key underlying molecular mechanism in diabetes
and hypertension. The oxidative stress-mediated regulation
cascade is the common mechanistic link among the patho-
genesis of diabetes, hypertension, and other related inflam-
matory diseases [56].

Peroxisome proliferator-activated receptor (PPAR) acti-
vators lower blood pressure, induce favorable effects on the
heart, and ameliorate endothelial dysfunction through anti-
oxidant, anti-inflammatory, antiproliferative, antihypertro-
phic, and antifibrotic effects [57]. Ang II down-regulates
the mRNA and protein of PPAR-α and PPAR-γ, resulting in
the reduction of PPAR anti-inflammatory capacity and acti-
vation of inflammation. PPAR-α and PPAR-γ activators
have been demonstrated to exert cardiovascular protective
effects independent of their metabolic actions [58]. Howev-
er, recent studies with dual PPAR activators have cast
doubts on their clinical efficacy in cardiovascular prevention
compared with the original PPAR activators currently mar-
keted [59, 60].

Traditional pharmacologic approaches such as statins,
ACE inhibitors, and Ang II receptor blockers (ARBs), which
reduce cardiovascular events in randomized clinical trials, also
reduce vascular inflammation in patients with diabetes and
hypertension [61–63]. Optimization of lifestyle (eg, weight
loss, exercise, and Mediterranean-style diet) also has the
effect of reducing vascular inflammation [64, 65•].
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Insulin Resistance

Insulin is a pleiotropic hormone that plays a pivotal role in
the development of hypertension, diabetes, and the metabol-
ic syndrome. The main metabolic actions of insulin are to
stimulate glucose uptake in skeletal muscle and heart and to
suppress the production of glucose and very low-density
lipoprotein (VLDL) in the liver [66]. Under fasting condi-
tions, insulin secretion is suppressed, leading to increased
glucose synthesis in the liver and kidneys (gluconeogenesis)
and increased conversion of glycogen to glucose in the liver
(glycogenolysis) [67]. After a meal, insulin is released from
pancreatic β-cells and inhibits gluconeogenesis and glyco-
genolysis [67]. Insulin stimulates the sympathetic nervous
system (SNS) to increase cardiac output and the delivery
and utilization of glucose in the peripheral tissues [68].
Other metabolic effects of insulin include inhibition of glu-
cose release from the liver, inhibition of the release of free
fatty acids (FFAs) from adipose tissue, and stimulation of
the process by which amino acids are incorporated into
protein [67].

Insulin resistance, a condition in which defects in the
action of insulin are such that normal levels of insulin do
not trigger the signal for glucose absorption, denotes an
impaired response to insulin in skeletal muscle, liver, adi-
pose, and cardiovascular tissue [67, 68]. Insulin resistance
arises due to various genetic, acquired, and environmental
factors, including obesity [69]. Increased RAAS activities
may also cause insulin resistance via the stimulation of Ang
II type 1 receptors, which trigger increased production of
reactive oxygen species (ROS) in adipocytes, skeletal mus-
cle, and cardiovascular tissue of obese individuals [70, 71].
FFAs are believed to induce insulin resistance and increase
the level of oxidative stress [70, 72, 73], resulting in endo-
thelial dysfunction and atherogenesis [69, 70].

Insulin resistance is associated with impaired insulin
signaling, impaired fibrinolysis, and inflammation. Emerg-
ing evidence suggests that insulin resistance may result from
abnormalities in key molecules of the insulin-signalling
pathways, including overexpression of phosphatases and
downregulation and/or activation of protein kinase cascades
[74], leading to abnormalities in the expression and action of
various cytokines, growth factors, and peptides, and over-
production of VLDL [75]. Insulin resistance may also result
in impaired fibrinolysis, which is characterized by hyperco-
agulability and elevation of fibrinogen and plasminogen
activator inhibitor (PAI)-1 [76, 77]. PAI-1 activity is elevat-
ed in a wide variety of insulin resistance patients. Even in
patients with normal glucose tolerance, elevated levels of
fasting insulin are associated with impaired fibrinolysis [76].
Therefore, insulin resistance is a prothrombotic state char-
acterized by an elevation of PAI-1 and fibrinogen levels,
leading to increased risk of cardiovascular events [75, 77].

Insulin resistance may be a result of an overproduction of
proinflammatory cytokines (eg, IL-6, tumour necrosis factor
(TNF), and CRP) and a relative deficiency of anti-
inflammatory cytokines (eg, adiponectin) produced from
adipose tissues due to obesity [78].

