Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events

Sanne A. E. Peters • Rachel R. Huxley • Mark Woodward

Received: 25 February 2014 / Accepted: 17 April 2014 /Published online: 25 May 2014
(C) Springer-Verlag Berlin Heidelberg 2014

Abstract

Aims/hypothesis A previous pooled analysis suggested that women with diabetes are at substantially increased risk of fatal CHD compared with affected men. Additional findings from several larger and more contemporary studies have since been published on the sex-specific associations between diabetes and incident CHD. We performed an updated systematic review with meta-analysis to provide the most reliable evidence of any sex difference in the effect of diabetes on subsequent risk of CHD. Methods PubMed MEDLINE was systematically searched for prospective population-based cohort studies published

Electronic supplementary material The online version of this article (doi:10.1007/s00125-014-3260-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users.

[^0]between 1 January 1966 and 13 February 2013. Eligible studies had to have reported sex-specific RR estimates for incident CHD associated with diabetes and its associated variability that had been adjusted at least for age. Randomeffects meta-analyses with inverse variance weighting were used to obtain sex-specific RRs and the RR ratio (RRR) (women:men) for incident CHD associated with diabetes. Results Data from 64 cohorts, including 858,507 individuals and 28,203 incident CHD events, were included. The RR for incident CHD associated with diabetes compared with no diabetes was 2.82 (95% CI 2.35, 3.38) in women and 2.16 (95% CI $1.82,2.56$) in men. The multiple-adjusted RRR for incident CHD was 44% greater in women with diabetes than in men with diabetes (RRR 1.44 [95\% CI 1.27, 1.63]) with no significant heterogeneity between studies ($I^{2}=20 \%$).
Conclusions/interpretation Women with diabetes have more than a 40% greater risk of incident CHD compared with men with diabetes. Sex disparities in pharmacotherapy are unlikely to explain much of the excess risk in women, but future studies are warranted to more clearly elucidate the mechanisms responsible for the substantial sex difference in diabetes-related risk of CHD.

Keywords Coronary heart disease • Diabetes •
Meta-analysis • Risk factors • Sex differences • Systematic review

Abbreviations

APCSC	Asia Pacific Cohort Studies Collaboration
ARIC	Atherosclerosis Risk in Communities Study
NHANES III	National Health and Nutrition Examination
	Survey III
RRR	RR ratio
SHHEC	Scottish Heart Health Extended Cohort Study

Introduction

A lack of sex-specific data from early epidemiological studies has typically led to the assumption that the associations between risk factors and disease outcomes are equivalent in women and men. But, increasingly, evidence to support the existence of clinically meaningful sex differences in the relationships between certain risk factors, such as smoking and diabetes [1-5], with chronic disease is becoming apparent, often with more detrimental effects of such risk factors in women than in men. Sex differences in risk factor-disease associations would not only have implications for patient management and treatment, but would also have repercussions on efforts to quantify the burden of disease due to specific risk factors, as most such studies use only a single estimate of risk that is uniformly applied to both men and women [6, 7].

In 2006, a systematic review of 37 cohort studies of the sex-specific effects of diabetes on risk of fatal CHD suggested that women with diabetes had a near 50% greater excess risk compared with their male equivalents, even after consideration of differences in baseline levels of other major risk factors [1]. Since that report, estimates from a number of large and more contemporary cohort studies have been published, with many reporting incident as well as fatal CHD outcomes [8-11].

Given the rising prevalence rates of diabetes worldwide, and the clinical implications that any important sex difference in the association between diabetes and future risk of CHD would have, we have performed an updated systematic review with meta-analysis of all available evidence to provide the most robust comparison of the sex-specific effect of diabetes on risk of incident CHD.

