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Diabetes causes marked inhibition of mitochondrial
metabolism in pancreatic β-cells
Elizabeth Haythorne 1,10, Maria Rohm 1,8,10, Martijn van de Bunt2,9, Melissa F. Brereton1,

Andrei I. Tarasov 2, Thomas S. Blacker3, Gregor Sachse 1, Mariana Silva dos Santos 4,

Raul Terron Exposito1, Simon Davis5, Otto Baba6, Roman Fischer 5, Michael R. Duchen 3,

Patrik Rorsman 2,7, James I. MacRae 4 & Frances M. Ashcroft1,7

Diabetes is a global health problem caused primarily by the inability of pancreatic β-cells to

secrete adequate levels of insulin. The molecular mechanisms underlying the progressive

failure of β-cells to respond to glucose in type-2 diabetes remain unresolved. Using a com-

bination of transcriptomics and proteomics, we find significant dysregulation of major

metabolic pathways in islets of diabetic βV59M mice, a non-obese, eulipidaemic diabetes

model. Multiple genes/proteins involved in glycolysis/gluconeogenesis are upregulated,

whereas those involved in oxidative phosphorylation are downregulated. In isolated islets,

glucose-induced increases in NADH and ATP are impaired and both oxidative and glycolytic

glucose metabolism are reduced. INS-1 β-cells cultured chronically at high glucose show

similar changes in protein expression and reduced glucose-stimulated oxygen consumption:

targeted metabolomics reveals impaired metabolism. These data indicate hyperglycaemia

induces metabolic changes in β-cells that markedly reduce mitochondrial metabolism and

ATP synthesis. We propose this underlies the progressive failure of β-cells in diabetes.
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T
ype 2 diabetes (T2D) is a major global public health pro-
blem. A complex multifactorial disease, it involves both
genetic and lifestyle factors that lead to a gradual dete-

rioration in insulin secretion from pancreatic β-cells and chronic
elevation of plasma glucose levels1,2. Chronic hyperglycaemia
impairs β-cell function3–6 and thus may be expected to contribute
to the progressive nature of the disease.

Evidence suggests that the primary cause of the insufficient
insulin secretion in T2D is impaired metabolism–secretion cou-
pling rather than β-cell loss. Although β-cell mass diminishes in
diabetes, it is not sufficient to account for the extent of reduction
in insulin secretion6–8. This is also demonstrated by the rapid
reversal of T2D following bariatric surgery9 or a low-calorie
diet10, and the ability of neonatal diabetes patients with KATP

channel mutations to transfer to sulfonylurea therapy, even after
many years of diabetes11.

In non-diabetic β-cells, glucose metabolism couples changes in
blood glucose to changes in insulin secretion2,12–14. Glucose
uptake and its subsequent phosphorylation by glucokinase to
glucose 6-phosphate drives β-cell glycolysis and pyruvate gen-
eration. Pyruvate enters mitochondria where it is oxidised in the
tricarboxylic acid (TCA) cycle to produce reducing equivalents
(NADH and FADH2) that are utilised by the electron transport
chain (ETC) to generate a proton gradient that drives ATP
synthesis. Glycolytically derived NADH is also important for ATP
synthesis as it can provide reducing equivalents to the ETC via
the glycerol-3-phosphate and malate–aspartate shuttles. Simul-
taneous inhibition of both these shuttles strongly reduces insulin
release15,16. Mitochondrially generated ATP closes KATP channels
in the β-cell plasma membrane and thereby leads to membrane
depolarisation, opening of voltage-gated calcium channels, cal-
cium entry and insulin exocytosis17. Additional mitochondrially
derived coupling factors, such as NADH, citrate and glutamate,
have been implicated in the amplification of insulin secretion13.
The pivotal role of mitochondrial metabolism is illustrated by the
fact that glucose-stimulated insulin secretion (GSIS) is impaired
by inhibitors of mitochondrial metabolism, by mitochondrial
uncouplers or mitochondrial dysfunction12,13.

The question of how β-cell metabolism–secretion coupling is
impaired in T2D is still largely unresolved. Multiple contributors
have been proposed, including impaired glucose metabolism
itself, oxidative stress, endoplasmic reticulum stress, impaired
exocytosis and β-cell dedifferentiation12,18. While all of these may
be contributory factors, a crucial question is which is the initial
key event that drives diabetes progression. Accumulating
evidence suggests this may be impaired β-cell metabolism, as
changes in metabolic genes, or in metabolism, have been identi-
fied in islets isolated from T2D donors19,20, control human islets
cultured at 25 mM glucose3, diabetic GK rat islets21, mouse
models of diabetes22–24 and insulin-secreting cell lines exposed to
high glucose4,5. A gene encoding a protein that controls trans-
lation of mitochondrial proteins25 has also been linked to T2D.
These findings add strength to the idea that impaired β-cell
metabolism has a pathogenic role in the development of
human T2D.

We have explored this idea in detail using a comprehensive
multi-omics approach coupled with functional analysis of mito-
chondrial metabolism. We find that both diabetes and hyper-
glycaemia cause striking changes in metabolism in pancreatic
β-cells. The increase in mitochondrial metabolism that normally
occurs in response to glucose is abrogated, leading to a failure of
glucose to elevate NADH or increase the rate of ATP synthesis.
This is associated with marked changes in the expression of
multiple metabolic genes and proteins, most notably those
involved in the TCA cycle and ETC. Our data provide a
mechanistic explanation for the impaired metabolism and insulin

secretion produced by chronic hyperglycaemia and diabetes. We
propose that altered β-cell metabolism may be the crucial event
that drives diabetes progression.

Results
Animal model. To examine the effects of diabetes on β-cell
metabolism, we used the βV59M mouse model in which
tamoxifen-inducible expression of a constitutively open ATP-
sensitive potassium (KATP) channel specifically in pancreatic
β-cells renders the β-cell electrically silent and inhibits insulin
secretion22. Mutant gene expression was induced at 12 weeks of
age and mice developed hyperglycaemia (blood glucose levels
>20 mM) within 24 h. Islets were isolated 2 weeks later. After
2 weeks of diabetes, blood glucose remained elevated and plasma
lipid levels were not significantly altered26: thus the changes we
observe are due to hyperglycaemia/hypoinsulinaemia and not a
secondary consequence of altered lipid metabolism. The βV59M
mouse carries a KATP channel mutation found in patients with
neonatal diabetes22 and is a good model both for this disease and
for the effects of chronic hyperglycaemia seen in other types of
diabetes.

Transcriptomics and proteomics analyses. We performed
transcriptomics and proteomics analysis of islets isolated from
control mice and βV59M mice that had been diabetic for 2 weeks.

RNA sequencing identified 13,362 protein-coding or lincRNA
transcripts in all samples. Of these, 2795 (~20%) were significantly
(false discovery rate (FDR) < 1%) altered in 2-week diabetic islets,
when compared to control islets (Supplementary Fig. 1a).
Expression of 512 genes increased >2-fold in diabetic islets
(>1.5-fold for 943 genes), while that of 362 genes decreased >2-
fold (882 genes by >1.5-fold).

