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Abstract 

Background/Aims. Older people undergoing surgery are at risk of developing post-operative 

cognitive dysfunction (POCD), but little is known of risk factors predisposing patients to 

POCD. Our objective was to estimate the risk of POCD associated with exposure to pre-

operative diabetes, hypertension and obesity. Methods. Original data from 3 randomized 

controlled trials (OCTOPUS, DECS, SuDoCo) were obtained for secondary analysis on 

diabetes, hypertension, baseline blood pressure, obesity (BMI ≥ 30 kg/m²) and BMI as risk 

factors for POCD in multiple logistic regression models. Risk estimates were pooled across 

the 3 studies. Results. Analyses totalled 1034 patients. POCD occurred in 5.2% of patients in 

DECS, in 9.4% in SuDoCo, and in 32.1% of patients in OCTOPUS. After adjustment for age, 

sex, surgery type, randomisation, obesity and hypertension, diabetes was associated with a 

1.84-fold increased risk of POCD (OR 1.84; 95% CI 1.14, 2.97; p=0.01). Obesity, BMI, 

hypertension and baseline blood pressure were each not associated with POCD in fully 

adjusted models (all p>0.05). Conclusion. Diabetes, but not obesity or hypertension, is 

associated with increased POCD risk. Consideration of diabetes status may be helpful for risk 

assessment of surgical patients.  
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Introduction 

Patients undergoing surgery are at risk of developing a post-operative neurocognitive 

disorder, or, post-operative cognitive dysfunction (POCD) – a condition that is defined by a 

decline in performance on neuropsychological tests from pre-surgery to post-surgery 

assessment. Large individual differences in POCD spanning cognitive recovery during the 

first few months to persistent cognitive impairment have been reported [1-5]. Although it has 

been the subject of extensive research during the past two decades, many questions remain 

unanswered, and a lack of uniform diagnostic criteria [6] and differences in length of follow-

up period hamper comparability between studies. Little is currently known about potential 

risk factors, which help to identify at-risk patients and shed light on underlying 

pathophysiology. In recent systematic reviews and meta-analyses [7-10], we have shown that 

patients with metabolic derangement may be at an increased risk of POCD. Indicators of 

metabolic derangement include classical vascular risk factors such as elevated blood glucose, 

elevated blood pressure and obesity, which all tend to correlate [11]. In line with its well-

established role as a predictor of age-related cognitive impairment [12-16], we found in our 

meta-analysis that diabetes was associated with a 26% increased risk of POCD [8]. Findings 

were less clear for obesity[17] and hypertension was overall not associated with POCD [10]. 

However, studies included in those meta-analyses were largely exploratory and frequently 

failed to apply statistical adjustment for potential confounders which is considered a major 

limitation. Detailed assessment of exposure to these candidate risk factors and subsequent risk 

of POCD on the basis of primary data is thus needed, particularly in view of their modifiable 

nature that leaves scope for risk alteration at individual patient level.   

 

Here, we therefore aimed to estimate the risk of POCD associated with pre-operative 

exposure to diabetes, hypertension and obesity, with focus on potential mutual confounding 

among the risk factors in determining POCD risk. Data were provided by 3 large randomized 

controlled trials (RCTs) targeting factors and procedures potentially influencing POCD risk. 

In a secondary analysis of their primary data, we evaluated risk of POCD associated with each 

exposure of interest and additionally provide pooled risk estimates combined across the 3 

studies.  
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Materials and Methods 

Study design 

In a quasi-observational, secondary analysis of 3 studies, the Surgery Depth of Anaesthesia 

Cognitive Outcome (SuDoCo) [18], Dexamethasone for Cardiac Surgery (DECS) [19, 20], 

and OCTOPUS [21] studies,  associations of exposure to diabetes, hypertension and obesity 

with POCD risk were determined. None of the 3 studies had previously been used to 

investigate this research question. Access to their original data resulted from a cross-

institutional collaboration.  

 

Setting 

All 3 studies were RCTs with primary or secondary outcome POCD. Each trial evaluated 

intervention effects (SuDoCo: monitoring depth of anaesthesia during general surgery; DECS: 

dexamethasone administration versus placebo during cardiac surgery; OCTOPUS: on-pump 

versus off-pump methods for cardiac surgery) on POCD risk, and included repeat 

neuropsychological testing with several post-surgery follow-up assessments of which we 

analysed the respective longest follow-up period (OCTOPUS: 12 months; DECS: 12 months; 

SuDoCo: 3 months).  