Methods

Search strategy and selection criteria A systematic search was performed in PubMed MEDLINE (www.ncbi.nlm.nih.gov) on 13 February 2013 using a combined text word and medical subject heading (MeSH) search strategy (electronic supplementary material [ESM] Methods). References were scanned to identify other potentially relevant studies. Prospective population-based studies were included if they had provided RRs (or equivalents) for the associations between diabetes and CHD in men and women. Studies were excluded if they had not adjusted for at least age or did not provide information on the variability around the point estimate. The search strategy and items for data extraction were defined and agreed by all authors. One author (S. A. E. Peters) did the search and extracted the data. Uncertainties regarding the inclusion/exclusion of manuscripts and data extraction were discussed by all authors and
resolved by mutual consent. In addition, the authors had access to individual participant data from four studies: the Asia Pacific Cohort Studies Collaboration (APCSC) [12], the Atherosclerosis Risk in Communities Study (ARIC) [13], the National Health and Nutrition Examination Survey (NHANES) III [14] and the Scottish Heart Health Extended Cohort Study (SHHEC) [15].

Data extraction and statistical analysis For each study, we obtained the sex-specific RRs for individuals with diabetes vs individuals without diabetes and 95\% CIs through extraction of RRs from the published manuscripts or through new statistical analyses on the available individual participant data. We subsequently used these RRs to estimate the women-tomen ratio of RRs (RRR) and 95\% CIs [1]. The primary endpoint was incident CHD (either fatal or non-fatal) and the secondary endpoint was fatal CHD, to facilitate comparison with previous reviews. Multiple-adjusted results were used in our primary analyses. The set of multiple adjustments made were allowed to vary by study, but had to include at least one other risk factor in addition to age. After natural log transformation of study-specific estimates, pooled estimates across studies were obtained using random-effects metaanalysis. The inverse of the variance of the $\log \mathrm{RR}$ and of the $\log \mathrm{RRR}$ were used to weight studies according to an estimate of statistical size [16].

Sensitivity analyses were performed by age (≤ 60 vs >60 years), region (occidental cohort vs Oriental cohort) and baseline year of data collection (pre-1985 vs post-1985). The I^{2} statistic was used to estimate the percentage of variability between studies due to between-study heterogeneity [17, 18]. Random-effects meta-regression analyses were used to assess whether differences in the mean duration of study follow-up, the incidence of CHD, the women-to-men ratio incidence of CHD, the overall prevalence of diabetes or the women-to-men ratio of diabetes prevalence contributed to heterogeneity between studies. We used funnel plots of the natural \log of the RRR against its standard error to assess publication bias, and trim and fill analyses to adjust the RRRs for the presence of publication bias. All analyses were performed using Stata version 11.0 (SataCorp, College Station, TX, USA).

Results

Of the 8,183 articles that were identified through the systematic search, 116 articles qualified for full-text evaluation (Fig. 1). Of these, 18 articles provided information on sex differences in the association between diabetes and risk of CHD. These published data were extended with individual participant data from APCSC, ARIC, NHANES III and SHHEC. Overall, data from 64 cohorts, including 858,507

Fig. 1 Flow chart of the systematic review for the primary analysis

individuals (42% women) and 28,203 incident CHD events, were available (Table 1). Thirty cohorts were from Asia (55\% of the individuals), 13 from Europe (23%), 11 from Australia, New Zealand or Pacific (12\%) and 10 from the USA (10\%). Individuals were between 20 and 107 years of age at baseline and the duration of follow-up ranged from 5 to 30 years. The average prevalence of diabetes at baseline was 3.4% among women and 4.8% among men.

Pooled estimates for the diabetes-related risk of combined incident CHD The overall summary RR for incident CHD associated with diabetes compared with no diabetes was 2.82 (95% CI $2.35,3.38$) in women and 2.16 (95% CI 1.82, 2.56) in men (ESM Fig. 1). The I^{2} statistic for heterogeneity between studies was 83% in women and 86% in men, indicating substantial between-study heterogeneity. Exclusion of the four studies with only age-adjusted results reduced the betweenstudy heterogeneity to 65% in women and 66% in men and mildly attenuated the RR estimates (RR 2.63 [95\% CI 2.27, 3.06] in women and 1.85 [95\% CI 1.64, 2.10] in men) (Fig. 2).
$R R R$ for CHD in men and women with diabetes The pooled multiple-adjusted women-to-men RRR for incident CHD was 1.44 (95% CI $1.27,1.63$) (Fig. 3). Visual inspection of the funnel plot showed minimal evidence for publication bias (ESM Fig. 2), adjustment for which did not alter the results. There was no evidence that the pooled RRR varied materially
by important study characteristics, namely: duration of study follow-up (p for heterogeneity $=0.16$); the proportion of CHD events within each study ($p=0.76$); the women-to-men ratio of the CHD event rate ($p=0.93$); the prevalence of diabetes ($p=0.58$); or the women-to-men ratio of diabetes prevalence ($p=0.84$) (ESM Fig. 3). In the sensitivity analyses there was no evidence that the multiple-adjusted RRRs for incident CHD differed materially by age or region (p value for interaction, 0.26 and 0.78 , respectively); however, there was a borderline significant effect of year of cohort at study baseline on the RRR (p value for interaction=0.048; ESM Fig. 4).