To determine the relationship between the islet transcriptome
and proteome, we performed global protein profiling using liquid
chromatography tandem mass spectrometry (LC-MS/MS). A
total of 3066 proteins were identified in both data sets, of which
1281 (42%) were significantly different between control and 2-
week diabetic islets (analysis of variance (ANOVA), p < 0.05).
Despite the >4-fold difference in the numbers of genes/proteins
identified, which largely reflects method sensitivity, there was a
high correlation between significantly changed genes and proteins
(R2= 0.59, Pearson correlation: Supplementary Fig. 1b).

Pathway analysis of the transcriptomics data identified 89 gene
sets with significantly different expression (FDR < 5%) between
control and diabetic islets: of these, 59 were enriched for higher
expression in diabetic islets compared to controls and 30 for
lower expression (Supplementary Fig. 1c). Pathway analysis of
the proteomics data identified 69 gene sets with significantly
different expression (52 up in diabetes, and 17 up in control)
(Supplementary Fig. 1c).

Metabolic gene and protein expression. Figure 1a shows gene
sets that were significantly enriched in the same direction at both
the mRNA and protein level by diabetes, identified from the
combined results of pathway analysis of both transcriptomics and
proteomics data sets. There was considerable overlap in gene sets
that were significantly enriched in the RNAseq and proteomics
data—of the 24 gene sets that were enriched in both data types, 22
(92%) were directionally consistent. Metabolic pathways were
particularly strongly affected (Fig. 1a). Almost all glycolytic
enzymes were robustly upregulated in diabetic islets (Fig. 1c, d),
and the polyol pathway (Fig. 2a), the pentose phosphate pathway
(PPP, Fig. 2b) and steroid/cholesterol biosynthesis (Fig. 1a,
Supplementary Fig. 2a) were also strongly upregulated. Indeed,
aldolase B was the most upregulated of all proteins (65-fold) and
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there was also a dramatic increase in both mRNA (246-fold) and
protein levels (40-fold) of the fructose/glucose transporter
SLC5A10 (Fig. 2a, b and Supplementary Table 1).

Conversely, pathways involved in oxidative phosphorylation
and branched chain amino acid metabolism were markedly
reduced (Fig. 1a). Among the mitochondrial proteins altered in

diabetic islets (135/277 identified), 49% were downregulated and
8% upregulated. These included key enzymes involved in the
TCA cycle, the ETC, β-oxidation, protein synthesis and transport
across the inner mitochondrial membrane (Figs. 2 and 3). Almost
all proteins in the TCA cycle were ~2-fold less abundant
in diabetic islets (Fig. 2c–e). These included citrate synthase
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(2.5-fold), succinate dehydrogenase (2.4-fold) and fumarate
hydratase (3-fold) (Fig. 2e, Supplementary Table 1). In addition,
pyruvate dehydrogenase kinase (PDK1), which inhibits pyruvate
dehydrogenase and thereby limits pyruvate entry into the TCA
cycle (Fig. 2d), increased 5.5-fold (Fig. 2e, Supplementary
Table 1). In β-cells, ~50% of pyruvate enters the TCA cycle via
conversion to oxaloacetate by the enzyme pyruvate carboxylase
(PC) and this input correlates with glucose-induced insulin
secretion27. As PC was downregulated 1.7-fold (Fig. 2e, Supple-
mentary Table 1), anaplerotic pyruvate flux is also expected to be
reduced in diabetic islets.

Many genes/proteins involved in oxidative phosphorylation
were also downregulated (Fig. 3). For example, of the 34 proteins

identified in Complex I of the ETC, 17 were significantly down-
regulated (63%), 3 were unchanged and 2 were upregulated. We
also identified 11 proteins that contribute to ATP synthase
(Complex V), of which five were significantly downregulated and
two upregulated.

While outer mitochondrial membrane transporters were
largely unchanged, some inner mitochondrial transport proteins,
such as SLC25A42 (a Coenzyme A importer) or TIMM13
(a protein importer), were decreased in diabetic islets (Fig. 3).
Two key enzymes of the glycerol phosphate shuttle, which
transfers electrons from NADH generated in glycolysis to
Complex II of the electron transport chain, (GPD1 and GPD2),
were upregulated at both the mRNA and protein level
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(Supplementary Table 1). In contrast, most enzymes of the
malate–aspartate shuttle were unchanged, while ARALAR2 (the
mitochondrial aspartate–glutamate transporter) and MDH2 (the
mitochondrial malate dehydrogenase) were significantly
decreased at the protein level (1.5-fold and 1.9-fold, respectively;
Supplementary Table 1).

Mitochondrial metabolism is impaired in diabetic islets. Taken
together, the changes in mitochondrial gene and protein
expression we observe suggest that diabetes/hyperglycaemia
causes a marked reduction in oxidative metabolism. To deter-
mine whether this is the case, we measured the total auto-
fluorescence from NADH and NADPH (referred to as NAD(P)
H) in response to glucose stimulation in islets from control and
2-week diabetic mice (Fig. 4a–c and e). Under control

conditions, this signal is dominated by mitochondrial NADH
produced by the activity of the TCA cycle28. Basal NAD(P)H
autofluorescence was substantially elevated in diabetic islets
(Fig. 4b and e), as previously shown29. However, while elevation
of glucose produced a robust increase in NAD(P)H auto-
fluorescence in control islets, this response was much atte-
nuated in 2-week diabetic islets (Fig. 4a and c). In both sets
of islets, NAD(P)H autofluorescence was increased by the
ATP synthase inhibitor oligomycin and decreased by the
mitochondrial uncoupler FCCP. This indicates that the failure
of glucose to elevate NAD(P)H in diabetic β-cells is not due to
NAD(P)+ depletion and that basal mitochondrial metabolism
remains at least partially intact in diabetic β-cells.

To determine whether the increase in NAD(P)H autofluores-
cence represents NADH, we used fluorescence lifetime imaging
microscopy (FLIM)30,31 (Fig. 4e–g). The mean fluorescence
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lifetime from enzyme-bound NAD(P)H has been shown to reflect
the NADPH-to-NADH ratio31. In control islets, the fluorescence
lifetime fell in response to 20 mM glucose, indicating that the
increased NAD(P)H signal is primarily due to an increase in
NADH, rather than NADPH (Fig. 4f). In contrast, no change in
fluorescence lifetime was seen in diabetic islets. Further analysis
indicated basal levels of both NADH and NADPH are increased
in diabetic islets and neither change on glucose elevation (Fig. 4g).
This suggests that the ability of glucose to enhance NADH
production by the TCA cycle is impaired in diabetic islets.