 

Participants 

A total of 1849 patients enrolled into the 3 studies between 1998 and 2011. Recruitment 

procedures, inclusion and exclusion criteria have been described in detail previously [18, 20, 

21]. In brief, any patients with pre-existing neurological deficits were excluded in all 3 

studies; in SuDoCo, MMSE<24 was also an exclusion criterion, and in DECS, patients with 

diagnosed mental illness were additionally excluded. Follow-up assessments were completed 

by 1034 patients (Figure 1). Patient drop-out between baseline and follow-up was mainly due 

to lack of interest and withdrawal of consent. Cognitive deficit after surgery was evaluated as 

either primary or secondary outcome in each of the 3 studies. Surgical procedures included 

cardiac (OCTOPUS; DECS) and non-cardiac surgery types (SuDoCo), and interventions 

compared different surgical techniques (on-pump versus off-pump CABG in OCTOPUS), 

preoperative administration of intravenous dexamethasone in cardiac surgery (DECS) or 

intraoperative neuromonitoring (SuDoCo).  
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Physical examination 

Diabetes and a history of hypertension were routinely ascertained during pre-surgery 

interview and from medical records. Though we were unable to distinguish between type 1 

and type 2 diabetes based on the data, we assume that a majority of patients with diabetes will 

have suffered from type 2 diabetes based on sample age. Baseline blood pressure, height and 

weight were measured at pre-surgery assessment, and height and weight were used to derive 

body mass index (BMI). In accordance with convention [22], we defined obesity as BMI ≥30 

kg/m2 . A conservative cut-point of BMI<20 kg/m2 identified underweight patients. 

 

Cognitive examination and definition of POCD 

Trained staff administered several age-sensitive neuropsychological tests tapping various 

cognitive domains (OCTOPUS: N=11 tests; DECS: N=5 tests; SuDoCo: N=6 tests; 

Supplemental Table 1) to the respective patient samples and additionally to non-surgical 

control samples for normative data. For the purpose of this analysis, we used POCD as 

dichotomous outcome as it was defined in the respective original studies. This varied between 

studies. For DECS and SuDoCo, POCD was defined through comparison of the cognitive 

change of patients with the average cognitive change of the respective control group; for 

OCTOPUS, POCD was determined from raw change in cognitive test scores (Supplemental 

Table 1).  

 

Statistical methods 

Exposures of interest were the presence versus absence of diabetes, hypertension, and obesity 

respectively. In addition, we also analyzed BMI, and systolic and diastolic baseline blood 

pressure. Outcome was POCD at the longest follow-up assessment in each cohort. A two-step 

approach was used to analyze exposure-outcome relationships [23, 24]. Initially, risk of 

POCD according to exposure to diabetes, hypertension, obesity, BMI, systolic blood pressure 

and diastolic blood pressure was assessed separately for each of the 3 studies. We used 

logistic regression analyses with hierarchical model building: Model 0 includes unadjusted 

associations, model 1 includes age and sex as covariates, model 2 additionally includes type 

of surgery and RCT treatment group, and model 3 additionally includes all of the respective 

remaining predictor variables (of diabetes, obesity, hypertension) to analyse potential mutual  

confounding. Baseline blood pressure and BMI were not included as covariates in model 3 to 

avoid collinearity as these variables contributed to the definition of “hypertension” and 

“obesity” respectively. For OCTOPUS and DECS, we also adjusted for education in models 2 
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and 3 but present data without that adjustment to allow cross-study comparison, as in 

SuDoCo, information on education was not available. Odds ratios are provided for 1-point 

increments in BMI and 10-point increments in baseline blood pressure values to aid 

interpretability of risk estimates. 

 

In a second step, risk estimates were pooled across all 3 studies (total patient N=1034) for 

each exposure variable and for each of the statistical modelling steps using fixed-effects 

inverse variance analyses. This approach to combining data was selected on the basis that one 

true underlying effect was assumed to underlie all 3 studies [25] and weighs studies according 

to the standard error of their estimates (i.e., studies with lower standard error are given greater 

weight). The respective final models (Model 3) were repeated post-hoc using random-effects 

models to show the mean distribution of effects [25]. The results of these analyses are shown 

as Supplemental Data (Supplemental Table 2). Statistical heterogeneity between studies was 

assessed using the I2 index[26].   