Pooled estimates and RRR for the diabetes-related risk of fatal CHD In an analysis that included data from 52 cohorts, including 782,681 (91\%) individuals and at least 16,877 fatal CHD events, the pooled multiple-adjusted RR estimates for fatal CHD associated with diabetes were 2.83 (95% CI $2.25,3.54$) in women and 2.04 (95% CI 1.72, 2.43) in men (ESM Fig. 5). The corresponding women-to-men RRR was 1.44 (95\% CI 1.20, 1.73) (ESM Fig. 6).

Effect of adjustment for confounding on the relationship between diabetes and incident CHD A total of 47 cohorts, including 694,592 individuals (81%) and 16,492 CHD events, provided separate estimates of the association between diabetes and CHD that were age adjusted and then additionally adjusted for multiple confounders (Table 1). There was
Table 1 Characteristics of included studies separated by studies that contributed to earlier reviews and newly included or analysed studies

Study name	Country	Baseline study (years)	Follow-up (years)	Study size, n (\% female)	Age (years)	Diabetes, n (\% female)	Ascertainment of diabetes	CHD events, n (\% female)	F or NF	Maximum adjustment available
Studies that contributed to earlier reviews										
Advantist Health Study [39]	USA	1974	6	27,658 (63)	25+	656	Measured	302 (55)	F	Age, hypertension, smoking, BMI, PA
Charleston Heart Study-White [40]	USA	1960-61	30	1,394 (53)	35+	38 (42)	Measured	257 (42)	F	Age
Charleston Heart Study-Black [40]	USA	1960-61	30	787 (58)	35+	37 (70)	Measured	134 (46)	F	Age
Collins et al-Indians [41]	Fiji	1980	11	1,220 (55)	$20+$	166 (52)	Measured	NA	F	Age, SBP, smoking, BMI, TC, survey area
Collins et al-Melanesians [41]	Fiji	1980	11	1,324 (53)	$20+$	65 (66)	Measured	NA	F	Age, SBP, smoking, BMI, TC, survey area
Dubbo study [42]	Australia	1988	5	2,805 (56)	60+	206 (49)	Measured	463 (48)	F and NF	Age, AHT use, BMI, TC, HDL, triacylglycerols, ApoB, LP_{a}, diabetes, self-rated health, prior CHD
EPESE [43]	USA	1982	6	2,812 (58)	$65+$	386 (60)	Self-reported	230 (55)	F	Age, AHT use, smoking, BMI, diabetes, angina, chest pain on exertion
Framingham study [44]	USA (2 cohorts)	1970-75	20	5,243 (52)	35-75	229 (42)	Measured	395 (29)	F	Age, hypertension, smoking, BMI, TC
Hawaii-Los AngelesHiroshima study [45]	Japan	1976-84	10-18	917 (56)	40-79	169 (54)	Measured	43 (33)	F	Age, hypertension, smoking, BMI, TC, triacylglycerols, uric acid, ECG abnormalities
NHANES I [46]	USA	1971-75	9	7,381 (55)	40-77	407 (54)	Self-reported	350 (36)	F	Age, SBP, smoking, BMI, TC
Reykjavik study [47]	Iceland	1967	17	18,519 (52)	32-60	295 (49)	Self-reported, partly measured	2,406 (29)	F and NF	Age, hypertension, smoking, BMI, TC, triacylglycerols, diabetes, glucose, prior CHD, LVH
SALLS [48]	Sweden	1979-85	16	39,055 (51)	25-74	174 (51)	Self-reported	1,520 (31)	F	Age
Newly included or analysed studies										
APCSC-ANZ [49]	Pool of 9 cohorts	1989-96	7	99,624 (45)	20-104	4,784 (31)	Self-reported or measured	3,953 (31)	F and NF	Age, SBP, smoking, BMI, TC
APCSC-Asia [49]	Pool of 27 cohorts	1961-93	7	436,832 (33)	20-107	17,763 (23)	Self-reported or measured	1,195 (27)	F and NF	Age, SBP, smoking, BMI, TC
ARIC [13]	USA	1987-89	18	15,732 (55)	45-64	1,610 (58)	Measured	1,616 (42)	F and NF	Age, SBP, smoking, BMI, TC
DECODE study [10]	Finland and Sweden (7 cohorts)	1987-02	5-21	9,278 (55)	40-69	826 (47)	Measured	530 (34)	F and NF	Age, hypertension, smoking, BMI, TC, HDL
Hisayama [9]	Japan	1988	14	2,421 (57)	40-79	291 (46)	Measured	171 (34)	F and NF	Age, SBP, smoking, BMI, TC, HDL, alcohol intake, PA, ECG abnormalities
HUNT 1 [11]	Norway	1984-86	17	47,951 (52)	20+	1,992 (57)	Self-reported	4,723 (39)	F	Age, hypertension, smoking, BMI, CVD, PA
Kuopio and North Karelia [50]	Finland	1972-97	17	51,735 (51)	25-74	1,108 (46)	Self-reported	3,039 (31)	F	Age, SBP, smoking, BMI, TC, study year
NHANES III [14]	USA	1988	13	18,603 (46)	18-90	1,290 (38)	Self-reported, partly Measured	973 (51)	F	Age, SBP, smoking, BMI, TC
Renfrew and Paisley Survey [51]	Scotland	1972-76	25	15,426 (54)	45-64	228 (51)	Self-reported, partly measured	2,357 (59)	F	Age, SBP, smoking, BMI, TC, SES
San Antonio Heart Study [52]	USA	1979-88	16	4,996 (57)	25-64	524 (58)	Measured	121 (43)	F	Age, ethnicity

