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Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of
pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are
hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to
promote atherosclerosis has been demonstrated, a deeper understanding of the
underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an
important role in both diabetes and atherosclerosis. While the diversity of its activation
modes is one of the underlying causes of complex effects in the progression of diabetes
and atherosclerosis, it also provides many new insights for targeted interventions in
metabolic diseases.
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INTRODUCTION

Diabetes mellitus is a major and growing problem worldwide, not only in the so-called developed
countries (1, 2). According to a recent report from the International Diabetes Federation, about 537
million adults (aged 20-79) worldwide will have diabetes in 2021 (1 in 10 people will have diabetes).
That number is expected to rise to 643 million by 2030.That will rise to 783 million by 2045. During
this period, the world’s population is estimated to have grown by 20 percent, while the number of
people living with diabetes is estimated to have increased by 46 percent. DM is divided into two
types, namely, type 1 diabetes mellitus (T1DM), which involves the destruction of beta cells in the
islets, leading to an absolute lack of insulin secretion, and type 2 diabetes mellitus (T2DM), which
involves an insufficient insulin secretion or combined insulin resistance (3) (4). In addition to
nephropathy and microvascular disease, cardiovascular disease frequently occurs in patients with
T1DM and T2DM, and is the main cause of morbidity and death, accounting for more than 80% of
deaths among those with DM, and otherwise significantly reducing their quality of life (5). T2DM is
often accompanied by dyslipidemia (6). Elevated glucose levels have been identified as an independent
predictor of platelet-dependent thrombosis in patients with coronary artery disease (7). Poor glycemic
org June 2022 | Volume 13 | Article 9002541
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control adversely affects the large blood vessels, accelerating
atherosclerosis and cardiovascular disease, manifesting as
myocardial infarction, stroke, and peripheral artery disease (8, 9).

Atherosclerosis, one of the main complications of DM,
involves many pathogenic factors, such as endothelial
dysfunction, oxidative stress and so on (10, 11). Hyperglycemia
and hyperlipidemia are related factors for the accelerated
development of atherosclerosis (12). Recent evidence suggests
that dysglycemia and dyslipidemia can induce endothelial cell
dysfunction (13). Moreover, oxidative stress is the main cause of
insulin resistance in T2DM patients, and it can also promote the
oxidation of low-density lipoprotein (LDL) (4). The coexistence
of high glucose levels and persistent oxidative stress leads to the
formation of advanced glycation end products (AGEs). AGEs,
through their receptor interactions (RAGEs), play an important
role in the vascular complications of diabetes (14). AGEs can
upregulate inflammatory signaling pathways and induce reactive
oxygen species production and apoptosis. AGES can also exert
their pathogenic effects by modifying additional or intracellular
proteins and activating cellular signaling cascades through
RAGEs (15). Glycosylation of extracellular proteins can
directly contribute to atherosclerosis. Furthermore, AGE/
RAGE signaling can promote increased hemagglutinin-like
oxidized low-density lipoprotein (ox-LDL) receptor (LOX-1)
expression in endothelial cells, thereby promoting ox-
LDL uptake.

Diabetes is associated with accelerated atherosclerosis, leading
to widespread vascular disease (16). Chronic hyperglycemia (17),
dyslipidemia (18), insulin resistance (19), and glucose/lipid
oxidation end products (1) are typical risk factors for diabetes
and may lead to vascular complications. Glucose control, lipid-
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lowering agents, antioxidants and anti-inflammatory agents have
shown some degree of efficacy in reducing the progression of
diabetes-related atherosclerosis. However, more research is needed
to identify specific targets based on novel mechanisms for the
treatment and prevention of diabetes-associated atherosclerotic
cardiovascular disease.
NLRP3