 

Analyses were repeated post-hoc with exclusion of underweight patients to ensure that 

findings were not driven by underweight which is a well-established risk factor for age-related 

cognitive impairment[27] and may also be associated with POCD. Analyses were performed 

with IBM© SPSS© Statistics (version 23) and Review Manager (version 5.3). The statistical 

analysis plan was approved by an internal committee before any of the analyses were 

performed. 

 

Ethical approval 

Participants gave written informed consent and assessments complied with the Declaration of 

Helsinki. Though no new data were collected, ethical approval for the present analysis 

(EA1/242/08) was provided by the Ethical Committee Ethikausschuss 1 at Charité Mitte, 

Berlin, Germany (Chairperson Prof R. Uebelhack) on 31 January 2017. 
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Results 

Study characteristics 

Characteristics of the patient samples completing follow-up of the 3 studies are shown in 

Table 1. Mean BMI was 26.6 kg/m2 (SD=3.2) in OCTOPUS, 26.9 kg/m2 (SD=4.5) in DECS 

and 27.3 kg/m2 (SD=4.9) in SuDoCo and thus in the ‘overweight’ category (25 to 30 kg/m2) 

in all 3 studies.. Underweight (BMI<20 kg/m2) was rare. Mean BMI in the underweight 

groups was 19.2 kg/m2 (SD=1.3) in OCTOPUS (N=5 underweight patients), 18.9 kg/m2 

(SD=0.9) in DECS (N=10 underweight patients) and 19.0 kg/m2 (SD=0.9) in SuDoCo (N=17 

underweight patients). In OCTOPUS, mean BMI was 31.6 kg/m2 (SD=1.1) in obese patients 

(BMI≥30 kg/m2). In DECS and SuDoCo, obese groups had mean BMIs of 33.8 kg/m2 

(SD=3.1) and 34.1 kg/m2 (SD=4.1), respectively. Systolic and diastolic blood pressure 

correlated positively with one another in the 2 studies that measured blood pressure (r=0.49 to 

0.57; both p<0.001) whereas neither was associated with BMI in those studies (all p>0.10).  

Associations of diabetes, hypertension, and obesity with risk of POCD 

POCD occurred in 12 patients (5.2%) at 12-month follow-up in DECS. Of these, 4 had 

diabetes (33.3%), 4 were obese (33.3%) and 8 had hypertension (66.7%). In SuDoCo, POCD 

occurred in 52 patients (9.4%) at 3 months. Sixteen (30.8%) of those 52 patients had diabetes, 

12 (23.1%) were obese and 38 (73.1%) had hypertension. Eighty-one patients (32.1%) in 

OCTOPUS had POCD at 12 months, of whom 15 (18.5%) had diabetes, 13 (16.0%) were 

obese and 40 (49.4%) had hypertension. In the pooled analysis, after adjustment for age, sex, 

type of surgery and randomisation, diabetes was associated with a 1.97-fold (95%-CI 1.24-

2.97) higher risk of POCD, while hypertension was associated with a 1.50-fold (95%-CI 1.01-

2.24) higher risk (Table 2; Figure 2). In contrast, obesity was not significantly associated with 

risk of POCD (odds ratio, 1.22; 95%-CI 0.76-1.96). Risk estimates were similar when 

random-effects models were used (Supplemental Table 2), when underweight patients were 

excluded from analysis (data not shown) and also remained unchanged after additional 

adjustment for education in the 2 studies with education data (OCTOPUS; DECS; data not 

shown). After additional adjustment for hypertension and obesity, diabetes remained 

statistically significantly associated with a higher risk of POCD, with a pooled odds ratio of 

1.84 (95%-CI 1.14-2.97; Model 3 in Table 2 calculated from OCTOPUS, odds ratio 1.90, 

95%-CI 0.86, 4.21; DECS, odds ratio 2.94, 95%-CI 0.69, 12.52; SuDoCo, odds ratio 1.62, 

95%-CI 0.84, 3.15) and no evidence of statistical heterogeneity between studies (Chi2=0.55; 

p=0.76; I2=0%). In contrast, hypertension was not significantly associated with risk of POCD 

after additional adjustment for diabetes and obesity (odds ratio, 1.37; 95%-CI 0.91-2.07). 
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Similar to the results reported above, obesity was not significantly associated with POCD in 

these fully adjusted models.  