Table 1 (continued)

Study name	Country	Baseline study (years)	Follow-up (years)	Study size, n (\% female)	Age (years)	Diabetes, n (\% female)	Ascertainment of diabetes	CHD events, n (\% female)	F or NF	Maximum adjustment available
SHHEC [15]	Scotland	1,984-87	16	13,343 (51)	30-74	184 (46)	Measured	2,595 (39)	F and NF	Age, SBP, smoking, BMI, TC
Strong Heart Study [53]	USA	1989-91	12	4,372 (61)	45-74	714 (52)	Measured	724 (52)	F and NF	Age, SBP, DBP, smoking, HDL, LDL, albuminuria
Takayama [8]	Japan	1992	7	29,079 (54)	>35	1,217 (35)	Self-reported	106 (45)	F	Age, hypertension, smoking, BMI, PA, education, total energy intake, intake of vegetables, fat and alcohol

Fig. 2 Multiple-adjusted pooled RR for incident CHD, comparing individuals with diabetes with those without diabetes. ANZ, Australia and New Zealand; EPESE, (National Institute on Aging) Established Populations for Epidemiologic Studies of the Elderly; HUNT, Nord-Trøndelag health study
variation in the confounders that were adjusted for in the individual studies but, aside from age, most adjusted for blood pressure, cigarette smoking, BMI and lipids. As shown in ESM Fig. 7, adjustment for major cardiovascular risk factors had only a small effect and attenuated the age-adjusted RR of diabetes for CHD to a similar extent in women (12\%) and men (11\%).