Failure of NADH to increase in response to acute glucose
elevation is predicted to result in a smaller increase in the
mitochondrial membrane potential (ψm) and to reduce
the normal physiological increases in ATP production and
oxygen consumption produced by glucose. As previously
shown14, β-cell mitochondria hyperpolarised in response to
20 mM glucose and were further hyperpolarised by inhibition
of the ATP synthase with oligomycin (which prevents
dissipation of ψm by aborting H+ flux through the ATP
synthase) (Fig. 4d). However, the magnitude of the glucose
response was significantly reduced in diabetic islets. Collapse of
the proton gradient by FCCP produced mitochondrial depolar-
isation in both cases.

We have previously shown that, in contrast to control islets,
glucose fails to elevate intracellular ATP ([ATP]i) in diabetic
islets22. However, global [ATP]i measurements are confounded
because ATP is contained within insulin granules32. To confirm
that impaired mitochondrial metabolism results in reduced
cytosolic ATP levels, we used the fluorescent sensors Mg-green
and Perceval to monitor cytosolic ATP/ADP33,34. As Mg2+

binds with higher affinity to ATP than to ADP, an increase in
the ATP/ADP ratio is reflected in a fall in free [Mg2+]i.
Mg-green can be used on freshly isolated islets. In contrast, to
enable expression of the genetically encoded sensor Perceval,
which measures the cytosolic ATP/ADP ratio directly, islets
must be cultured for several days: thus for these experiments we
used control islets (mouse and human) cultured at either low or
high glucose. With both methods, acute glucose elevation
produced a rapid increase in ATP/ADP in control islets but not
in 2-week diabetic βV59M islets (Fig. 5a) nor in control mouse
islets (Fig. 5b, c) or non-diabetic human islets (Fig. 5d) that had
been cultured for 48 h (mouse) or 72 h (human) at high glucose.

These data suggest that mitochondrial metabolism driven
by glycolysis is impaired by chronic hyperglycaemia and predict
that glucose oxidation by diabetic islets should be reduced.
Figure 5e and h shows that this is indeed the case. The oxygen
consumption rate (OCR) at basal (2 mM) glucose and the
increase stimulated by 20 mM glucose were both substantially
lower in diabetic islets than in control islets. Attenuated ATP
synthase activity was also observed, as indicated by the reduced
respiratory response to metabolic inhibition by oligomycin
(Fig. 5h). These metabolic changes are consistent with the smaller
glucose-induced rise in NAD(P)H and the ATP/ADP ratio.
Subsequent addition of rotenone and antimycin A, which inhibit
complex 1 and 3 of the ETC respectively, suppressed OCR to the
same degree in both diabetic and control islets, indicating no
difference in mitochondrial leak (Fig. 5h). Non-mitochondrial
glucose oxidation was lower in diabetic islets (Fig. 5h).

Effects of diabetes on metabolic pathways. Unlike most cells,
β-cells lack the lactate transporter MCT135,36 and have reduced
expression of lactate dehydrogenase36,37, so that little excess
glucose is metabolised to lactate. Thus the rate of glycolysis
cannot be determined from measurements of lactate efflux. We
therefore measured the rate of glucose utilisation as the release of

3H2O from [3H]glucose38. Figure 1b shows that [3H]glucose
utilisation was significantly reduced in diabetic islets (by ~25%),
despite the increase in expression of glycolytic genes and proteins.

Because glucose uptake into β-cells is not rate limiting, yet both
glycolytic and mitochondrial glucose metabolism are reduced in
diabetic islets, a key question is what happens to the glucose
carbons. One possibility is that excess glucose is converted to
glycogen22,39. Indeed, there was a dramatic increase in glycogen
(>150-fold) and a striking upregulation of enzymes involved in
glycogen synthesis and its regulation in 2-week diabetic islets
(Fig. 6). The marked increase in mRNA (24-fold) and protein
(94-fold) levels of the aquaporin channel AQP4 might also reflect
glycogen accumulation, which is stored with water.

Pathway analysis indicated marked upregulation of steroid
biosynthesis and cholesterol pathways in diabetic islets (Fig. 1,
Supplementary Fig. 1). Numerous enzymes involved in choles-
terol synthesis were upregulated at the protein level, some
very substantially (Supplementary Fig. 2a). These included
HMGCoA synthase (22-fold increase), HMGCoA reductase (the
principal regulator of cholesterol synthesis, 4.4-fold) and DHCR7
(the final enzyme in cholesterol synthesis, 4.4-fold) (Supplemen-
tary Fig. 2a). Expression of many proteins involved in fatty acid
(FA) synthesis was also enhanced (Supplementary Fig. 2a). In
contrast, genes involved in FA catabolism were downregulated
(Supplementary Fig. 2b). Thus some glucose may also be diverted
to FA synthesis.

Metabolic tracing of glucose metabolism in INS-1 cells. To
further explore the effect of the observed changes in metabolic
gene and protein expression on cellular metabolism, we char-
acterised changes in the abundance and 13C-label incorporation
of glucose-derived metabolites by gas chromatography (GC)-MS.
We used the INS-1 832/13 insulin-secreting β-cell line for these
in vitro studies as greater sensitivity can be obtained (due to the
larger amount of material available), and they comprise a pure
β-cell population (unlike islets). We cultured INS-1 cells at either
5 mM glucose (control) or 25 mM glucose (hyperglycaemia). We
refer to these cells as ‘lowG’ cells and ‘highG’ cells, respectively.

Global protein profiling of INS-1 cells cultured at 5 or 25 mM
glucose for 48 h revealed hyperglycaemia-induced changes in
protein expression in a similar direction to those found in
diabetic islets (upregulation of glycolytic proteins and down-
regulation of mitochondrial proteins), albeit to a lesser extent
(Fig. 7a). Like diabetic islets, glucose-stimulated oxygen con-
sumption was reduced in highG cells (Fig. 7b–d). Chronic
hyperglycaemia also reduced GSIS (Fig. 7e).

For labelling experiments, INS-1 cells were cultured at either
5 mM glucose (lowG cells) or 25 mM glucose (highG cells) for
48 h and then stimulated for 30 min with 2 or 20 mM D-[U-13C]-
glucose. As expected, elevation of [U-13C]-glucose from 2 to 20
mM increased 13C incorporation into glucose-derived metabolites
(Fig. 8). For most metabolites, the extent of labelling was similar
at 20 mM 13C-glucose in both lowG and highG cells. Interest-
ingly, label incorporation into glucose 6-phosphate (G6P),
ribulose 5-phosphate (Ru5P) and ribose was significantly less in
highG cells exposed to 20 mM 13C-glucose than in lowG cells.
Despite this, the abundance of the PPP metabolites Ru5P and
ribose, as well as that of ribose 5-phosphate, were significantly
greater in highG cells (Fig. 9a). This suggests that the PPP is
upregulated in chronic hyperglycaemia and that the G6P used for
this purpose may be derived from a pool of unlabelled glycogen.
The increase in ribulose-5-phosphate isomerase and transketolase
protein levels (Supplementary Fig. 3) is consistent with the idea
that the PPP is upregulated. Like islets, INS-1 cells accumulate
glycogen in response to chronic hyperglycaemia22. The reduction
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Fig. 5 Hyperglycaemia alters islet ATP production and mitochondrial efficiency. a, c Change in intracellular ATP, as assessed by the reduction in

intracellular Mg2+ (measured using Mg-green) in response to 20mM glucose. Data are mean ± s.e.m. a Control (black, n= 1147 islets) and 2-week

diabetic βV59M mouse islets (red, n= 423 islets). c Control mouse islets cultured at 5 mM (black, n= 1228) or 30mM (red, n= 423) glucose for 48 h.