 

Associations of BMI, systolic and diastolic baseline blood pressure with POCD 

BMI was not significantly associated with risk of POCD (Supplemental Table 3; Figure 3) in 

the analysis pooled across the 3 studies. Again, these results were not substantially different 

when random-effects models were used (Supplemental Table 2) or when underweight patients 

were excluded from the analysis (data not shown). Neither systolic nor diastolic baseline 

blood pressure was significantly associated with POCD risk, although this analysis was 

restricted to two studies (Supplemental Table 3).  
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Discussion 

Across 3 studies, we found evidence that diabetes was associated with a 1.84-fold higher risk 

of POCD. Importantly, the association was independent of age, sex, type of surgery and 

intervention, as well as obesity and hypertension. Hypertension and obesity were not 

independently associated with risk of POCD. These findings extend our previous meta-

analyses which, largely based on unadjusted results of exploratory studies, had found 

significant associations for diabetes but not for obesity or hypertension with POCD risk [7, 8, 

10]. 

 

The pathophysiology of developing POCD is poorly understood. Neuroinflammation with 

subsequent microglial overactivation and disruption of the blood brain barrier is assumed to 

play a role in the development of short-term postoperative cognitive impairment [28]. Other 

theories on causes of POCD include impaired cerebral perfusion during surgery [29], lasting 

neurotoxic effects of anaesthetics as well as detrimental effects of perioperative opioid use on 

brain function [30, 31]. Environmental factors such as hospital environments and sleep 

disturbances, too, may play a role [31]. However, these theories cannot easily explain the 

higher POCD risk in patients with diabetes. Patients with diabetes generally show greater 

cerebral and hippocampal atrophy [32-34] as well as cerebral microvascular [35, 36] and 

macrovascular damage [37] and are also at increased risk of cognitive impairment [15, 38, 39] 

compared with non-diabetics. Similar observations have been made for hyperglycaemia short 

of diabetes diagnosis [40, 41] and poorer glycemic control in patients with diabetes [42], 

which indicates fundamental influences of impaired glucose metabolism on the brain. It 

appears that the negative impact of hyperglycemia on brain function may be accelerated due 

to surgery as it was observed for patients with diabetes during relatively short follow-up 

periods of 3 to 12 months in the present analysis. Further, our findings suggest somewhat 

higher odds of POCD in the 2 studies with cardiac patients (DECS; OCTOPUS) compared 

with the study of non-cardiac patients (SuDoCo) which reiterates a statistically non-

significant trend in the same direction in our meta-analysis [8]. This warrants further 

evaluation. It may be the case that negative impacts of diabetes on the vasculature increase 

POCD risk following vascular interventions. Though we cannot determine causality on the 

basis of the present epidemiological findings, our results may reflect neurotoxic effects of 

persistently high blood glucose that ultimately impairs neurons with subsequent loss of 

function [43]. Surgery-associated high grade systemic inflammation [44] may have affected 

previously damaged neurons in patients with diabetes resulting in POCD. Further studies are 
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thus needed to add to our understanding of the pathophysiology of surgical brain damage in 

the context of hyperglycaemia and diabetes. An influence of type of anti-diabetic treatment 

and glycemic control including prior history of hypoglycaemia which itself seems to increase 

cognitive risk [45, 46] should additionally be considered in further observational studies that 

collect more detailed data, for instance on HbA1c levels, duration of diabetes and treatment 

type, of their patients with diabetes, and trial studies may also be possible. An influence of 

improved glycemic control during the weeks before surgery on POCD risk could be assessed 

in a sample of people with type 2 diabetes for example.  

    

Hypertension is a major influencing factor for cardiovascular events such as stroke and 

myocardial infarction due to vascular damage [47]. However, we did not see any significant 

influence of a prior history of hypertension on risk of POCD that was independent of its link 

to diabetes. The null finding suggests that vascular damage as a consequence of hypertension 

may only play a minor role in POCD development and replicates results of our meta-analysis 

of hypertension as a candidate risk factor for POCD [10]. Though we did not assess severity 

of hypertension which may be important in cognitive risk prediction [48], our finding 

warrants further enquiry particularly in view of established associations of this risk factor with 

cognitive impairment per se [15, 49, 50]. A beneficial effect of anti-hypertensive treatment on 

cognitive risk as an explanation of the null finding appears unlikely given the balance of 

evidence from RCTs speaks against such effects [51, 52]. 