Discussion

The present analysis of 64 cohorts, including nearly 900,000 individuals and over 28,000 incident CHD events, confirms
the greater excess risk of CHD in women with diabetes compared with men with diabetes. The current estimate of 44% greater RR for incident CHD in women with diabetes compared with their male counterparts is comparable with the previous estimate of 46% excess risk for fatal CHD reported in a meta-analysis that was restricted to 37 cohorts and fatal CHD events, with about one-third the number of events available in the current review [1]. The sex difference in diabetesrelated risk for CHD was consistent across subgroups defined by age and region and remained unchanged after excluding non-fatal CHD events. Furthermore, as the level of attenuation of the age-adjusted summary risk estimates was both moderate and equivalent in women and men the observed sex difference is unlikely to be driven by residual confounding. Recently, we

Fig. 3 Multiple-adjusted women-to-men RRR for incident CHD, comparing individuals with diabetes to those without diabetes. ANZ, Australia and New Zealand; EPESE, (National Institute on Aging) Established
have shown that the excess risk of stroke in individuals with diabetes is more than 25% greater in women than in men [4]; taken together with these current data, there is convincing evidence that diabetes poses a greater relative risk for cardiovascular diseases in women than men.

There is considerable uncertainty as to the mechanisms responsible for the observed greater coronary hazard conferred by diabetes in women compared with men. It has long been speculated that there is a widespread sex disparity in the management and treatment of cardiovascular risk factors in individuals with diabetes, to the detriment of women. Historically, women with diabetes were more likely to have a more adverse cardiovascular risk profile and were less likely to achieve the recommended levels of risk factors compared with male counterparts; in particular, this may have affected the sex-specific estimates from the older cohort studies that were established when there were significant disparities in treatment between sexes [19-22]. Indeed, the results of the present study provide some marginal evidence that the excess risk of diabetes in women was more pronounced in cohorts with baseline data collection before 1985 than in cohorts with baseline data collection after 1985. However, even though treatment has become more equitable between the sexes, when
treated similarly diabetic women are still less likely than men to achieve target values for cardiovascular risk factors [23-25]. This might suggest that it is not the higher levels of cardiovascular risk factors or the relative undertreatment in women alone that account for all of the excess risk of CHD induced by diabetes in women.

Alternatively, sex differences in diabetes-related changes in the levels of cardiovascular risk factors may play an important role. Indeed, there is accumulating evidence to support the hypothesis that women's metabolic and vascular risk factor profile has to deteriorate to a greater extent, i.e. that women have to 'travel further', than men to become diabetic. Several studies have shown that the difference in both traditional and novel cardiovascular risk factor levels in people with and without diabetes is significantly greater in women than in men [26-32]. Furthermore, in the prediabetic state where glucose tolerance may already be impaired but does not meet all diagnostic criteria of diabetes, risk factor levels are more elevated in women than in men [33, 34]. Several studies have suggested that men develop diabetes at a lower BMI compared with women [32, 35-37]. For example, in the UK General Practice Research Database, the BMI of individuals at the time of diabetes diagnosis was, on average, $1.8 \mathrm{~kg} / \mathrm{m}^{2}$
higher in women than in men [37]. Similarly, data from the UK Prospective Diabetes Study indicated that men with newly diagnosed diabetes were significantly less obese compared with newly diagnosed women [35]. It is conceivable, therefore, that the diabetes-related excess risk of CHD in women is not due to significant sex differences in the physiological effects and complications of diabetes. Rather, we hypothesise that the excess risk in women is due to a combination of both a greater deterioration in cardiovascular risk factor levels and a chronically elevated cardiovascular risk profile in the prediabetic state, driven by greater levels of adiposity in women compared with men. If confirmed, the implementation of sexspecific interventions before diabetes becomes manifestsuch as increased screening for prediabetes, especially in women, combined with more stringent follow-up of women at high risk for diabetes, such as women with a history of gestational diabetes-could have a substantial impact on the prevention of CHD. Moreover, physicians may be more likely to recognise the early symptoms of CHD in men than women because of men's higher absolute risk, and thus sex differences in medication use and risk factor control may still exist [38]. Greater awareness of early symptoms of CHD in women and sex-specific therapeutic risk factor management, irrespective of the presence of diabetes, is optimal for improving clinical outcomes in both women and men.