Inflammation underlies a wide range of physiological and
pathological processes. Inflammasomes are polymorphic
complexes formed by pattern recognition receptors activated by
various physiological or pathogenic stimuli that create an innate
immune response with the ability to clear pathogens and damaged
cells (20). The most well-known inflammasome is NLRP3, which
belongs to the family of nucleotide-binding and oligomerization
domain-like receptors (NLRs), also known as “pyrin domain-
containing protein 3” (21). The NLRP3 inflammasome
multiprotein complex is composed of sensor-NLRP3, adaptor of
the caspase recruitment domain-apoptosis-associated spotted
protein, and effector protein -caspase 1. The 3 domains are
interacted to promote caspase cleavage and the subsequent
maturation and secretion of interleukins IL-18 and IL-1b (22)
(Figure 1). ASC contains an N-terminal pyrin domain and a C-
terminal caspase recruitment domain (23). NLRP3 contains three
domains: C-terminal leucine-rich repeats, a central nucleotide
domain called the NACHT domain, and an N-terminal effector
domain. Caspase-1 has conservative domains for homophilic
interaction, and it also contains CARD and catalytic domains
(24). Multiple studies have shown that NLRP3 inflammasome, IL-
FIGURE 1 | NLRP3 inflammasome priming and activation. NLRP3 inflammasome activation requires two signals: Signal 1 (initiation) is provided by activating
cytokines or PAMPs, resulting in transcriptional upregulation of normative and non-standard NLRP3 inflammasome components. Signal 2 (activation) is activated by
K + efflux, Ca 2+ influx, and mitochondrial reactive oxygen species, etc. ASC; IL-1R1, IL-1 receptor type1; NEK7, NIMA-related kinase7; NF-kB, nuclear factor-kB;
P2X7, P2X purinoceptor7; ROS, reactive oxygen species; TLR, toll-like receptor; TNF a, tumor necrosis factor a; TNFR, tumor necrosis factor receptor;TXNIP,
thioredoxin-interacting protein; MD2, myeloid differentiation factor 2;LPS, lipopolysaccharide; ER Stress, endoplasmic reticulum; TIRF, toll-interleukin 1 receptor (TIR)
-inducing interferon; MyD88, myeloid differentiation primary response gene 88.
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1b, IL-18 and pyroptosis have a decisive and important role in
various diseases, such as DM, atherosclerosis, and Alzheimer’s
disease (25). Activation of the NLRP3 inflammasome requires the
completion of two signaling steps. The first signal, including
lipopolysaccharide or cytokines, can activate the NF-kB pathway
and up-regulate the expression of NLRP3 and IL-1b. The second
signal including a variety of pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs), such as K+ efflux, ROS increase, endoplasmic
reticulum stress, mitochondrial dysfunction, Ca2+ signaling, and
lysosomal disruption, can promote the assembly of the NLRP3
inflammasome complex, so that pro-caspase-1 is cleaved into
active caspase-1, which converts pro-IL-1b, pro-IL -18 cleaves to
the mature form and causes pyroptosis (26, 27). NLRP3 plays a
key role in inflammatory responses and various diseases. Growing
evidence suggests that the NLRP3 inflammasome contributes to
the development of DM and atherosclerosis, and that inactivation
of NLRP3 inflammation is beneficial for the treatment of these
diseases (28) (29). We next briefly introduce the role of NLRP3 in
DM and atherosclerosis.
DM and NLRP3
DM is a chronic inflammatory metabolic disorder caused by a
variety of etiologies, which is related to the release of tumor
necrosis factor (TNF) and lipokinase from adipose tissue (22). Il-
1 b is a key inflammatory mediator during the pathogenesis of
DM, which can promote insulin resistance, disrupt the function
of islet b cells, and lead to islet cell apoptosis (30). The
overexpression of pro-inflammatory factors may further induce
DM complications (31). In recent years, multiple studies have
suggested that NLRP3 inflammasome is related to DM and its
complications (32). For example, Tseng et al. demonstrated that
hyperglycemia high glucose induces activation of NLRP3-ASC
inflammasome, leading to casparase-1 activation and secretion of
IL-1b and IL-18 in human monocyte cell lines (33). Wang et al.
demonstrated that NLRP3 gene polymorphism is closely
associated with type 2 diabetes susceptibility (34). Lee et al.
also reported upregulation of NLRP3 and its downstream
molecules in T2DM and atherosclerosis (35). Söderbom G
et al. identified the NLRP3 inflammasome as a bridge between
neuro-inflammation in metabolic and neurodegenerative
diseases (36). Thus, activation of NLRP3 appears to be a major
mechanism in T2DMand its complications.

Insulin resistance and pancreatic b-cell secretion dysfunction
in patients with type 2 diabetes can worsen glycemic control, so it
is important to delay and control the progressive decline of
pancreatic b-cell function in diabetic patients (37). NLRP3
activation and IL-1b stimulation affect islet function and
insulin secretion and are key triggers of islet damage (38).
Persistent hyperglycemia in pancreatic islets induces ROS
accumulation, leading to elevated thioredoxin-interacting
protein (TXNIP), activation of the NLRP3 inflammasome, and
induction of caspase-1-dependent IL-1bmaturation. Youm et al.
also demonstrated that reducing NLRP3 inflammasome-
dependent IL-1b production reduced islet fibrosis in a mouse
model of obesity (39). Furthermore, NLRP3 can affect T cell
Frontiers in Immunology | www.frontiersin.org 3
activation and maturation. The elimination of NLRP3 alters T
cell migration to the islet, a key pathogenic process leading to b
cell damage (40). In addition, NLRP3 knockout down-regulated
the level of chemokines CCL5 (C-C motif ligand 5) and CXCL10
(C-X-C motif ligand 10) in islet cells, suggesting that NLRP3
regulates chemotaxis. It has been demonstrated that T2DM is
associated with obesity (41). Most patients with T2DM have
visceral obesity, which is related to insulin resistance (37). The
NLRP3 inflammasome is critical in metabolic dysregulation and
control of obesity-related IR and pancreatic b-cell dysfunction
(23). During obesity, macrophages in adipose tissue express high
levels of NLRP3 and release inflammatory cytokines such as
TNF-a and IL-1b. High levels of IL-1b may make obese patients
less sensitive to insulin (42).

Therefore, it can be concluded that the factors that promote
the development of T2DM may induce or exacerbate the disease
by regulating NLRP3 and signaling pathways, while the
inhibition of NLRP3 inflammasome and its related molecules
provides the possibility for the treatment of DM and its
complications (Figure 2).