Obesity is a pro-inflammatory state characterized by raised circulating inflammatory markers 

[53, 54], which itself appears to promote cognitive dysfunction after surgery [55]. We 

therefore hypothesized that obesity may be a risk factor for POCD. The results of the present 

analysis and of our previous meta-analysis [7] do not appear to support this hypothesis. 

Indeed, when looking to age-related cognitive impairment, increasing evidence suggests that 

while midlife obesity appears to increase risk of later impairment, obesity in later life does 

not. For instance, a recent analysis of the Whitehall II study of >10 000 individuals in the UK 

found obesity at age 50 but not at age 60 or 70 predicted dementia risk [56]. Some studies 

even corroborate an ‘obesity paradox’ with beneficial effects of obesity on cognitive function 

in later life [57] which may reflect effects of prodromal stages of dementia on body weight 

[56, 58]. We have no information on body weight status at midlife or weight trajectories of 

participants but suspect that similar processes may underlie the lack of an association of 

obesity and POCD risk in the present analysis. We also cannot rule out potential harmful 

effects of obesity that we may have missed for lack of statistical power.  
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Strengths of our study include the use of primary data from 3 studies on POCD that allowed 

adjustment for a range of potential confounders. By entering all 3 exposures of interest into 

the same statistical models, our approach further allowed determination of the relative 

contribution of diabetes, obesity and hypertension to POCD risk. Sensitivity analyses were 

able to show that the absence of an association of obesity or BMI with POCD risk was not 

driven by inclusion of underweight patients in the main analyses.  

 

A number of limitations must be considered. We followed a two-step approach to data 

analysis and pooling of estimates rather than individual-patient meta-analysis. Readers should 

also be aware that we assessed 3 exposures for associations with POCD, which may have 

increased type I statistical error. However, findings on diabetes and POCD risk remained 

unchanged with Bonferroni correction of the critical p-value indicative of statistical 

significance. Importantly, different psychological batteries for determining POCD were used 

in each of the 3 studies. This could have influenced POCD incidence which was particularly 

low for DECS and thus may have limited our statistical modelling that included a number of 

covariates. Prevalence of diabetes and hypertension varied between the 3 studies, and likely 

reflected a difference in health status between samples. Generalizability of our findings is 

therefore unclear. As cognitive deficits often appear to resolve over time [3, 4, 59], the 

pooling of effects across studies with 3- to 12-month follow-up periods was suboptimal and 

will have led to incidence of POCD ranging from 5.2% to 32.1%. Cohort effects were 

introduced by recruitment periods spanning 1998 to 2011 and our findings may not 

necessarily apply to patients undergoing surgery today. Further, the studies had not set out to 

investigate the present exposures of interest and risk of POCD. Thus, assessment of diabetes, 

hypertension and obesity may not have been consistently rigorous, and we were not able to 

discriminate between type 1 and type 2 diabetes. An influence of other well-established risk 

factors for POCD, such as previous cerebrovascular event known to be associated with 

diabetes [60] as well as POCD[1], to our findings is also plausible. We deem an influence of 

pre-existing cognitive impairment which, too, is associated both with diabetes [14] and POCD 

[8] unlikely as SuDoCo, which was weighted most heavily in the combined analyses, 

excluded patients with baseline cognitive impairment. Between-study differences in 

assessment of other factors such as blood loss during surgery meant that adjustment was not 

possible for all potential confounders. Residual confounding is therefore possible. Various 

definitions of POCD were used. In DECS and SuDoCo, POCD was defined relative to 
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cognitive change of non-surgical control groups, and neither had information available on 

prevalence of diabetes, hypertension and obesity in the control subjects. Thus, we cannot 

determine whether the present findings reflect associations of diabetes with POCD versus 

associations with cognitive decline per se. This also applies to the OCTOPUS study which 

defined POCD from raw cognitive change. Here, patients with diabetes (even if not exposed 

to surgery) may have simply declined at steeper rates during follow-up compared with non-

diabetics. OCTOPUS also reported incidence of POCD of around one third of patients at 12 

month follow-up, which is high relative to previous studies[61]. Post-surgery stroke was 

considered as “POCD” in OCTOPUS and DECS, which complicates the interpretation of 

findings on POCD as a form of impairment as opposed to overt cerebrovascular disease. 