b, d Change in intracellular ATP/ADP ratio (Perceval fluorescence). Data are mean ± s.e.m. b In response to 20mM glucose in control mouse islets

cultured for 48 h at 5 mM glucose (black, n= 288 islets) or 20mM glucose (red, n= 267 islets). d. In response to 6 and 10mM glucose in non-diabetic

human islets cultured for 72 h at 5 mM (black, n= 157) or 20mM (red, n= 318) glucose. e Oxygen consumption rate (OCR) of control (black) and 2-week
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in mannose labelling at 20 mM 13C-glucose in highG cells (Fig. 8),
despite its significant increase in abundance (Fig. 9a), may also be
indicative of an increased pool of unlabelled G6P. There was no
difference in the relative abundance of metabolites between lowG
and highG cells at 2 mM 13C-glucose (Supplementary Fig. 4).

In contrast, label incorporation into fructose was greater at
20 mM 13C-glucose for highG cells than for lowG cells (although
the abundance remained the same). This suggests that some
glucose carbons are probably channelled into the polyol pathway
in chronic hyperglycaemia.
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No significant differences were observed in 13C-glucose
incorporation into TCA cycle metabolites at either 2 or 20 mM
glucose in cells cultured under control or hyperglycaemic
conditions (Fig. 8). Similarly, with the exception of fumarate,
metabolite abundance was not significantly changed in highG
cells exposed to 20 mM 13C-glucose compared with lowG cells
exposed to 20 mM 13C-glucose (Fig. 9a). This was despite the
significant large increase in pyruvate (with no change in label
incorporation) and suggests a block in pyruvate metabolism.

In pancreatic β-cells, ~50% of glucose carbons enter the TCA
cycle via pyruvate carboxylase (anaplerosis)13,27. We therefore
inspected the labelling patterns of individual TCA metabolites in
lowG and highG cells after 30 or 60 min exposure to 20 mM
[13C]-glucose (Fig. 9b). The mass isotopomer distributions of
each TCA metabolite indicated the presence of +3 (citrate, malate
and fumarate) and +5 (citrate) isotopomers in both lowG and
highG cells at both time points. This confirms the presence of
pyruvate carboxylation as previously reported13,27. Furthermore,
the proportion of +3 (citrate, malate, and fumarate) and +5
(citrate) isotopomers was greater in highG cells, which suggests
an increase in the relative contribution of pyruvate carboxylation
(i.e. anaplerosis) to TCA carbon requirements under hypergly-
caemic conditions.

Other genes and proteins. The effects of diabetes (islets) and
chronic hyperglycaemia (INS-1 cells) on the expression of other
genes and proteins can be found in the RNA sequencing
(RNAseq) and proteomics data uploaded to online databases
(see “Data availability”).

Discussion
Comprehensive transcriptomics and proteomics profiling coupled
with analysis of mitochondrial function revealed a rapid and
dramatic change in metabolism in diabetic islets (in vivo), with
glycolysis being reduced and mitochondrial metabolism very
substantially impaired. Similar changes in gene/protein expres-
sion and oxidative metabolism were found in INS-1 cells 832/13
exposed to chronic hyperglycaemia (in vitro).

Pathway analysis revealed that glycolysis was among the
most significantly upregulated pathways in diabetic islets, with
a marked increase in most glycolytic enzymes at both the
protein and mRNA levels. Upregulation of selected glycolytic
enzymes has also been observed in GK rat islets21 and in rat
islets and cell lines cultured at high glucose40,41. In our study,
aldolase B was the most upregulated protein in diabetic
βV59M islets, increasing >65-fold. Transcriptomics indicates

that aldolase B mRNA is also highly upregulated in rat islets
cultured at high glucose40 and in β-cells of T2D subjects42,43,
where it correlates positively with HbA1c and negatively with
insulin release43. In hepatocytes, aldolase A mainly participates
in glycolysis, whereas aldolase B is principally involved in
gluconeogenesis44. If this is also true in β-cells, it would favour
glycogen production. Despite the marked increase in the
expression of glycolytic genes and proteins, glucose utilisation
in βV59M islets was reduced, by ~25%. This may be a con-
sequence of the observed upregulation of proteins involved in
glycogenesis or reflect changes in regulatory control mechan-
isms (as changes in gene/protein expression do not necessarily
reflect a change in activity).

In contrast to most glycolytic enzymes, glucose 6-phosphatase
(G6PC2) was downregulated in diabetic βV59M islets. G6PC2 is
highly expressed in mouse islets but its functional role is con-
troversial, as it is expected to generate a futile cycle, reducing
glycolytic flux, and thereby ATP synthesis and insulin secretion.

Diabetes dramatically impaired glucose-stimulated mitochondrial
metabolism in βV59M islets, as evidenced by abrogation of the
glucose-stimulated increases in NADH, ATP and oxygen con-
sumption and the marked changes in gene/protein expression. The
decreased abundance of many proteins involved in mitochondrial
metabolism likely accounts for the impaired metabolism. Diabetes
resulted in the coordinated suppression of many TCA cycle
enzymes and numerous ETC enzymes in βV59M islets at both the
gene and protein levels. The effect on Complex I was especially
notable with ~50% of proteins identified being downregulated.

Single-cell transcriptome profiling of human T2D islets has
revealed that a number of genes responsible for oxidative phos-
phorylation and ATP synthesis are downregulated in T2D indi-
viduals19. Both oxidative phosphorylation and TCA cycle mRNAs
and proteins were also downregulated in GK rats at an early stage
in the development of diabetes21. Our data suggest these changes
may be a consequence of the developing hyperglycaemia rather
than a result of any underlying mutations/polymorphisms that
predispose to diabetes in humans and GK rats.

Our analysis of mitochondrial function indicated that both
mitochondrial coupling efficiency and oxygen consumption were
impaired in diabetic βV59M islets, leading to a failure of glucose
to elevate cytosolic ATP levels and so drive glucose-stimulated
insulin release. Mice in which fumarate hydratase deletion causes
progressive diabetes show a similar impairment of mitochondrial
metabolism and ATP production23. Changes in oxidative phos-
phorylation, PPP and biosynthesis of unsaturated FA were also
observed in islets isolated from obese mouse models of diabetes24.
Our data suggest that hyperglycaemia alone may be sufficient

Fig. 6 Hyperglycaemia causes profound glycogen accumulation in β-cells. Glycogen and insulin quantification in β-cells of βV59M diabetic animals and

controls. Diabetes was induced at 12–13 weeks of age and pancreata were collected 2 weeks after induction, fixed and processed for paraffin embedding

and immunohistochemistry. a Glycogen (Alexa647, magenta) and insulin (Alexa488, yellow) were detected by immunofluorescence staining in 5-µm

sections from diabetic and control mice. Nuclei were stained with SYTOX blue (cyan). Images are representative of three independent experiments.