Atherosclerosis and NLRP3
Atherosclerosis is a chronic inflammatory disease in which lipids
deposit in areas where blood flow in the large arteries is
disturbed, leading to the formation of plaques. Plaque rupture
or erosion can lead to acute cardiovascular events, such as heart
attack and stroke (43). Atherosclerosis is also a chronic
inflammatory disease. Inflammation is involved in various
processes of atherosclerosis formation, including the formation
of lipid streaks, the formation of fibrous plaques and the stability
of plaques (44). Elevated NLRP3 inflammasome expression
levels have been found in the aortas of patients with coronary
atherosclerosis (45). Studies have shown that the protein levels of
NLRP3 inflammasome, ASC, caspase-1, IL-1b, and IL-18 are
significantly higher in plaques than in healthy arteries, and that
the plaque-unstable type is more prevalent than the plaque-
stable type (29).

In 2010, Duewell et al. showed for the first time the important
role of the NLRP3 inflammasome in the progression of
atherosclerosis (46). They used LDL receptor-deficient (LDLR-/-)
mice with NLRP3 -/-, ASC -/- and IL-1a/b-/- to show that knockout
NLRP3, ASC and IL-1a/b protected mice and reduced
atherosclerotic lesions (46). Moreover, accumulating evidence
has shown that NLRP3 activation products IL-1b and IL-18
both play an important role in the occurrence of atherosclerosis.
Ox-LDL is the most important risk factor for atherosclerosis (47).
Studies have reported that ox-LDL can induce macrophage
secretion of IL-1b by activating the NLRP3 inflammasome. Ox-
LDL-induced NLRP3 inflammasome activation is dependent on
ROS production (48). Huang et al. found that exposure to ox-LDL
in endothelial cells or feeding mice with a high-fat diet triggered
ROS production, which promoted NLRP3 inflammasome
activation and IL-1b secretion (49). In contrast, endothelial-
specific NLRP3 knockout attenuated the severity of
atherosclerosis in high-fat diet mice. Furthermore, acute
hypercholesterolemia exacerbated endothelial dysfunction in,
which was significantly ameliorated by inhibit NLRP3 (50).
June 2022 | Volume 13 | Article 900254
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Several studies have also shown that the NLRP3
inflammasome promotes to the development of atherosclerosis
by influencing several pathogenic events, such as oxidative stress,
mitochondrial dysfunction, endoplasmic reticulum stress, and
lysosomal disruption (51). Owing to its critical role in the
development of atherosclerosis, NLRP3 is a promising
therapeutic target for atherosclerosis. A broader understanding
of inflammasome biology and activation or inhibition
mechanisms is needed to determine the value of these
complexes as potential therapeutic targets in atherosclerosis.
MECHANISM OF NLRP3 IN THE PROCESS
OF DM-PROMOTING ATHEROSCLEROSIS

Studies on individuals with DM have shown an increased risk
and accelerated development of atherosclerosis (10, 52). DM and
atherosclerosis are linked through several pathological pathways,
such as endothelial dysfunction, dyslipidemia, and oxidative
stress (53). NLRP3 acts as a sensor of metabolic stress, linking
metabolic disturbances to inflammation (54). We next discuss
the specific mechanism of action of NLRP3 in DM-
promoting atherosclerosis.

Hyperglycemia
In general, hyperglycemia-induced pathological changes are the
cause of complications in patients with DM. High blood sugar
levels and the persistence of oxidative stress would lead to AGEs
(55). AGEs produce their disease-causing effects by modifying
extracellular or intracellular proteins and activating cellular
signaling cascades through RAGE (56). Glycosylation of
extracellular proteins directly contributes to atherosclerosis.
Changes in LDL molecules prevent them from being absorbed
by receptors, leading to phagocytosis by monocytes and
macrophages, resulting in foam cells (57). In addition,
glycosylated fibrinogen becomes resistant to proteolysis,
leading to a tendency toward thrombosis (58).

Glucose, as DAMPs, is the first signal of upregulation of
NLRP3 and pro-IL-1b. High glucose stimulation can induce
Frontiers in Immunology | www.frontiersin.org 4
macrophages to polarize into an M1 phenotype, partly through
the NLRP3/IL-1 b pathway, which may be one of the
mechanisms leading to diabetic complications (59). Wan et al.
demonstrated that NLRP3 knockdown inhibited the expression
of adhesion molecules ICAM-1 and VCAM-1 in intima, reduced
atherosclerosis and stabilized atherosclerotic plaques.In vitro,
high glucose in HUVECs enhances the expression of NLRP3
inflammasome components and secretion of IL-1b.In addition,
high glucose or IL-1b promotes the expression of adhesion
molecules that are inhibited by NLRP3 knockdown or IL-1b
receptor antagonists (60). Hyperglycemia induces activation of
TLR4, leading to NF-kB promotion. This process further
activates the NLRP3 inflammasome, leading to increased
expression of pro-inflammatory cytokines (61). Finally,
inflammation and cell death will be significantly increased.
TXNIP is a central regulator of glucose and lipid metabolism.
Hyperglycemia can also induce TXNIP overexpression (62).
Glucose also affects monocyte/macrophage activation, and
monocytes grown under high glucose conditions show
increased expression of cytokines, IL-1b, and IL-6.