Further, any non-linear associations of BMI with POCD risk were presumably not well-

captured by a single cut-off at BMI≥30 kg/m2 for definition of obesity. However, when we 

excluded underweight patients and those with post-operative stroke from analyses, findings 

remained unchanged.  

 

In conclusion, our results suggest that people with diabetes are at increased risk of POCD and 

independently of co-morbid obesity or hypertension. Consideration of diabetes status may 

thus be helpful for assessment of POCD risk to help clinicians and patients alike to make 

informed decisions when electing surgery. Enhanced post-surgery care for patients with 

diabetes that includes screening for POCD may also be indicated. 
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Figure Legends 
Figure 1: Enrollment flow chart and data used for present analysis (grey) 
Figure 2: Pooled effects of diabetes, hypertension and obesity on risk of POCD (model 3) 
Figure 3: Pooled effects of BMI, systolic and diastolic baseline blood pressure on risk of 
POCD (model 3). Odds ratios correspond to 1 kg/m2 increment in BMI and 10 mmHg 
increment in blood pressure. 

 









Table 1: Sample characteristics of the 3 studies 
 OCTOPUS 

 
DECS SuDoCo 

Country The Netherlands The Netherlands Germany 
Enrollment period March 1998 to August 

2000 
August 2010 to October 
2011 

March 2009 to May 2010 

N enrolled 281 291 1277 
Follow-up periods for 
POCD assessment 

Discharge 
3 months 
12 months 

1 month 
12 months 

1 week 
3 months 

Completed last follow-
up (n, % of enrolled) 

252 (89.7%) 
 

229 (78.7%) 
 

553 (43.3%) 
 

Type of surgery All CABG 
 
 

CABG n=68 (29.7%) 
Valve n=89 (38.9%) 
Combination 
valve/CABG n=36 
(15.7%) 
Other n=20 (8.7%) 
Missing n=16 (7.0%) 

General surgery n=241 
(43.6%) 
Orthopedics n = 187 
(33.8%) 
Gynecology n=62 
(11.2%) 
Urology n=44 (8.0%) 
Other n=19 (3.4%) 

Type of intervention On-pump versus off-
pump CABG 

Placebo versus 
Dexamethasone 

BIS guided versus BIS 
blinded anaesthesia 

Type of anaesthesia* -- Propofol-based n=77 
(33.6%) 
Volatile-based n=152 
(66.4%) 

Propofol-based n=177 
(32%) 
Volatile-based n=376 
(68%) 

Duration of surgery 
(min)* 

-- 215 ± 68 159 ± 97 

Age, years, mean ± SD 61.0 ± 9.1 64.7 ± 11.6 69.5 ± 6.3 
Male, n (%) 180 (71.4%) 172 (75.1%) 303 (54.8%) 
Female, n(%) 72 (28.6%) 57 (24.9%) 250 (45.2%) 
Education*, mean ± SD 
years, or n (%) 

9.5 ± 2.6 years Primary education n=101 
(44.1%) 
Secondary education 
n=62 (27.1%) 
Further/higher education 
n=66 (28.8%) 

-- 

Baseline systolic blood 
pressure*, mmHg, mean 
± SD 

139 ± 20 -- 136 ± 19 

Baseline diastolic blood 
pressure*, mmHg, mean 
± SD 

80 ± 10 -- 74 ± 12 

Diabetes, n (%) 36 (14.3%) 37 (16.2%) 119 (21.5%) 
Hypertension, n (%) 118 (46.8%) 123 (53.7%) 374 (67.6%) 
Body mass index (kg/m2) 
mean ± SD 

26.6 ± 3.2 26.9 ± 4.5 27.3 ± 4.9 

Underweight (BMI<20 
kg/m2), n (%) 

5 (2.0%) 10 (4.4%) 17 (3.1%) 

Obesity 
(BMI≥30 kg/m2), n (%) 

39 (15.5%) 44 (19.2%) 131 (23.7%) 

All data measured before surgery and shown for respective follow-up sample. For each study, loss to follow-up 
mainly due to non-response or change in intention of patients. Data missing on diabetes for N=1 and on obesity 
for N=2 patients in DECS. *data not available for all cohorts. BIS, bispectral index.  