Strengths and limitations A key strength of this metaanalysis, aside from its size, is the wide diversity of studies that were included, increasing the generalisability of the study findings. In contrast to previous reviews, we included both fatal and non-fatal CHD events, but even after excluding nonfatal events the estimate remained materially unchanged. Finally, the inclusion of only those studies that provided sexspecific estimates for men and women avoided any study confounding that would have been introduced if we had included estimates for men and women derived from different studies. There are, however, several limitation of this review. First, while it may be possible that we missed some small relevant cohorts through our search using just one database, there was no evidence of publication bias (as shown by the funnel plots), suggesting that the impact of bias arising from failure to include some cohorts was marginal. Other forms of bias that are not detected by funnel plots may have arisen, for example in the use of only one author to extract all of the data from published reports. However, where there was uncertainty in the data extraction process, all three authors reviewed the paper independently until internal consensus was reached. Further limitations of this study are inherent to the use of published data and include the lack of standardisation in study design and duration, endpoint definition, level of adjustment for confounding and information on medication use and the intensity of other cardiovascular risk factor management across studies. However, as our sensitivity analysis comparing
the pooled age-adjusted and multiple-adjusted summary estimates showed, confounding is unlikely to have been an important contributor to the observed sex difference in diabetesrelated risk of CHD.

Conclusion Diabetes confers a significantly greater relative risk of incident CHD in women than in men. Higher levels of cardiovascular risk factors and relative undertreatment in women compared with men are unlikely to account for all of the excess risk observed in women. Instead, we propose that a greater deterioration in cardiovascular risk profile combined with more prolonged exposure to adverse levels of cardiovascular risk factors among prediabetic women compared with their male equivalents, possibly driven by greater levels of adiposity, may be responsible for the excess risk of diabetesrelated CHD in women. Further studies are warranted to determine the actual mechanisms responsible for the difference in diabetes-related coronary risk between the sexes.

Funding SAEP is supported by a Niels Stensen Fellowship.
Duality of interest The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement SAEP searched the scientific literature, did the statistical analyses, participated in data interpretation and drafted the report. RRH and MW conceived the study, contributed data, participated in data interpretation and made important revisions to the draft report. All authors gave final approval of the version to be published and are responsible for the integrity of the work as a whole.