Oxidative stress accelerates the progression of atherosclerosis
by inducing inflammation, endothelial dysfunction, thrombosis,
and plaque instability (63). In diabetic patients, multiple
pathways induce oxidative stress, including glucose oxidation,
enhanced glycosylation, activation of the AGE-RAGE axis, and
enhanced polyol pathway (64). Persistent hyperglycemia, with
increased glycolysis, can lead to mitochondrial dysfunction,
which induce overproduction of mitochondrial ROS (mt-ROS),
which in turn activates the NLRP3 inflammasome (61). High
glucose levels have been shown to induce ROS production in
endothelial cells by triggering the Ca2+ and ERK1/2 pathways
(65). When blood sugar levels are high, glycolysis is enhanced,
which increases the production of superoxide in cells.

ROS acts as an intermediate trigger for NLRP3 inflammasome
activation, exacerbating the ensuing inflammatory cascade and
leading to cellular damage (66). ROS inhibitors prevented high
glucose-induced caspase-1 activation and IL-1b production in
endothelial cells, suggesting that high glucose levels induce
endothelial NLRP3 inflammasome production through ROS
FIGURE 2 | Diabetes Mellitus promotes the development of atherosclerosis: the role of NLRP3. In the context of diabetes mellitus, risk factors such as high glucose,
oxidative stress, and inflammation can induce endothelial dysfunction, inflammation, and platelet activation and aggregation by regulating NLRP3 inflammasome,
thereby promoting atherosclerosis.
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production. Excessive ROS produced during hyperglycemia
stimulates vascular cells to secrete IL-1b, which disrupt tight
junctions, increase permeability, and allow vascular permeability
leaking fluids and molecules into the inner membrane, such as ox-
LDL. Summary, ROS link the interaction between the NLRP3
inflammasome and endothelial dysfunction.

Hyperglycemia-induced endothelial oxidative stress is
associated with the development of diabetic complications, in
part by inducing endothelial cell apoptosis and promoting
endothelial activation and vascular inflammation (67). Nuclear
factor redline 2 associated factor-2 (Nrf2) is a transcription factor
activated by oxidative stress that regulates the expression of ROS
detoxification and antioxidant genes (68). Zoltan et al. elucidate the
homeostasis role of adaptively induced NRF2-driven free radical
detoxificationmechanisms in endothelial protection under diabetes
(69). Nrf2 can be pharmacologically activated by polyphenol
resveratrol or sulforaphane, which leads to a significant induction
of the cellular antioxidant system, increasing GSH levels and
correspondingly reducing oxidative stress. Importantly,
resveratrol, H2S, and chlorogenic acid can effectively attenuate
vascular ROS production and improve endothelial function and/or
attenuate hyperglycaemic induced endothelial oxidative stress in
diabetic animal models (70–72). Therefore, pharmacological
treatment to promote the induction of Nrf2 driven homeostasis
pathway could significantly promote intervention strategies to
prevent vascular disease in diabetic patients.

These findings suggest that hyperglycemia directly or
indirectly stimulates the activation of NLRP3 inflammasome in
different ways, thereby inducing immune response and
inflammation, and ultimately promoting the occurrence of
diabetic vascular complications.

Dyslipidemia
DM is closely related to dyslipidemia, and the two affect each
other as the common soil of arteriosclerotic diseases (73). T2DM
is often associated with lipid abnormalities, manifested by
increased very-LDL (VLDL) and LDL-cholesterol (LDL-C),
and decreased high-density lipoprotein cholesterol (HDL-C)
(74). Therefore, monitoring biochemical parameters such as
blood lipids and blood glucose status in patients with DM and
their relationship with dyslipidemia can reduce the prevalence of
diabetic cardiovascular disease.

Dyslipidemia has been found to induce inflammation
through pathways including NLRP3 activation. Cholesterol is a
common participant in dyslipidemia. Kristiina et al. found that
cholesterol crystals activate NLRP3 by suggesting mechanisms
involving potassium efflux and leakage of cathepsin B into the
cytoplasm (75). Duewell and colleagues found that cholesterol
crystals activate the NLRP3 inflammasome in mouse
macrophages through lysosomal damage and cathepsin-
mediated mechanisms (46). In atherosclerosis, inflammasome-
mediated IL-1b release promotes an inflammatory environment
that promotes disease progression. Cholesterol crystals are
phagocytosed by macrophages, leading to lysosomal instability,
and K+ efflux, which then activates the NLRP3 inflammasome
(76). Likewise, CANTOS trial showed that cholesterol has been
identified as inducing NLRP3 inflammasome activation and
Frontiers in Immunology | www.frontiersin.org 5
atherogenesis (77). ATP-binding cassette transporter A1 and
G1 (ABCA1/G1) have been found to be transmembrane proteins
that mediate cholesterol efflux to apolipoprotein A and HDL-C,
and then inhibit NLRP3 inflammasome activation. Therefore,
ABCA1/G1 has a protective effect on the activation of the NLRP3
inflammasome (77). Thus, activation of inflammatory bodies
induced by cholesterol crystals may represent an important link
between cholesterol metabolism and inflammation in
atherosclerotic lesions.

Similarly, Wang et al. and Li et al. found that OX-LDL could
induce cell damage through NLRP3-mediated pyroapoptosis (78,
79). Zhang et al. found that metformin can reduce NLRP3
inflammatory body act iv i ty in ox-LDL-s t imula ted
macrophages, thereby reducing pro-inflammatory and pro-
atherogenic responses in ox-LDL-stimulated macrophages (80).
Qian et al. demonstrated that astragaloside IV protects
endothelial progenitor cells from ox-LDL damage through the
NLRP3 inflammasome pathway (81). Stimulation with ox-LDL
in THP-1 macrophages upregulated NLRP3, and IL-1b (82).
Other lipids, such as SFAs (palmitate and stearate) and their
metabolites ceramides and triglycerides, are also risk factors for
atherosclerosis, and they can also trigger NLRP3 inflammasome-
dependent pyroptosis in macrophages (83).

Diabetes, often accompanied by hyperlipidemia, is a risk
factor for atherosclerosis. Risk factors in hyperlipidemia lead to
activation of NLRP3 inflammasome in endothelial cells. Early
hyperlipidemia promotes monocyte recruitment through
caspase-1 and ROS production, followed by endothelial cell
apoptosis. Therefore, inhibition of NLRP3 dependent caspase-1
production may alleviate the development of atherosclerosis.
Hyperlipidemia also includes elevated level of LDL. LDL can
trigger endoplasmic reticulum stress and ROS generation, which
then activates the NLRP3 inflammasome and ultimately leads to
endothelial cell damage (84). Furthermore, hyperglycemia
induce upregulation of E74-like ETS transcription factor 3
(ELF3), leading to NLRP3 inflammasome activation (85).
Dyslipidemia and chronic inflammation are the main drivers
of plaque formation leading to diabetic atherosclerosis.
Therefore, real-time monitoring of lipid levels and blood
glucose status can reduce the diabetic cardiovascular disease
induced DM.

Endothelial Dysfunction
Endothelial dysfunction occurs in the early stages of
cardiovascular disease and is one of the first manifestations of
T2DM and cardiovascular disease (86). Endothelial barrier
dysfunction is characterized by the abnormal secretion of
various inflammatory mediators, including IL-1b, TNFa,
histamine, and bradykinin, leading to disruption of inter-
endothelial junctions (87). The factors that contribute to
endothelial dysfunction in DM include inflammation,
dys l ipidemia , hyperglycemia , and oxidat ive stress .
Accumulating studies have shown that the NLRP3
inflammasome also plays an important role in endothelial
dysfunction (88). Activation of NLRP3 inflammasome is the
cause of vascular endothelial dysfunction in diabetes
mellitus (89).
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Endothelial cell damage is the first step in atherosclerosis, and
both mechanical damage (e.g., hemodynamics) and chemical
damage (e .g . , f rom smoking , hyper l ip idemia , and
hyperglycemia) can lead to endothelial cell damage (90). In
endothelial cells, these stimuli trigger NLRP3 inflammasome
activation, which initiates the cells to secrete IL-1b and IL-18,
promoting further endothelial inflammatory processes. Secreted
IL-1b and IL-18 also promote the secretion of adhesion
molecules and secondary inflammatory factors, such as E-
selectin, ICAM-1, VCAM-1, IL-6, inducing recruitment of
inflammatory cells. In addition, the production of AGEs is also
critical during endothelial dysfunction. The interaction between
AGEs and RAGE induces oxidative stress and inflammatory
responses in endothelial cells, which may lead to endothelial
dysfunction (91). Endothelial barrier disruption caused by excess
circulating free fatty acids in obese individuals appears to be
mediated by inflammasome activation. Vascular calcification,
which is a general feature in patients with atherosclerosis and
T2DM, is also associated with NLRP3 inflammasome activation.

The endothelium forms an interface and acts as a semi-
permeable barrier. Enhanced endothelial permeability leads to
endothelial dysfunction. Inflammatory mediators can activate
various signaling pathways, leading to increased endothelial
permeability. Studies have shown that exposure of endothelial
cells to hyperglycemia, accompanied by changes in their
secretion, increases endothelial cell permeability. High glucose
concentrations also promote more glycation of LDL in patients
with DM and, with endothelial dysfunction, glycated LDL
promotes increased expression of adhesion molecules. Lian
et al. have shown that high glucose levels in the coronary
endothelial cells of streptozotocin diabetic mice were found to
induce the release of high mobility group box 1 (HMGB1)
through the aggregation and activation of the NLRP3
inflammasome, and that, in endothelial monolayer cells,
upregulation of tight junction proteins ZO-1/ZO-2 disrupts
endothelial tight junctions (92). The aggregation and activation
of the NLRP3 inflammasome is mediated by the ROS signaling
pathway. Blockade of NLRP3 inflammasome activation by ROS
inhibitors significantly down-regulated ZO-1/ZO-2 and
alleviated endothelial hyperpermeability in DM, suggesting a
loss of function of the NLRP3 inflammasome (92). It can prevent
the destruction of tight junctions under high glucose conditions
and improve endothelial function. A comprehensive
understanding of the molecular mechanisms of inflammation
associated with endothelial dysfunction will contribute to the
prevention and control of diabetes induced inflammation.