Insulin-mediated glucose uptake by muscle varies more
than sixfold in apparently healthy individuals [79], with
approximately half of the variability in insulin action being
genetically determined and the other half resulting from
differences in the degree of adiposity and physical fitness
[80, 81]. Most patients with type 2 diabetes are insulin
resistant, and about half of those with essential hypertension
are insulin resistant [82]. Therefore, insulin resistance is an
important common link between diabetes and hypertension.

Mental Stress and Sympathetic Nervous System

Stressors are intrinsic or extrinsic stimuli leading to distur-
bances in physiology and psychology, and may threaten
health. Compared with physical stressors, modern stressors
arising from psychological threat (eg, work stress, domestic
violence, and natural disasters) are more sustained. Chronic
mental stress, resulting from the modern lifestyle, is fre-
quently associated with physiologic and psychological dis-
turbances, and may indirectly lead to diabetes and
hypertension [83–87].

Although epidemiologic investigations have demonstrat-
ed that mental stress is associated with hypertension, car-
diovascular disease, obesity, and the metabolic syndrome
(which includes diabetes as a component) [88–92], the
effect of mental stress on the whole body is not completely
understood. Animal experiments taught us that the mecha-
nisms include renal sympathetic nerve activity (RSNA) [93,
94] and blood pressure control in which baroreflex function
[95–97] is involved.

In the human body, stimulation of the sympathetic ner-
vous system (SNS), caused by chronic stress, elevates pulse
rate and cardiac minute output and also activates the RAAS,
which is another important pressor mechanism [86]. In-
creased activity of the SNS also plays a part in the develop-
ment of impaired glucose [87] and lipid metabolism [83,
98]. Studying the SNS and RAAS allows us to understand
their roles in the etiology and treatment of hypertension,
metabolic syndrome, and diabetes [84].

There is also a link between mental stress and obesity in
patients with diabetes and hypertension. A high prevalence of
hypertension in obese subjects has been related to psychosocial
factors, including chronic stress [99–101]. The hypothalamic–
pituitary–adrenal axis was suggested as a key mechanism link-
ing obesity, hypertension, and chronic stress [101, 102]. There-
fore, people should reduce stress to escape from the vicious
cycle of mental stress, obesity, diabetes, and hypertension.
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Physical Activity

In the Da Qing Impaired Glucose Tolerance and Diabetes
Study, incident diabetes decreased by 46% in the exercise
group [103]. In the nonrandomized Malmö Feasibility Study
in 260 middle-aged men with impaired glucose tolerance,
the incidence of diabetes was 50% lower in the intervention
group after 5 years [104]. In the Finnish Diabetes Prevention
Study, subjects with a change in moderate-to-vigorous
leisure-time physical activity (LTPA) in the highest tertile
were 49% to 65% less likely to develop diabetes than those
in the lowest tertile [105]. In the Coronary Artery Risk
Development in Young Adults study (CARDIA) with over
15 years of follow-up, there was a significant 17% reduction
of risk of incident hypertension for every 300-exercise unit
increment in average physical activity [106]. In the Athero-
sclerosis Risk in Communities (ARIC) study, the highest
quartile of leisure activity (primarily cycling and walking)
had a 34% lower odds of developing hypertension over
6 years compared to the least active [107]. Thus, physical
activity reduces the risk of developing diabetes and hyper-
tension. The mechanism involves changes in body weight
and glucose tolerance, as well as other factors [107].

The effect of obesity susceptibility genes on the onset of
obesity is influenced by physical activity in the individual.
The genotypic effect of FTO is more pronounced in inactive
than active individuals [108•]. The former are more likely to
carry risk alleles such as rs9939609 [109]. Nevertheless,
individuals meeting the daily physical activity recommen-
dations may overcome the effect of FTO genotype on
obesity-related diseases such as diabetes, hypertension, and
the metabolic syndrome [110–112].

The potential benefits of physical activity in the preven-
tion and treatment of diabetes and hypertension are well
recognized but regular physical activity is difficult and
sometimes impossible to carry out in real life. Public health
efforts should nevertheless still aim to raise public aware-
ness and facilitate regular physical activity to prevent
against diabetes, hypertension, and other related diseases.

Conclusions

Diabetes and hypertension share common pathways such as
SNS, RAAS, oxidative stress, adipokines, insulin resistance,
and PPARs (Fig. 1). These pathways interact and influence
each other and may even cause a vicious cycle. Hypertension
and diabetes are both end results of the metabolic syndrome.
They may, therefore, develop one after the other in the same
individual. Central obesity is the cause of the metabolic syn-
drome. Only orlistat is currently available for the long-term
treatment of obesity [114]. Therefore, optimization of lifestyle

remains the cornerstone in the prevention and treatment of
diabetes and hypertension.
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