Identical settings were used for confocal imaging of all pictures analysed. Scale bar= 100 µm. For quantification method details (b, c), see “Methods”

section. b Glycogen upregulation, quantified as normalised average fluorescence density (F/A) within the insulin-positive area of the islet. Total number of

islets n= 21 from n= 3 animals (n= 7 islets/mouse). Control: 1.0 ± 0.4; Diabetic: 170 ± 23. Error bars show s.e.m., p= 10–6. (Welch’s t test). c Insulin was

quantified and normalised as for b. Control: 1.00 ± 0.09; Diabetic: 0.44 ± 0.04; error bars show s.e.m. p= 10–5 (Welch’s t test). d Glycogen pathway.

Enzymes or genes indicated in red are increased in diabetic βV59M islets. Enzymes or genes indicated in black are either unchanged in diabetic βV59M

islets or were not detected at the protein level. Genes are indicated in italics, proteins in roman type. PTG, protein targeting to glycogen. Phka1, skeletal

muscle phosphorylase B kinase alpha subunit. e Abundance of the indicated proteins, quantified by mass spectrometry, in islets isolated from control mice

(black, Ctrl, n= 4) and 2-week diabetic βV59M mice (white, Diab, n= 4). Each data point indicates a separate mouse. Mean ± s.e.m. Student’s t test

(unpaired, two-sided). *p < 0.05, **p < 0.01, ***p < 0.001. nd not detected. PYGL, glycogen phosphorylase (liver type). PYGB, glycogen phosphorylase

(brain type). PPP1R3C, protein phosphatase 1 regulatory subunit 3C (also called protein targeting to glycogen or PTG): this protein was not detected but the

mRNA increased 2.6-fold (log2fc; p= 2.7e−9), GBE1, glycogen branching enzyme. GYG1, glycogenin 1. UGP2, UDP-glucose pyrophosphorylase 2. PGM1,

phosphoglucomutase-1
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to drive these changes, as FA levels are not elevated in βV59M
mice26.

The fact that the expression levels of many metabolic proteins,
in particular mitochondrial proteins, decreased more than their

respective mRNAs in diabetic βV59M islets argues that impaired
translation and/or enhanced protein breakdown are more
important than reduced transcription. In this context, it may be
relevant that the ribosome and proteasome pathways are the
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Fig. 8 Hyperglycaemia causes changes in [U-13C]-glucose labelling. Percentage of label incorporation of the indicated metabolites in INS-1 cells cultured at

5 mM (white) or 25 mM (black) glucose and then challenged with 2 or 20mM [U-13C]-glucose for 30min. Label incorporation is defined as the proportion

of molecules in a metabolite pool containing one or more 13C atoms. DHAP, dihydroxyacetone phosphate. PEP, phosphenolpyruvate. Data show mean ± s.e.
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**p < 0.01,***p < 0.001, nd not detected
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second and third most strongly upregulated pathways in the
proteomics data (Supplementary Fig. 1).

Our data indicate that in diabetic islets glucose oxidation is
very substantially reduced. As glucose freely equilibrates across
the β-cell membrane and is not metabolised to lactate35–37, the
question arises as to the fate of the glucose carbons. The very

substantial increase (>150-fold) in glycogen deposition in β-cells
suggests that much of the excess glucose ends up as glycogen. The
marked increase in the expression of proteins in the pentose
phosphate, polyol and FA synthesis pathways suggests that some
glucose is also channelled into these pathways. Previous data have
also shown that this pathway is operational in clonal β-cells38,45.
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Increased activity of the PPP may contribute to the observed
increase in basal NADPH.

A key question is whether the changes we observe in diabetic
islets are due to chronic hyperglycaemia or to hypoinsulinaemia,
as both are present in βV59M mice (and indeed in all in vivo
diabetes models). However, our results clearly indicate that cul-
ture of INS-1 832/13 cells for 48 h at 25 mM glucose (which is not
associated with hypoinsulinaemia) results in impaired metabo-
lism: in response to subsequent acute glucose elevation, oxygen
consumption is reduced and metabolite levels differ. Substantial
glycogen accumulation also occurs22. Although fewer proteins
were identified by proteomics in INS-1 832/13 cells and the
changes induced by chronic hyperglycaemia were not as large,
their direction was the same as that found for diabetic islets.
Changes in selected gene expression also largely matched those
observed in diabetic islets22. Thus the response of INS-1 832/13
cells to chronic hyperglycaemia resembles that of islets to dia-
betes. In addition, like diabetic islets, control islets cultured at
high glucose failed to elevate ATP in response to glucose stimu-
lation. Consequently, we favour the idea that the metabolic
changes we observe are primarily caused by hyperglycaemia.

We observed a few differences between diabetic islets and
highG INS-1 832/13 cells. For example, changes in expression of
some genes differed: e.g. Cox6a2 was downregulated in diabetic
islets (this paper) but upregulated in INS-1 832/13 cells22.

Targeted metabolomics of highG INS-1 832/13 cells supports
the idea that chronic hyperglycaemia causes metabolic changes in
β-cells. Previous metabolomics studies corroborate this view4. In
highG cells, G6P was labelled substantially less than glucose. This
implies that a pool of unlabelled G6P dilutes the 13C-G6P; one
possibility is that this derives from stored glycogen46. In contrast,
fructose was labelled more strongly, suggesting that fructose
generation via the polyol pathway is increased. The increased
hexitol abundance supports this idea.

Our data are in good agreement with earlier transcriptomics
data from diabetic human and rodent islets19,21. In general, the
changes we observed were greater and more extensive than those
seen in T2D studies: this may be because T2D patients have better
glycaemic control, because their insulin levels are higher or
because many are obese and dyslipidaemic (unlike βV59M mice).
It may also relate to different sensitivities in the methods
employed—in many cases, the changes we observed were greater
at the protein than at the mRNA level. Indeed, it is remarkable
that so many gene changes are similar, especially given the var-
iation in glycaemia between T2D individuals and the inevitably
longer time taken for islet isolation.

Our studies suggest that hyperglycaemia impairs mitochondrial
metabolism and reduces the glucose-induced increase in ATP
that is required for insulin secretion. This metabolic change has
profound functional consequences because mitochondrial meta-
bolism is essential for GSIS12. Lack of ATP will impair KATP

channel closure and thereby membrane depolarisation, calcium
influx and insulin granule exocytosis. This will further elevate
blood glucose and trigger a vicious cycle in which impaired
insulin secretion precipitates further glucose elevation. Thus our
data provide strong support for the idea that diabetes progression
is driven by hyperglycaemia.