Table 2: Association of diabetes, hypertension, and obesity with risk of POCD in each study, and pooled estimates 
 OCTOPUS  DECS  SuDoCo  Pooled estimates 
 OR (95% CI) p Weight  OR (95% CI) p Weight  OR (95% CI) p Weight  OR (95% CI) p 
               
Diabetes and risk of POCD               
 Model 0: no adjustment 2.20 (1.03, 4.71) 0.04 35.2%  2.77 (0.79, 9.74) 0.11 12.9%   1.72 (0.92, 3.22) 0.09 51.8%  1.99 (1.27, 3.13) 0.003 
 Model 1: age, sex 2.11 (0.98, 4.55) 0.06 35.2%  2.54 (0.71, 9.01) 0.15 13.0%  1.68 (0.89, 3.18) 0.11 51.8%  1.92 (1.22, 3.03) 0.005 
 Model 2: +type of surgery, randomisation 2.08 (0.96, 4.50) 0.06 36.0%  3.77 (0.94, 15.16) 0.06 11.1%  1.66 (0.88, 3.13) 0.12 53.0%  1.97 (1.24, 3.13) 0.004 
 Model 3: +hypertension, obesity 1.90 (0.86, 4.21)  0.11 36.7%  2.94 (0.69, 12.52) 0.15 11.0%  1.62 (0.84, 3.15) 0.15 52.3%  1.84 (1.14, 2.97)  0.0132 
               
Hypertension and risk of POCD               
 Model 0: no adjustment 1.76 (1.03, 3.00) 0.04 53.0%  1.77 (0.52, 6.07) 0.36 10.0%  1.33 (0.70, 2.53) 0.38 37.0%  1.59 (1.08, 2.34) 0.020 
 Model 1: age, sex 1.72 (0.99, 2.96) 0.05 52.7%  1.54 (0.44, 5.35) 0.50 10.1%  1.22 (0.64, 2.33) 0.55 37.2%  1.49  (1.00, 2.22) 0.047 
 Model 2: +type of surgery, randomisation 1.71 (0.99, 2.95) 0.06 53.1%  1.52 (0.42, 5.51) 0.53 9.5%  1.25 (0.65, 2.40) 0.51 37.3%  1.50 (1.01, 2.24) 0.045 
 Model 3: +diabetes, obesity 1.61 (0.92, 2.81) 0.10 54.4%  1.17 (0.31, 4.49) 0.82 9.4%  1.13 (0.57, 2.23) 0.73 36.3%  1.37 (0.91, 2.07) 0.13 
               
Obesity and risk of POCD               
 Model 0: no adjustment 1.07 (0.52, 2.20) 0.86 40.3%  2.19(0.63, 7.62) 0.22 13.6%  0.98(0.50, 1.94) 0.96 46.1%  1.13(0.71, 1.79) 0.60 
 Model 1: age, sex 1.07 (0.51, 2.22) 0.86 40.5%  2.17 (0.60, 7.76) 0.24 13.4%  1.07 (0.54, 2.13) 0.84 46.1%  1.18 (0.74, 1.87) 0.50 
 Model 2: +type of surgery, randomisation 1.06 (0.51, 2.21) 0.88 41.6%  2.93 (0.74, 11.60) 0.13 11.8%  1.11 (0.55, 2.21) 0.77 46.7%  1.22 (0.76, 1.96) 0.41 
 Model 3: +diabetes, hypertension 0.92 (0.43, 1.95) 0.82 41.8%  2.26 (0.53, 9.61) 0.27 11.4%  0.96 (0.47, 1.96) 0.91 46.8%  1.04(0.64, 1.69) 0.88 
POCD determined at 12 months in OCTOPUS/DECS and at 3 months in SuDoCo. POCD occurred in 12 patients (5.2%) at 12-month follow-up in DECS, in 52 patients (9.4%) at 

3 months in SuDoCo, and in 81 patients (32.1%) at 12 months in OCTOPUS. For each study, Model 3 is based on a single model. 
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