References

1. Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: metaanalysis of 37 prospective cohort studies. BMJ 332:73-78
2. Huxley RR, Woodward M (2011) Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet 378:1297-1305
3. Kanaya AM, Grady D, Barrett-Connor E (2002) Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch Intern Med 162:17371745
4. Peters SA, Huxley RR, Woodward M (2014) Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 59 cohorts including 775,385 individuals and 12, 539 strokes. Lancet. doi:10.1016/S0140-6736(14)60040-4
5. Peters SA, Huxley RR, Woodward M (2013) Smoking as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 81 cohorts, including 3,980,359 individuals and 42, 401 strokes. Stroke 44:2821-2828
6. Lee CM, Huxley RR, Lam TH et al (2007) Prevalence of diabetes mellitus and population attributable fractions for coronary heart disease and stroke mortality in the WHO South-East Asia and Western Pacific regions. Asia Pac J Clin Nutr 16:187-192
7. Martiniuk AL, Lee CM, Lam TH et al (2006) The fraction of ischaemic heart disease and stroke attributable to smoking in the WHO Western Pacific and South-East Asian regions. Tob Control 15:181-188
8. Oba S, Nagata C, Nakamura K, Takatsuka N, Shimizu H (2008) Selfreported diabetes mellitus and risk of mortality from all causes, cardiovascular disease, and cancer in Takayama: a population-based prospective cohort study in Japan. J Epidemiol 18:197-203
9. Doi Y, Ninomiya T, Hata J et al (2010) Impact of glucose tolerance status on development of ischemic stroke and coronary heart disease in a general Japanese population: the Hisayama study. Stroke 41: 203-209
10. Hyvarinen M, Tuomilehto J, Laatikainen Tet al (2009) The impact of diabetes on coronary heart disease differs from that on ischaemic stroke with regard to the gender. Cardiovasc Diabetol 8:17
11. Madssen E, Vatten L, Nilsen TI et al (2012) Abnormal glucose regulation and gender-specific risk of fatal coronary artery disease in the HUNT 1 study. Scand Cardiovasc J 46:219-225
12. Woodward M, Barzi F, Martiniuk A et al (2006) Cohort profile: the Asia Pacific Cohort Studies Collaboration. Int J Epidemiol 35:14121416
13. The ARIC investigators (1989) The Atherosclerosis Risk in Communities (ARIC) study: design and objectives. Am J Epidemiol 129:687-702
14. CDC (1994) Plan and operation of the Third National Health and Nutrition Examination Survey, 1988-94. Series 1: programs and collection procedures. Vital Health Stat 1:1-407
15. Woodward M, Brindle P, Tunstall-Pedoe H (2007) Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 93:172-176
16. Woodward M (2005) Epidemiology: study design and data analysis, 2nd edn. CRC, Boca Raton
17. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539-1558
18. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557-560
19. Ferrara A, Mangione CM, Kim C et al (2008) Sex disparities in control and treatment of modifiable cardiovascular disease risk factors among patients with diabetes: Translating Research Into Action for Diabetes (TRIAD) Study. Diabetes Care 31:69-74
20. Gouni-Berthold I, Berthold HK, Mantzoros CS, Bohm M, Krone W (2008) Sex disparities in the treatment and control of cardiovascular risk factors in type 2 diabetes. Diabetes Care 31:1389-1391
21. Penno G, Solini A, Bonora E et al (2013) Gender differences in cardiovascular disease risk factors, treatments and complications in patients with type 2 diabetes: the RIACE Italian multicentre study. J Intern Med 274:176-191
22. Wexler DJ, Grant RW, Meigs JB, Nathan DM, Cagliero E (2005) Sex disparities in treatment of cardiac risk factors in patients with type 2 diabetes. Diabetes Care 28:514-520
23. Franzini L, Ardigo D, Cavalot F et al (2013) Women show worse control of type 2 diabetes and cardiovascular disease risk factors than men: results from the MIND.IT Study Group of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 23:235-241
24. Kramer HU, Raum E, Ruter G et al (2012) Gender disparities in diabetes and coronary heart disease medication among patients with type 2 diabetes: results from the DIANA study. Cardiovasc Diabetol 11:88
25. Winston GJ, Barr RG, Carrasquillo O, Bertoni AG, Shea S (2009) Sex and racial/ethnic differences in cardiovascular disease risk factor treatment and control among individuals with diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 32:1467-1469
26. Evans RW, Orchard TJ (1994) Oxidized lipids in insulin-dependent diabetes mellitus: a sex-diabetes interaction? Metabolism 43:11961200
27. Garaulet M, Perex-Llamas F, Fuente T, Zamora S, Tebar FJ (2000) Anthropometric, computed tomography and fat cell data in an obese population: relationship with insulin, leptin, tumor necrosis factor-alpha, sex hormone-binding globulin and sex hormones. Eur J Endocrinol 143:657-666
28. Howard BV, Cowan LD, Go O et al (1998) Adverse effects of diabetes on multiple cardiovascular disease risk factors in women. The Strong Heart Study. Diabetes Care 21:1258-1265