We propose that a combination of genetic and lifestyle factors,
which may vary between individuals, leads to a small reduction in
insulin release and modest elevation of blood glucose (Fig. 10).
Chronic hyperglycaemia further impairs insulin secretion,
enhancing hyperglycaemia and triggering a vicious cycle that
fuels a progressive deterioration in β-cell function and conversion
of impaired glucose tolerance to frank diabetes. Because hyper-
glycaemia is common to all forms of diabetes, this process may be
expected to occur in all types of diabetes, including neonatal

diabetes and T1D. It is now recognised that β-cells may remain
for an extended period after the onset of T1D but fail to release
sufficient insulin to control glycaemia47: our data suggest that
hyperglycaemia may contribute to the impaired β-cell function.

In conclusion, our data provide support for the idea that
hyperglycaemia alone is sufficient to produce diabetes progres-
sion and demonstrate that the underlying molecular event is a
deficit in mitochondrial metabolism. They also emphasise the
crucial importance of good glucose control in diabetes in order to
maintain β-cell function.

Methods
Animal experiments. All animal studies were conducted in accordance with the
UK Animals (Scientific Procedures) Act (1986) and approved by the local
Department of Physiology Anatomy and Genetics (University of Oxford) ethical
review committee. βV59M mice (which hemizygously express the inducible Kir6.2-
V59M transgene in β-cells) were generated using a Cre-lox approach22. Transgene
expression was induced by subcutaneous injection of tamoxifen (Sigma, 10 µl/g
body weight of 20 mg/ml) in corn oil. As controls, we used tamoxifen-injected
wild-type, RIPII-Cre-ER and floxed Kir6.2-V59M littermates (pooled). Mice had
unrestricted access to water and a regular chow diet (63% carbohydrate, 23%
protein, 4% fat; Special Diet Services, RM3). They were maintained on a 12 h
light–dark cycle at 21 °C.

Body weight and blood glucose levels were monitored routinely. Blood glucose
levels were measured from the tail vein using the Freestyle Lite device and Freestyle
Lite test strips (both Abbott). Blood glucose levels were 8.4 ± 0.5 mM in control and
26.7 ± 0.9 mM in diabetic mice. Serum was obtained by incubating whole blood on
ice for 30 min, followed by centrifugation at 3000 × g and 4 °C for 30 min. The
serum was then snap frozen in liquid nitrogen for further analysis.

Islet isolation. Mice were killed by cervical dislocation. Islets were isolated by
injection of 2 ml liberase solution into the bile duct (Liberase TL, Sigma, 0.5 mg/ml
in Hanks solution). Pancreas tissue was digested at 37 °C for 16 min. The reaction
was stopped by adding 10 ml ice-cold Hanks buffer containing 0.2% bovine serum
albumin (BSA; Sigma), followed by 4× pipetting through a 16-G syringe. Islets were
hand-picked 4 times and kept in RPMI-1640 medium containing 10% foetal bovine
serum (FBS) and 1% Pen/Strep at 37 °C. Freshly isolated islets without culture in
RPMI were used for transcriptomics and proteomics analyses.

Human pancreatic islets were isolated from deceased donors under ethical
approval obtained from the local human research ethics committee in Oxford. All
donors gave informed research consent. Islets were supplied by the Oxford
Diabetes Research & Wellness Foundation Human Islet Isolation Facility and
isolated according to published protocols48.

INS-1 832/13 cell culture. INS-1 cells were originally developed by Claes Woll-
heim (Geneva) and supplied by Patrik Rorsman (Oxford). INS-1 832/13 cells were
cultured in a humidified atmosphere of 5% CO2/95% air at 37 °C in RPMI-1640
medium supplemented with 10% FBS, 1% Pen/Strep, 50 μM β-mercapto-ethanol,
1 mM sodium-pyruvate, 10 mM HEPES and 1% glutamax (standard culture
medium; all Sigma). Unless otherwise stated, the glucose concentration was 11 mM.
INS-1 832/13 cells were used for metabolomics as 13C-glucose labelling is pre-
cluded in diabetic animals due to the prevailing high blood glucose (which dilutes

Normal glucose tolerance

Impaired glucose tolerance

Impaired

Metabolism-secretion

Coupling

Insulin secretion

reduced

Increasing

hyperglycaemia

Diabetes

Vicious cycle

Fig. 10 Schematic showing how a small rise in glucose might lead a vicious

cycle that progresses to diabetes by progressively impairing β-cell metabolism
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the labelled glucose). In addition, greater sensitivity can be obtained due to the
greater amount of material available, and INS-1 832/13 constitute a pure β-cell
population.

Insulin secretion. INS-1 832/13 cells were grown to 80% confluency on 24-well
plates and cultured in RPMI medium containing 5 or 25 mM glucose for 48 h. They
were then washed twice in Tanaka Robertson buffer (118.5 mM NaCl, 2.54 mM
CaCl2, 1.19 mM KH2PO4, 4.74 mM KCl, 25 mM NaHCO3, 1.19 mM MgSO4, 10
mM HEPES) containing 1% BSA and stimulated for 30 min with 2 or 20 mM
glucose in the same buffer. The supernatant was removed and cells were harvested
in acid ethanol. Insulin levels in the supernatant and cells were determined using
an insulin enzyme-linked immunosorbent assay kit (Mercodia) and expressed as
percentage of cell content.

RNA sequencing. RNAseq was performed to identify differentially expressed genes
between the control and diabetic mice. Islets were isolated from control mice and
2-week diabetic βV59M mice. Islets from individual mice (3–4 per group) were
analysed separately. Total RNA was isolated using Qiazol lysis reagent and the
RNeasy Mini Kit (both Qiagen) per the manufacturer’s instructions. RNA con-
centration was measured using a Qubit 2.0 (Thermo Fisher), and RNA quality was
assessed using a bioanalyser (Agilent).

Libraries were prepared and analysed at the Oxford Genomics Centre
(Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK):
For the library preparation, total RNA quantity and integrity were re-assessed using
the Quant-IT RiboGreen RNA Assay Kit (Invitrogen, Carlsbad, CA, USA) and
Agilent Tapestation 2200 RNA Screentape. Purification of mRNA, generation of
double-stranded cDNA and library construction were performed using TruSeq®
Stranded mRNA HT (RS-122–2103) with minor modifications to the
manufacturer’s specifications. The following custom primers (25 µM each) were
used for the PCR enrichment step: Multiplex PCR primer 1.0 5′-AAT GAT ACG
GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG
ATC T-3′; Index primer 5′-CAA GCA GAA GAC GGC ATA CGA GAT CAG
TGA CTG GAG TTC AGA CGT GTG CTC TTC CGA TCT-3′. Indices were
according to the eight base tags developed by WTCHG49. Amplified libraries were
analysed for size distribution using the Agilent Tapestation 2200 D1000. Libraries
were quantified using Picogreen and relative volumes were pooled accordingly.
Sequencing was performed as 75-bp paired end read on a HiSeq4000 according to
Illumina’s specifications.

RNAseq data processing and analysis. Raw sequencing reads were aligned to the
mouse genome assembly GRCm38 with STAR v2.5.1b50 using GENCODE tran-
scriptome annotations (M12, released August 2016). Gene counts were generated
using featureCounts51 in pair-ended strand-specific mode with multi-mapping,
chimeric or multi-overlapping reads excluded.

Differential expression analysis was performed on the gene-level count data
using R (version 3.2.2). The analysis was restricted to the 13,362 protein-coding or
lincRNA genes, located on the autosomal or X chromosomes, with appreciable
expression (counts per million >1) in either all control or all diabetic mice.
Differences in the means between the two groups were calculated using the
exactTest function in edgeR after normalisation52. p Values were corrected for
multiple testing using the Benjamini–Hochberg procedure.

Proteomics. Islets were isolated from control or 2-week diabetic βV59M mice,
centrifuged briefly at 2000 × g and frozen at −80 °C until use. INS-1 cells were
cultured at 5 or 25 mM glucose for 48 h, harvested in ice-cold phosphate-buffered
saline (PBS), centrifuged briefly at 2000 × g and frozen at −80 °C until use. Samples
were prepared for LC-MS/MS analysis as described53. Briefly, proteins were pre-
cipitated with chloroform and methanol after cell lysis in Ripa buffer (Sigma,
R0278) and reduction/alkylation with dithiothreitol/iodoacetamide. Proteins were
digested with trypsin (Promega) and the resulting peptides were purified on reverse
phase material (SOLA SPE, Thermo Fisher). Samples were injected into a nano LC-
MS/MS workflow consisting of a Dionex Ultimate 3000 UPLC and an Orbitrap
Fusion Lumos (both Thermo Fisher) instrument.

Peptides were separated on an easyspray column (500 mm × 75 µm) with a flow
rate of 250 nl/min and a gradient of 2–35% acetonitrile in 5% dimethyl sulfoxide/
0.1% formic acid within 60 min. Detailed MS instrument settings are listed in
Supplementary Table 2.

LC-MS/MS data was analysed using label-free precursor quantitation in
Progenesis QI (Waters, version 3.0.6039.34628) and peptides identified with
Mascot v2.7 (Matrixscience) against the UniProt/Swissprot database (2015/11/26).
Peptide FDR was adjusted to 1% and additionally all spectra identified with a score
<20 were discarded.

Pathway enrichment analysis. To identify enriched gene sets with shared effects
between the transcriptomics and proteomics data, we used the piano package in R
(version 3.2.2)54. The Hallmark, KEGG and BIOCARTA lists from the MSigDB
collections (version 5)55 were used as the gene set references. For each data type
individually, gene set enrichment was calculated using piano’s consensus scoring
approach combining seven different enrichment statistics (mean, median and

summed enrichment tests, Fisher’s combined probability test, Wilcoxon rank-sum
test, Stouffer’s method and tail strength). From the proteomics and transcriptomics
results, the significant and directionally consistent gene sets were identified using
only the ‘distinct direction’ results and an FDR < 5% in both data sets.

Metabolomics. INS-1 cells were plated at 5 × 105 cells/6-well in standard culture
medium. The next day, the medium was changed to RPMI-1640 medium con-
taining all supplements and 5 or 25 mM glucose. After 48 h, cells were incubated
for 30 mins in Krebs buffer containing 2 mM glucose before being stimulated with
Krebs buffer containing 2 or 20 mM D-(U-13C]-glucose. The cells in all wells were
confluent at the time of measurement. After 30 min, media was quickly removed
from each well and plates were transferred to an ice-cold water bath and cells were
washed twice with ice-cold PBS. Cells were scraped into ice-cold PBS, transferred
to a pre-chilled Eppendorf tube, spun (18,506 × g, 4 °C, 90 s) and supernatant
removed. Metabolites were extracted by addition of 600 µl chloroform:methanol
(2:1, v/v) and subsequent sonication (3 × 8 min, 4 °C, over 1 h) in a water bath
sonicator. Samples were spun (18,506 × g, 4 °C, 10 min), and the supernatant was
transferred to a new tube and dried in a rotary vacuum concentrator. Cell pellets
were re-extracted with 600 µl methanol:water (2:1, v/v, containing 1 nmol scyllo-
inositol (internal standard) and subsequent sonication (8 min, 4 °C). Samples were
spun (18,506 × g, 4 °C, 10 min), and the supernatant was added to the dried first
extract and dried as before. Polar metabolites were separated from apolar meta-
bolites by biphasic partitioning (350 µl chloroform:methanol:water (1:3:3, v/v).
Polar metabolites were dried and washed twice with methanol, followed by deri-
vation by methoxymation (20 mg/ml methoxyamine hydrochloride in pyridine
(both Sigma Aldrich), room temperature, overnight) and trimethylsilylation (99:1
BSTFA+ TMS (Supelco)) for >1 h, before injection onto the GC-MS.

Polar metabolites were analysed by GC-MS (Agilent 7890B-5977A) and
identification, abundance and label incorporation of individual metabolites was
estimated56. In brief, GC-MS was performed using splitless injection (injection
temperature 270 °C) onto a 30 m+ 10 m × 0.25 mm DB-5MS+DG column
(Agilent J&W), with a helium carrier gas, in electron impact ionisation mode. The
oven temperature was initially 70 °C (2 min), followed by a temperature increase to
295 °C at 12.5 °C/min and subsequently to 320 °C at 25 °C/min (held for 3 min).
GAVIN software57 was used for metabolite identification and quantification by
comparison to the retention times, mass spectra and responses of known amounts
of authentic external standards. Abundance data were corrected for enhanced
proliferation at 25 mM glucose by normalising to differences in cell number or
protein content.

Imaging. We used Mg-green (Thermo Fisher Molecular Probes) to monitor
cytosolic ([Mg2+]i). This serves as an indicator of the ATP/ADP ratio, as Mg2+

binds with higher affinity to ATP than to ADP. Thus a fall in free [Mg2+]i cor-
responds to an increase in the ATP/ADP ratio. This probe has the advantage that it
is pH insensitive and does not require islet culture. We also measured the ATP/
ADP ratio using the genetically encoded probe Perceval33.

[Mg2+]i and NAD(P)H were imaged concurrently using a Zeiss AxioZoom.V16
zoom microscope and 10–14-fold magnification. Mouse islets were preloaded with
6 μMMg-green in extracellular solution (ECS) supplemented with 6 mM glucose at
room temperature for 90 min. ECS contained (in mM) 140 NaCl, 4.6 KCl, 2.6
CaCl2, 1.2 MgCl2, 1 NaH2PO4, 5 NaHCO3 and 10 HEPES, (pH 7.4, with NaOH).
Groups of islets from mice of different genotypes were positioned in an imaging
chamber placed on a heated stage (+34 °C) and perifused continuously with ECS
(rate 60 μl/min). Mg-green was excited at 500 nm and emission was collected at
535 nm. NAD(P)H was excited at 365 nm and the emission collected at 445 nm.
Time-lapse images were collected every 60 s.

Time-lapse imaging of the ATP/ADP ratio in mouse islets was performed using
×103–×143 magnification on a Zeiss AxioZoom.V16 microscope. Islets were
infected with an adenovirus (3 × 104 plaque-forming units per islet) delivering
Perceval, a recombinant sensor of ATP/ADP33. Groups of islets isolated from
control and 2-week diabetic βV59M mice were imaged simultaneously 24 h post-
infection at glucose concentrations as indicated, with single-cell resolution. Time-
lapse images were collected every 30 s, and the bath solution was perifused at 60 µl/
min at 34 °C.

Mitochondrial membrane potential (ψm) was imaged using TMRE
(tetramethylrhodamine ethyl ester; Thermo Fisher, Molecular Probes). Islets were
preloaded with 10 nM TMRE for 30 min prior to experiment and 10 nM TMRE
was present throughout the experiment. TMRE was excited at 572 nm and
emission collected at 630 nm.

Images were analysed using the open-source FIJI software (http://fiji.sc/Fiji).
For [Mg2+]i and ATP/ADP imaging, timelapse data were analysed individually for
each cell. However, NAD(P)H and ψm data were analysed for whole islets, as cell
borders could not be easily separated. The numerical time series data were analysed
using IgorPro package (Wavemetrics).

Fluorescence lifetime imaging of NAD(P)H was performed on an upright
LSM510 microscope (Carl Zeiss) with a 0.3 NA ×10 water-dipping objective using
a 650 nm short-pass dichroic mirror and 435–485 nm emission filter. Mouse islets
were maintained in Krebs buffer containing 2 or 20 mM glucose. Two-photon
excitation was provided by a Chameleon (Coherent) Ti:sapphire laser tuned to
720 nm. Emission events were detected by an external hybrid photomultiplier tube
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(HPM-100, Becker&Hickl) attached to a time-correlated single-photon counting
electronics module (SPC-830, Becker&Hickl). Scanning was performed
continuously for 2 min with a pixel dwell time of 1.6 μs. Fluorescence decay
parameters were extracted from the data using pixel-by-pixel biexponential fitting
with 5 × 5 binning, resulting in 4–5 × 103 photons in each decay curve. NAD(P)H
FLIM resolves two exponential components: a short lifetime derived from freely
diffusing NADPH and NADH and a longer lifetime derived from NADH and
NADPH bound to proteins29,30. The lifetime of bound NADH is shorter than that
of bound NADPH, and so the mean lifetime reflects the relative balance between
their contributions31. Differences between mean values of the decay parameters
were determined using a two-tailed Student’s t test. NADH and NADPH
concentrations were estimated using the model proposed by Blacker et al.31,
combining the fluorescence decay parameters with the mean intensities under each
condition, calculated from the integrated photon counts.

Glucose utilisation. Glucose utilisation was measured as the formation of [3H]
water from [5-3H]glucose in size-matched control and 2-week diabetic islets, using
30 islets/replicate as described by Ashcroft and colleagues38. Glucose utilisation
rates were calculated as pmol glucose utilised/h/islet.

Immunohistochemistry. Diabetes was induced in Rip2-CRE/floxedSTOP-Kir6.2-
V59M double heterozygous mice at 12–13 weeks of age. Pancreata were collected
2 weeks after induction, fixed in 4% paraformaldehyde and embedded in paraffin.
Paraffin sections were rehydrated and subjected to heat-induced epitope retrieval
(10 mM citric acid pH6/NaOH, 90–92 °C, 5 min), then permeabilised (PBS 0.5%
triton X-100). Prior to staining, sections were incubated in blocking buffer (10%
goat serum, 1% BSA, 0.1% Triton X-100 in PBS). Glycogen was detected using
mouse anti-glycogen (ref. 58, made in house; dilution 1:200), biotin-conjugated goat
anti-mouse secondary antibody (BA-9200, Vector Labs, 1:200) and Alexa647-
conjugated Streptavidin (S32357, Thermo Fisher Scientific, 1:500). Insulin was
detected using guinea pig anti-insulin (A0564, Dako 1:500) and Alexa488-
conjugated goat anti-guinea pig secondary antibody (A11073, Thermo Fisher
Scientific, 1:500). All staining antibodies and conjugates were diluted in blocking
buffer. Nuclear counterstain was performed with SYTOX blue (S11348, Thermo
Fisher Scientific, 1:2000). Glycogen and Insulin were quantified by measuring the
average fluorescence density (F/A) within the insulin-positive area of the islet, then
subtracting background F/A in a same-size adjacent section of tissue. Data were
normalised to the average F/A measured for control islets.

Respirometry. The Seahorse XF24 Extracellular Flux Analyser (Seahorse
Bioscience, Copenhagen, Denmark) was used in order to assess a range of meta-
bolic parameters through real-time monitoring of the cellular OCR.

INS-1 832/13 cells were cultured at 5 or 25 mM glucose for 30 h in T-75 cell
culture flasks before being seeded at a density of 40,000 cells/well in XF 24-well
microplates with standard culture media containing 5 or 25 mM glucose for a
further 18 h. Cells were washed in serum-free unbuffered assay medium
(Dulbecco’s modified Eagle’s medium (DMEM) 5030, Sigma) containing 2 mM
glucose for 1 h prior to measurements being taken. Four baseline measurements
were taken at the start of the assay before compounds were injected in order to
establish that the basal OCR was stable. Glucose-stimulated respiration was
obtained through the addition of 20 mM glucose and mitochondrial efficiency was
assessed following injection of compounds that inhibit specific mitochondrial
processes: ATP-linked respiration (1 µM oligomycin) and proton leak (0.5 µM
antimycin A+ 0.5 µM rotenone). Data were normalised to the fourth baseline
measurement (100%). The percentage of OCR either stimulated or inhibited
following the addition of a compound/substrate was also calculated.

Islets were isolated and incubated overnight in RPMI supplemented with either
11 mM glucose (control islets) or 20 mM glucose (diabetic islets). The glucose
concentrations of the culture media were chosen in order to reflect the blood
glucose levels recorded in the mice before they were sacrificed. On the day of the
assay, islets were seeded at 50 islets/well in XF 24-well islet capture microplates in
unbuffered DMEM containing 2 mM glucose and 0.1% FA-free BSA for 1–2 h prior
to measurements being taken. As above, 4 baseline OCR measurements were taken
before the following substrates/compounds were injected: 20 mM glucose, 5 µM
oligomycin, 5 µM rotenone, and 5 µM antimycin A. Data are presented as either
pmol O2/min/50 islets or were normalised to the fourth baseline measurement
(100%). The percentage of OCR either stimulated or inhibited following the
addition of a compound/substrate was also calculated.

Statistics. Unless otherwise stated, data are mean ± s.e.m. of the indicated number
(n) of mice or replicates. Significance was tested by t tests, one-way ANOVA and
two-way ANOVA using the Graphpad Prism software, as indicated in the figure
legends. Post-test corrections were used as indicated in the legends. Differences
between groups were considered statistically significant if p < 0.05. RNAseq and
proteomics analysis are described above.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw transcriptomics data sets described in the current study are available in the
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its supplementary information files) or can be obtained from the authors upon
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