Inflammation
Atherosclerosis is a chronic inflammatory disease, and the link
between T2DM and inflammation has been established, with
evidence of chronic inflammation being present in both those
with DM and with IR. In patients with DM and atherosclerosis,
substances that induce inflammation include AGEs, cholesterol,
and uric acid (93). The development of atherosclerosis in DM
has been reported to involve inappropriate persistent
inflammation induced by PAMPs and DAMPs overactivation
of the NLRP3 inflammasome.
Frontiers in Immunology | www.frontiersin.org 6
In DM, vascular endothelium actively participates in the
regulation of inflammatory progression and plays an important
role in cardiovascular homeostasis as a dynamic adaptive
interface. Proinflammatory cytokines such as TNF-a, IL-1b
and IL-6 play an important role in the development of
endothelial cell injury. TNF-a induced cytotoxicity, IL-6
increased endothelial permeability, IL-1b induced NO synthase
expression, and synergistic effect with TNF-a (94). Studies have
shown that mice lacking NLRP3 inflammasome components
exhibit anti-inflammatory and anti-atherosclerotic phenotypes
(95). These mice were also protected from insulin resistance and
metabolic dysfunction associated with obesity-induced DM,
suggesting that NLRP3 inflammasome may act as a transducer
to detect danger signals and trigger inflammatory responses in
these diseases.

Platelet Activation and Aggregation
The inflammatory state that occurs in DM promotes platelet
hyperresponsiveness and adherence to the endothelium,
resulting in a thrombotic phenotype and increased
cardiovascular mortality (96, 97). Therefore, studies aimed at
addressing platelet hyperreactivity is of high clinical value for
combating DM-related atherosclerosis. At the platelet level, DM
can enhance platelet susceptibility to activation through a variety
of mechanisms. Multiple mechanisms caused by metabolic and
cellular abnormalities have been suggested to increase platelet
reactivity in diabetic patients. Among them, hyperglycemia
increases platelet reactivity by glycosylating platelet surface
proteins, activating protein kinase C, inducing p-selectin
expression and osmosis, which promote platelet activation and
adhesion (98). Metabolic diseases often associated with diabetes
may themselves play a role in platelet hyperresponsiveness,
including obesity, dyslipidemia, and increased systemic
inflammation (99). Obesity also leads to platelet dysfunction,
mainly in adhesion and activation, through mechanisms
including increased cytoplasmic calcium concentration and
enhanced oxidative stress (100). Dyslipidemia, especially
hypertriglyceridemia, also affect platelet reactivity through
different mechanisms (101). Endothelial dysfunction, another
hallmark of diabetes, enhances platelet reactivity by reducing NO
and PGI2 production and promotes the prethrombotic state by
increasing TF production (7, 102). This increases the osmotic
pressure and enhances the platelet responsiveness to stimulation.
Accumulating evidence has shown that TLRs and NLRP3 are the
two major components in promoting platelet activation and
aggregation. Specifically, TLR4/NLRP3 pathway mediated
inflammation significantly increases the release of various
inflammatory and adhesion factors that promote platelet
aggregation and adhesion (103). NLRP3 is upregulated in
platelets, which, via HMGB1 mediation, promotes platelet
activation, increased aggregation, increased microvascular
thrombosis and further exacerbates disease (104). The
abnormal increase of inflammatory factors in the blood of
patients with DM can further promote thrombosis. In
particular, the NLRP3 inflammasome-mediated secretion of IL-
1b and IL-18 promotes platelet aggregation (105), which is
critical for the thrombotic phenotype in DM. Studies have
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shown that tetramethylpyrazine alleviates hyper-platelet
responses and endothelial adhesion in a DM-induced
prothrombotic phenotype by regulating the NLRP3
inflammasome (106). Therefore, modulating the NLRP3
related inflammatory in DM to prevent platelet activation and
adhesion to endothelial cells may be considered a promising
strategy for reducing the risk of cardiovascular events in patients
with DM.
DRUG TREATMENT

In recent years, antidiabetic drugs have been found to reduce
endothelial disease by blocking NLRP3 inflammasome
activation, which provides a possibility for the treatment of
diabetic atherosclerotic lesions. In general, antidiabetic drugs
reduce ox-LDL uptake by vascular cells and subsequent
inflammatory signaling, thereby preventing macrophage
adhesion and infiltration. Therefore, the anti-inflammatory,
antioxidant, and anti-apoptotic properties of antidiabetic drugs
can eliminate the changes caused by ox-LDL, which is very
beneficial for the control of atherosclerosis in patients with DM.
The regulatory mechanisms of these drugs on NLRP3 are
summarized as follows.
Antidiabetic Drugs
Metformin is a classic antidiabetic drug with continuous reports
of its cardiovascular protective effects. Tang et al. found that
metformin could inhibit high glucose-induced NLRP3
inflammasome activation and attenuate DM-accelerated
atherosclerosis, which worked through the AMPK signaling
pathway (107).. Li et al. found that metformin can inhibit high
glucose-induced changes in Trx1/TXNIP, while reducing
intracellular ROS and inhibiting the NLRP3 inflammasome,
which significantly blocked NLRP3 and macrophage markers
in atherosclerotic lesions in diabetic mice (108). This suggests
that metformin can also inhibit NLRP3 inflammasome-mediated
macrophage recruitment in atherosclerotic lesions in diabetic
mice. Research shows that vascular normalization is linked
positively with hampered NLRP3 inflammasome activation
(109). Metformin has significant vascular protection, mainly
through down-regulation of HIF1a and regulation of PDGF-B,
thus promoting the normalization of dysfunctional vessels (110–
114). Interestingly, metformin has the potential to inhibit NLRP3
inflammasome activity in chronic diseases, such as T2DM, while
promoting inflammasome activity in acute diseases, such as
bacterial infections (115, 116).

Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of
potent hypoglycemic agents for the treatment of T2DM. DPP-
4 inhibitors have also shown beneficial effects on oxidative stress,
and endothelial function in patients with T2DM, and to exercise
an anti-atherosclerosis function. For example, sitagliptin
significantly reduced ox-LDL-induced expression of NLRP3,
TLR4 and IL-1b in THP-1 cells (117). Qi et al. found that
vildagliptin protected mitochondrial function and restored
endothelial function by inhibiting the NLRP3-HMGB1
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pathway level of NO synthase (118), suggesting its protective
effect against endothelial dysfunction.

Dulaglutide is a glucagon-like peptide-1 receptor agonist
(GLP-1 RA) approved for the treatment of T2DM. GLP-1R
agonists have also been reported to exhibit cardiovascular
benefits, with potential antiatherosclerosis effects. Recently,
dulaglutide has been shown to protect against high glucose-
induced endothelial dysfunction through inhibition of NLRP3
inflammasome activation and inhibition of NOX4-ROS-TXNIP-
NLRP3 signaling (119).

Acarbose, an alpha-glucosidase inhibitor, is a postprandial-
acting antidiabetic drug. Acarbose is protective against
endothelial dysfunction by inhibiting ROS production, which
helps block the activation of the NLRP3 inflammasome (120). In
addition, following the use of acarbose, decreased expression of
the NLRP3 inflammasome, improving the vascular
hyperpermeability, which was attributed to enhanced
expression of the connexin ZO-1 and VE-cadherin (120).

Fenofibrate, a selective agonist of the peroxisome proliferator-
activated receptor alpha, prevents progression of microvascular
complications in T2DM. Deng et al. found that fenofibrate
attenuated endothelial cell dysfunction, which due to inhibition
of the NLRP3 inflammasome pathway (121).

Cilostazol (a phosphodiesterase 3 inhibitor) is an antiplatelet
agent that also dilates arterial blood vessels. It can alleviate
adverse effects on blood vessels in patients with DM and
significantly reduce free fatty acid-induced activation of the
NLRP3 inflammasome in endothelial cells. Cilostazol also
protects the function of SIRT1 in inhibiting the activity of the
NLRP3 inflammasome (122).

In addition, studies have demonstrated that some insulin
secretagogues can also prevent the progression of atherosclerosis.
To a certain extent, glyburide has an anti-atherosclerotic effect.
Glyburide prevents crystal-induced NLRP3 inflammasome
activation in DM, and this inhibition appears to be specific for
the NLRP3 inflammasome (123).

Antioxidants
Oxidative stress is a major hallmark of many diseases, including
DM and atherosclerotic disease. Numerous recent preclinical
reports suggest that the application of antioxidants can scavenge
excess ROS and attenuate the inflammatory response by
inhibiting the activation of the NLRP3 inflammasome. Several
studies have shown that herbal medicines can improve DM-
induced vascular damage and have anti-inflammatory effects by
inhibiting NLRP3 inflammasome signaling. 6-shogaol, a major
ginger derivative, has been reported to exhibit beneficial effects
on human arterial smooth muscle cells. 6-shogaol treatment can
inhibit ROS production, and subsequent NLRP3 inflammasome
activation (124). Furthermore, components of NLRP3
inflammasome are extensively expressed from dysfunctional
endothelial cells. Oleanolic acid takes inhibitory effect on
NLRP3 through improving endothelial function (125).
Salidroside has been shown to ameliorate AGEs-induced
endothelial inflammation over a long period by regulating
AMPK/NF-kB/NLRP3 signaling (126). Rg1 counteracted ROS-
mediated inflammation by upregulating the Nrf2/antioxidant
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response elements pathway, which contributed to inhibit NLRP3
inflammasome (127). In summary, most of the above-mentioned
natural compounds have antioxidant properties. They reduce the
damaging effects of ROS by inhibiting NLRP3 inflammasome.
These findings provide new insights into the complex
relationship between inflammation and oxidation and possible
strategies for treating vascular complications of DM.

NLRP3 Inhibitors
The association of NLRP3 inflammasome with a wide range of
diseases has sparked intense scientific interest in the discovery of
effective inhibitors of NLRP3 inflammasome. Multiple targets
can be used to inhibit NLRP3 inflammasome by exploiting its
complex signaling cascade. For example, potential NLRP3
inflammasome inhibition can be targeted by inhibiting NLRP3
inflammasome activation, inhibiting upstream signaling,
blocking inflammasome assembly, cycasparase-1 activation
inhibition, blocking pore-forming protein Gasdermin D
(GSDMD) cleavage, and neutralizing inflammatory cytokines
produced by NLRP3 inflammasome. Different mechanisms can
be selected to achieve these results, such as inhibition of NLRP3
inflammasome assembly, inhibition of P2X7 receptor, inhibition
of K efflux, and ROS scavengers can be used.

MCC950 is an NLRP3 inflammasome-specific inhibitor that
inhibits NLRP3 activity by blocking ASC oligomerization and
NLRP3 ATP hydrolysis (128). Numerous studies have
demonstrated that MCC950 can reduce inflammation, improve
vascular function, and prevent DM-related atherosclerosis in
streptozotocin-induced ApoE-/- mice (95). Compared to patients
with atherosclerosis alone, patients with DM and atherosclerosis
have been found to have an approximately four-fold increase in
the extent of atherosclerotic lesions, but MCC950 significantly
attenuated the lesion size (95). Decreased lesions have been
associated with attenuated expression of inflammatory genes
such as IL-1b, TNF-a, ICAM-1 and MCP-1. In addition, the
vascular function of diabetic blood vessels in mice treated with
MCC950 was improved. Studies have also shown that MCC950
treatment attenuated high glucose-induced endothelial cell
dysfunction, possibly in part by inhibiting the NEK7-NLRP3
interaction (129). Treatment with MCC950 also attenuated DM-
related vascular dysfunction in a mouse model of DM (89).
Plasma aldosterone levels in diabetics help increase the
expression of inflammatory markers. Nathanne et al.
demonstrated the important role of NLRP3 inflammasome
activation and its association with aldosterone in diabetic
vascular dysfunction. This study confirmed that MCC950
inhibited endothelial dysfunction in DB/DB mice in vitro and
in vivo (130).

Glyburide is a sulfonylurea drug which is widely used in the
United States for the treatment of T2DM. It inhibits ATP-
sensitive K+ channels in pancreatic b cells. One study
conducted by Lamkanfi et al. showed that glyburide prevents
PAMPs, DAMPs, and crystal-induced NLRP3 inflammasome
activation in bone marrow-derived macrophages (131). They
demonstrated that glyburide acts upstream of Cryopyrin and
downstream of the P2X7 receptor to block Cryopyrin-dependent
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inflammasome activation by PAMPs, DAMPs, and crystalline
substances. On the basis of glibenclamide, the researchers found
a large number of derivatives that also inhibit NLRP3.Examples
include 16673-34-0, JC124, and FC11A-2 (132). Hill et al. have
reported on the synthesis and biological evaluation of nine
sulfonylureas that inhibit NLRP3 activation in mouse bone
marrow-derived macrophages in an effective dose-dependent
manner. Six of these compounds inhibited NLRP3 at
nanomolar concentrations and also stimulated insulin secretion
in mouse pancreatic cell lines. These novel compounds have an
unprecedented dual mode of action, paving the way for a new
generation of sulfonylureas that can be used as therapeutic
candidates and/or tool compounds in T2D and its associated
inflammatory complications (133).

Neointima hyperplasia is the pathological basis of
atherosclerosis and restenosis, which have been associated with
diabetes mellitus. Fibroblast growth factor 21 (FGF21) is a
potential diabetic drug. Wei et al. found that FGF21
significantly inhibited neointima hyperplasia and improved
endothelium-independent contraction in the wire-injured
common carotid artery (90) of diabetic mice, which mimics
the effects of NLRP3 inflammasome inhibitor MCC950 and
caspase 1 inhibitor WEHD.

In addition, Yi et al. demonstrated that inhibition of NLRP3‐
dependent inflammation by tranilast is efficient to reverse the
metabolic disorders in diabetic mice. Tranilast exhibits anti-
vascular inflammatory and anti-atherosclerotic properties by
increasing NLRP3 ubiquitination and preventing NLRP3
inflammasome activation (134).

Therefore, NLRP3 inflammasome inhibitors may be the best
choice for the treatment of endothelial dysfunction, providing a
novel therapeutic strategy to improve DM-related vascular diseases.
SUMMARY

This study summarizes relevant literature in relation to the major
potential of directly or indirectly modulating NLRP3
inflammasome activation in combating diabetic atherosclerotic
lesions. We conclude that NLRP3 plays a key role in promoting
the formation and development of atherosclerosis in diabetes. In
the context of diabetes, risk factors such as high glucose,
oxidative stress, and inflammation can induce endothelial
dysfunction, inflammation, and platelet activation and
aggregation by regulating NLRP3 inflammasome, thereby
promoting atherosclerosis.

Inhibiting NLRP3 inflammasome activation have been used
to develop therapeutic strategies, such as inhibiting upstream
signaling pathways, inhibiting NLRP3 inflammasome activation,
blocking NLRP3 inflammasome assembly, and inhibiting
caspase-1 activation and the secretion of IL-1b. Antidiabetic
drugs, such as hypoglycemic drugs, anti-inflammatory or
antioxidant drugs, can improve vascular dysfunction by
inhibiting the NLRP3 inflammasome directly or indirectly.
These findings improve understanding of the molecular
mechanism of NLRP3 inflammasome-associated DM-
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promoting atherosclerosis and may provide new targets for the
development of future treatments.
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