29. Mansfield MW, Heywood DM, Grant PJ (1996) Sex differences in coagulation and fibrinolysis in white subjects with non-insulindependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16: 160-164
30. Ossei-Gerning N, Wilson IJ, Grant PJ (1998) Sex differences in coagulation and fibrinolysis in subjects with coronary artery disease. Thromb Haemost 79:736-740
31. Steinberg HO, Paradisi G, Cronin J et al (2000) Type II diabetes abrogates sex differences in endothelial function in premenopausal women. Circulation 101:2040-2046
32. Wannamethee SG, Papacosta O, Lawlor DA et al (2012) Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women's Heart Health Study. Diabetologia 55:80-87
33. Donahue RP, Rejman K, Rafalson LB et al (2007) Sex differences in endothelial function markers before conversion to pre-diabetes: does the clock start ticking earlier among women? The Western New York Study. Diabetes Care 30:354-359
34. Haffner SM, Miettinen H, Stern MP (1997) Relatively more atherogenic coronary heart disease risk factors in prediabetic women than in prediabetic men. Diabetologia 40:711-717
35. UK Prospective Diabetes Study (1988) IV. Characteristics of newly presenting type 2 diabetic patients: male preponderance and obesity at different ages. Multi-center Study. Diabet Med 5:154-159
36. Logue J, Walker JJ, Colhoun HM et al (2011) Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia 54: 3003-3006
37. Paul S, Thomas G, Majeed A, Khunti K, Klein K (2012) Women develop type 2 diabetes at a higher body mass index than men. Diabetologia 55:1556-1557
38. Manteuffel M, Williams S, Chen C et al (2014) Influence of patient sex and gender on medication use, adherence, and prescribing alignment with guidelines. J Women's Health 23:112-119
39. Fraser GE, Strahan TM, Sabate J, Beeson WL, Kissinger D (1992) Effects of traditional coronary risk factors on rates of incident coronary events in a low-risk population. The Adventist Health Study. Circulation 86:406-413
40. Keil JE, Sutherland SE, Knapp RG et al (1993) Mortality rates and risk factors for coronary disease in black as compared with white men and women. N Engl J Med 329:73-78
41. Collins VR, Dowse GK, Ram P, Cabealawa S, Zimmet PZ (1996) Non-insulin-dependent diabetes and 11-year mortality in Asian Indian and Melanesian Fijians. Diabet Med 13:125-132
42. Simons LA, Friedlander Y, McCallum J, Simons J (1995) Risk factors for coronary heart disease in the prospective Dubbo Study of Australian elderly. Atherosclerosis 117:107-118
43. Seeman T, de Mendes LC, Berkman L, Ostfeld A (1993) Risk factors for coronary heart disease among older men and women: a prospective study of community-dwelling elderly. Am J Epidemiol 138: 1037-1049
44. Natarajan S, Liao Y, Cao G, Lipsitz SR, McGee DL (2003) Sex differences in risk for coronary heart disease mortality associated with diabetes and established coronary heart disease. Arch Intern Med 163:1735-1740
45. Imazu M, Sumii K, Yamamoto H et al (2002) Influence of type 2 diabetes mellitus on cardiovascular disease mortality: findings from
the Hawaii-Los Angeles-Hiroshima study. Diabetes Res Clin Pract 57:61-69
46. Kleinman JC, Donahue RP, Harris MI et al (1988) Mortality among diabetics in a national sample. Am J Epidemiol 128: 389-401
47. Jonsdottir LS, Sigfusson N, Gudnason V, Sigvaldason H, Thorgeirsson G (2002) Do lipids, blood pressure, diabetes, and smoking confer equal risk of myocardial infarction in women as in men? The Reykjavik Study. J Cardiovasc Risk 9:67-76
48. Nilsson PM, Johansson SE, Sundquist J (1998) Low educational status is a risk factor for mortality among diabetic people. Diabet Med 15:213-219
49. Woodward M, Zhang X, Barzi F et al (2003) The effects of diabetes on the risks of major cardiovascular diseases and death in the AsiaPacific region. Diabetes Care 26:360-366
50. Hu G, Jousilahti P, Qiao Q, Katoh S, Tuomilehto J (2005) Sex differences in cardiovascular and total mortality among diabetic and non-diabetic individuals with or without history of myocardial infarction. Diabetologia 48:856-861
51. Whiteley L, Padmanabhan S, Hole D, Isles C (2005) Should diabetes be considered a coronary heart disease risk equivalent?: results from 25 years of follow-up in the Renfrew and Paisley survey. Diabetes Care 28:1588-1593
52. Hunt KJ, Williams K, Hazuda HP, Stern MP, Haffner SM (2007) The metabolic syndrome and the impact of diabetes on coronary heart disease mortality in women and men: the San Antonio Heart Study. Ann Epidemiol 17:870-877
53. Lee ET, Howard BV, Wang W et al (2006) Prediction of coronary heart disease in a population with high prevalence of diabetes and albuminuria: the Strong Heart Study. Circulation 113:2897-2905

[^0]: S. A. E. Peters

 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
 S. A. E. Peters

 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
 R. R. Huxley (\boxtimes)

 School of Population Health, University of Queensland, Herston Road, Herston, QLD 4006, Australia
 e-mail: r.huxley@uq.edu.au
 R. R. Huxley • M. Woodward

 The George Institute for Global Health, University of Sydney, Sydney, Australia
 M. Woodward

 Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA

