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The rates of obesity and diabetes are increasing worldwide, whereas the age of onset for both
obesity and diabetes are decreasing steadily. Obesity and diabetes are associated with multiple
factors that contribute to the increased risk of a number of different cancers, including breast
cancer. These factors are hyperinsulinemia, elevated IGFs, hyperglycemia, dyslipidemia, adipokines,
inflammatory cytokines, and the gut microbiome. In this review, we discuss the current un-
derstanding of the complex signaling pathways underlying these multiple factors involved in the
obesity/diabetes–breast cancer link, with a focus particularly on the roles of the insulin/IGF system
and dyslipidemia in preclinical breast cancer models. We review some of the therapeutic strategies
to target these metabolic derangements in cancer. Future research directions and potential
therapeutic strategies are also discussed. (Endocrinology 159: 3801–3812, 2018)

Breast cancer is the leading form of cancer in women
and the second most common cause of cancer-

induced death in the United States and worldwide
(1, 2). The World Health Organization statistics show
that the obese population, defined as those with a body
mass index $30 kg/m2, has been growing rapidly
worldwide in recent decades (3). In the United States,
more than two-thirds of adults are overweight (body
mass index $25 kg/m2) or obese (4). Obesity is an
independent risk factor for a number of diverse cancers
including breast cancer. Meta-analyses have reported
an;30% increased risk of recurrence or death in obese
vs normal-weight women diagnosed with breast cancer
(5). In the US Cancer and Steroid Hormone study,
increasing body size was found to increase the risk of
developing premenopausal triple-negative breast can-
cer (TNBC) by 67% and the risk of premenopausal
luminal B breast cancer by 73% compared with women
of normal weight (6, 7). Women with diabetes are also
at greater risk of developing TNBC, compared with
women without diabetes (8). TNBC is a subtype of

breast cancer that does not express the estrogen re-
ceptor (ER), progesterone receptor, and human epi-
dermal growth factor receptor 2 (HER2). It is the
subtype of breast cancer with the worst prognosis, due
to the lack of targeted therapy and enhanced metastasis
compared with other breast cancer subtypes (5, 9).
Luminal B breast cancer is a molecular subtype of
breast cancer that is usually ER positive, but has a high
grade by histology and a high proliferative index and
carries a worse prognosis than ER-positive luminal A
breast cancer (10). Type 2 diabetes (T2D) and obesity
are also associated with increased risk for post-
menopausal breast cancer (11, 12). Obesity and di-
abetes frequently co-occur in the same individual.
Obese individuals frequently have the metabolic syn-
drome and are therefore at higher risk of developing
T2D. Insulin resistance in metabolic organs (skeletal
muscle, liver, and adipose tissue) underlies the patho-
physiology of the metabolic syndrome and T2D and is
frequently observed in obese individuals (13). In this
study, we will review the metabolic factors associated
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with obesity, the metabolic syndrome, and T2D that are
potentially involved in breast cancer growth and pro-
gression (Fig. 1) (14).

The Insulin and IGF Family of Ligands
and Receptors

Hyperglycemia is the diagnostic hallmark of both type 1
diabetes (T1D) and T2D. Epidemiologic studies have
shown a consistent positive correlation between T2D and
the risk of developing and dying from certain cancers,
including pancreatic cancer, hepatobiliary cancer, en-
dometrial cancer, colorectal cancer, bladder cancer, non-
Hodgkin lymphoma, prostate cancer, and breast cancer
(11, 15–18). T1D is also associated with an increased risk
of certain cancers (16, 19), although the cancers asso-
ciated with T1D are different from those associated with
T2D, suggesting a different mechanism may be involved.
Many types of cancer cell take up more glucose than
normal nontumor cells. In contrast to normal tissue,
cancer cells predominantly rely on aerobic glycolysis
rather than mitochondrial oxidative phosphorylation to

generate energy, due to their altered metabolism (Warburg
effect) (20). The Warburg effect leads to increased glu-
cose uptake by the cancer cells. In vitro cancer cell
studies, in vivo animal tumor models, and human studies
all show that cancer cells frequently have high glucose
uptake; however, in vivo studies suggest that despite the
increased uptake of glucose by the tumor, hyperglycemia
alone may not increase tumor growth without hyper-
insulinemia (21–24). This suggests that although many
cancer cells rely on glucose for metabolism, glucose is not
the key driver of cancer growth and progression in the
setting of obesity, the metabolic syndrome, and diabetes.

In contrast to patients with T1D, who are insulin
deficient, individuals with early T2D have hyper-
insulinemia secondary to insulin resistance. Elevated
levels of circulating insulin or C-peptide (a biomarker of
insulin secretion) are strongly associated with breast and
colorectal cancer progression, recurrence, and mortality
(25, 26). Therefore, hyperinsulinemia, rather than hy-
perglycemia, in diabetes is suggested to contribute to the
increased risk of developing cancer and cancer pro-
gression (23). Insulin is a member of the insulin/IGF

Figure 1. Potential mechanisms linking obesity/diabetes and cancer. IGFBP, IGF-binding protein; IR, insulin receptor; SHBG, sex hormone–binding
globulin. Reproduced with permission from Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related
mortality. Physiol Rev. 2015;95:727–748 (14).
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family, which comprises insulin, IGF-1, IGF-2, IGF-binding
proteins (IGFBPs), and their respective receptors (27, 28).
Insulin signaling contributes to metabolic signaling path-
ways, cell survival, and proliferation signaling pathways.
The traditional view of insulin and insulin receptor (IR)
signaling was that in metabolic tissues, the IR regulates
glucose, protein, and lipid metabolism through the phos-
phatidylinositol 3-kinase (PI3K)/AKT pathway, and in
nonmetabolic tissues, it stimulates the RAS/RAF/MAPK
kinase/ERK cascade to cause cell proliferation, survival,
andmigration (29–31). Insulin/IR signaling appears to have
an important role in breast cancer. Previous studies have
found that breast cancer tissues have significantly higher IR
levels (average IR content: 6.15 6 3.69 ng IR/0.1 mg
protein) than normal breast tissues (0.95 6 0.68 ng IR/
0.1 mg protein) (32). Moreover, IR expression in breast
cancers is not downregulated in the setting of hyper-
insulinemia (33). Therefore, the hyperinsulinemia-IR sig-
naling pathway may play a role in cancer progression, as
proposed in breast cancer.

To study the role of hyperinsulinemia in tumor growth
and migration in the absence of hyperglycemia, the
LeRoith laboratory created a mouse model overexpressing
a dominant-negative IGF-1 receptor (IGF-1R) specifically
in skeletal muscle [namedMKR for the muscle (M) lysine
(K) to arginine (R) substitution in the tyrosine kinase
motif of the IGF-1R] (34). The male MKR mice ex-
hibit hyperglycemia, hyperinsulinemia, and dyslipidemia.
However, the female MKR mice only develop hyper-
insulinemia without hyperglycemia or dyslipidemia (34,
35). Therefore, the female MKR mice have served as
an animal model for studying the specific effects of
hyperinsulinemia on breast cancer development and
progression. A number of transgenic and orthotopic
breast tumor models were studied in the MKR mice. In
each model, tumors grew faster and larger in MKR mice
compared with control mice (35, 36). In addition, me-
tastases to the lungs were increased in the MKR mice
(36, 37). A b-3 adrenergic receptor agonist (CL-316,243)
that reduced circulating insulin levels and a tyrosine ki-
nase inhibitor that inhibited IR and IGF-1R activation
reduced the tumor growth in MKR mice (35, 36, 38).
Blockade of the PI3K/AKT/mammalian target of rapa-
mycin pathway also attenuated primary tumor growth,
which was reduced to the level of the wild-type (WT)mice
(39, 40). These results suggested hyperinsulinemia could
promote breast cancer growth and migration through the
PI3K/AKT signaling pathway. To determine if insulin was
acting through the IR or IGF-1R, human cell lines with IR
silenced by short hairpin RNA were injected into the
MKR mice. A decrease in cancer cell growth and me-
tastasis was found in the MKR mice injected with cells
that were transfected with IR short hairpin RNA (37).

Furthermore, it was found that silencing the IR sup-
pressed the epithelial-mesenchymal transition (EMT) in
cancer cells (37).

Although insulin resistance is associated with im-
paired IR signaling in metabolic tissues, in tumor cells,
there is no evidence that high levels of insulin lead to
impaired activation of the IR signaling pathway that
promotes cell proliferation (33, 41, 42). Why cancer cells
do not demonstrate insulin resistance may in part be
explained by the higher relative expression of the IR-A
isoform compared with IR-B. The IR has two isoforms,
IR-A and IR-B. IR-A lacks 12 amino acids due to the
splicing out of exon 11 in the C-terminal of the a-subunit
of IR; IR-B contains exon 11. Insulin has slightly higher
affinity for IR-A than IR-B, but insulin metabolic sig-
naling through IR-B is more efficient (43). Both IGF-1
and IGF-2 have higher affinity for IR-A than IR-B. Al-
though IGF-1 binding to IR-A is weak, IGF-2 is considered
an important ligand for IR-A (44). In normal tissues, IR-A
is mainly expressed in fetal tissues, lymphocytes, brain,
and spleen, whereas IR-B is predominantly expressed in
liver and adipocytes (43). IR-A is frequently overexpressed
in various malignant tumors including breast cancer.
Higher IR-A/IR-B ratio has been associated with resis-
tance to hormonal therapy in breast cancer (45). In-
creased high-mobility group A1 (HMGA1) protein, a
chromatin-remodeling protein encoded by the HMGA1
oncogene, is a potential cause leading to total IR over-
expression in cancer cells (46–49). One of the down-
stream effects of HMGA1 is to suppress p53, which is a
tumor suppressor. p53 suppresses the promoter activity
of both IR and IGF-1R (50). Recently, it was reported
that discoidin domain receptor 1, which is an IR-A–
interacting protein, specifically upregulates IR-A and
IGF-1R expression in breast cancer cells (51). Addi-
tionally, a number of splicing factors control the IR-A/
IR-B ratio. In the hepatocellular carcinoma, upregula-
tion of certain splicing factors (CUGBP1, hnRNPH,
hnRNPA1, hnRNPA2B1, and SF2/ASF) occurred in the
setting of epidermal growth factor receptor (EGFR)
signaling, leading to an increase in the IR-A/IR-B ratio
(52). Loss of the splicing factor SRSF3 has also been
found to lead to an increase of IR-A and predisposes to
murine hepatocellular carcinoma (53). Precisely what
splicing factors regulate IR splicing in other tissues and
cancers remains to be determined, and whether cancers
with higher IR-A/IR-B ratio are more susceptible to the
effects of hyperinsulinemia is also unknown.

IGFs are polypeptide hormones that have similar
tertiary structure to insulin. IGFs are synthesized in most
tissues of the body, although most circulating IGF-1 is
made in the liver. The circulating IGF levels are quite
stable due to their interactions with IGFBPs, which
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prevent the degradation of the IGFs (54, 55). GH/GH
receptor signaling directly stimulates production of he-
patic IGF-1, but has no effect on the expression of IGF-2
(56). Only the free IGFs (unbound to IGFBPs) are bi-
ologically available for binding to the IGF-1R (55). As
hyperinsulinemia decreases IGFBP-1 and IGFBP-2 levels,
insulin may indirectly enhance the IGF–IGF-1R signaling
pathway by reducing the expression of certain IGFBPs
and increasing bioavailable IGFs. The IR and IGF-1R are
transmembrane tyrosine kinase receptors and have well
known and common downstream cellular signal path-
ways, whereas the IGF-2R is the mannose-6-phosphate
receptor and has no tyrosine kinase enzymatic activity.
Traditionally, IGF-1/IGF-1R signaling has been studied
in relation to cancer, though IGF-2 signaling through the
IR-A has also been associated with cancer progression
(44, 57–59). Some epidemiologic studies have shown that
higher IGF-1 levels in the normal population correlate
with an increased risk of breast, lung, prostate, and
colorectal cancers (58). Furthermore, IGF-1R is over-
expressed in several cancers, including liver, colorectal,
breast, and prostate. The loss of tumor suppressor genes
including BRCA1, p53, and PTEN lead to an increase in
IGF-1R expression in tumor (60, 61). In animal studies,
exposure to the high levels of IGF-1 was reported to
increase tumor growth and metastasis (62, 63). Con-
versely, both chemically or genetically reducing circu-
lating IGF-1 levels and administration of IGF-1R
antibody in cancer cells can reduce tumor growth (61).
The IGF-1R signal pathway has been proposed to be
responsible for therapeutic resistance in several breast
cancer subgroups, although the exact mechanism(s) is
still not clear. Signaling through the IGF-1R pathway
may play an important role in compensating for thera-
peutic inhibition of EGFR signaling pathway in breast
cancer and may also contribute to breast cancer resistance
to chemotherapy and radiotherapy (64). Inhibition of the
IGF-1R was found to augment the activity of EGFR in
cancer (65). The crosstalk between IGF-1 signaling and ER
signaling is considered as a keymechanism of the hormone
resistance in ER-positive breast cancer (66, 67). Approx-
imately 20% of human HER2-positive breast cancers
express IGF-1R (68). Direct interactions between the
IGF-1R andHER2 have been reported andmay contribute
to the resistance to anti-HER2–targeted therapy (69). In
the setting of obesity and diabetes, hyperinsulinemia may
therefore directly contribute to tumor growth and pro-
gression or indirectly enhance tumorigenesis through
IGF-1 signaling.

During the last two decades, many cancer clinical
trials have targeted the IGF-1 signaling pathway using
various methods in a number of cancers. Unfortunately,
in almost all clinical studies, these approaches have had

limited success (70, 71). The potential reasons for
treatment failure are diverse; however, the possibility that
the mitogenic IR pathway compensates for inhibition of
the IGF-1 pathway is one of the most striking potential
mechanisms. Preclinical studies have supported the hy-
pothesis that silencing the IGF-1R may increase the
sensitivity of tumors to signaling through the IR pathway
(72, 73). Knockdown or blocking of the IR was reported
to inhibit cell proliferation in response to insulin in
ER-positive breast cancer cells resistant to endocrine
therapies. However, this inhibition was attenuated in
the hormone-sensitive ER-positive breast cancer cells,
probably due to the IGF-1R/IR hybrid receptors. Al-
though the primary ligand for IGF-1R/IR hybrid re-
ceptors is IGF-1, not insulin, insulin can still signal
through the IGF-1R/IR hybrid receptors upon IR in-
hibition (74). Combined targeting of the IR mitogenic
pathway and IGF-1R pathway might be valuable ther-
apies for hormone-resistant and TNBC. The other pos-
sibilities include the use of monoclonal antibodies toward
IGF-1 and IGF-2 ligands simultaneously. Trials using this
approach are in fact currently under way (75, 76).

Overall, both IR and IGF-1R are extensively reported
to be observed in all breast cancer subtypes (luminal A,
luminal B, HER2, and TNBC). The activation of IR and
IGF-1R (indicated by phosphorylated IR and IGF-1R) is
present in all breast cancer subtypes and is related to poor
survival (77). The IR isoforms ratio (IR-A/IR-B) is altered
particularly in prognostically unfavorable luminal B
cancers and hormone-resistant breast cancers (78). The
IGF-1R expression is prognostically favorable in luminal
A and B breast cancer but is unfavorable in HER2-
positive and TNBC (79, 80). These differences in re-
ceptor expression may explain the differences in the
sensitivity of certain breast cancers to the direct and
indirect tumor-promoting effects of systemic hyper-
insulinemia. Additionally, the differences in expression
levels may explain why IGF-1R–targeted therapies have
had limited success in certain patients. What causes these
differences in receptor expression andwhether regulation
of the expression of the IGF-1R and IR isoforms can be
targeted therapeutically remain to be determined.

Dyslipidemia

Dyslipidemia is a feature of the metabolic syndrome in
patients with obesity and T2D. Obese patients and pa-
tients with diabetes frequently exhibit elevated circulat-
ing very-low-density lipoprotein (VLDL) cholesterol,
triglycerides, small dense low-density lipoprotein (LDL)
cholesterol, and reduced high-density lipoprotein (HDL)
cholesterol (81). Elevated total cholesterol, elevated
circulating triglycerides, and decreased HDL cholesterol
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have been associated with an 18%, 15%, and 20% in-
creased risk of cancer, respectively (82). In a recent meta-
analysis, it was reported that the dietary cholesterol
intake was closely associated with an increased risk of
breast cancer occurrence (83). Cholesterol-lowering
3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors
(statin) have proven very effective in lowering circulating
cholesterol and are widely used to prevent cardiovascular
disease (84). Many studies indicated the link between
statin administration and a lower risk of developing
specific cancers (85–87). Some studies have suggested
that statins reduced recurrence and mortality from
prostate cancer and breast cancer (89). However, not all
studies have consistently demonstrated these beneficial
effects of statins, possibly due to heterogeneous pop-
ulations or the use of different types of statins (86, 89,
90). Alternatively, the discrepant results on breast cancer
outcomes may reflect different breast cancer subtypes
having differing sensitivities to circulating cholesterol
and/or statin therapy. It is important to consider dif-
ferences in statins: the type of statin used, when it is used
with respect to time of diagnosis of cancer (prediagnosis
or postdiagnosis), and duration of treatment. Some
statins are lipophilic (simvastatin, lovastatin, and
atorvastatin), and others are hydrophilic (pravastatin,
rosuvastatin, and fluvastatin) (91). In breast cancer
mortality studies, if results were stratified according to
statin type, hydrophilic statins had a benefit only when
taken postdiagnostically, and lipophilic statins demon-
strated survival benefits irrespective of when they were
taken. These results suggested cholesterol may not be
oncogenic but might promote tumor progression, and
lowering circulating cholesterol may improve out-
comes (91).

Transgenic animals with dyslipidemia have been used
to model and investigate the effect of hyperlipidemia on
cancer growth. Several laboratories reported that a high-
cholesterol diet promoted tumor growth inmice with ER-
positive breast cancer and prostate cancer (92, 93). As
mice lack cholesteryl ester transfer protein, and therefore,
high-cholesterol diets do not completely reflect human
dyslipidemia, genetically modified models of dyslipide-
mia have also been used (94): the apolipoprotein E
knockout (ApoE2/2) mouse has elevated total, VLDL,
and LDL cholesterol; the LDL receptor knockout
(LDLR2/2) mouse has elevated LDL cholesterol; the
transgenic ApoE3 Leiden mouse has elevated VLDL and
LDL cholesterol; and the adiponectin knockout mouse
has decreased HDL and elevated LDL cholesterol
(95–97). Each of these animal models of hypercholes-
terolemia has been used to study the effects of lipids on
breast cancer growth and progression (95). The LeRoith
laboratory found that ApoE2/2mice on a high-cholesterol

diet had increased growth and metastasis of orthotopic
murine ER-negative mammary tumors compared with
WT mice (98). Increased Akt phosphorylation has been
found in cancer cells in response to cholesterol, and
treatment of these mice with a small-molecule inhibitor of
PI3K (BKM120) reduced mammary tumor growth, sug-
gesting the PI3K/Akt pathway is partly responsible for the
protumorigenic effects of elevated cholesterol (98). LDL
receptor (LDLR) is expressed at high levels on certain
cancer cells. TNBC cells (MDA-MB-231) have higher
levels of expression of the LDLR than ER-positive cells
(MCF-7) (99). TNBC and Her2/Neu breast cancer cells
with high LDLR expression were found to form larger
tumors in ApoE2/2 and LDLR2/2 mice than in WT mice.
Silencing the LDLR in such cancer cells led to decreased
tumor growth in both LDLR2/2 and ApoE2/2mice (100).
Transgenic polyoma virus middle T antigen tumors in
adiponectin knockout mice were found to have increased
LDLR expression, increased cholesterol content. and
accelerated tumor development (101). Similarly, ER-
positive breast cancers grew faster in ApoE3-Leiden
mice fed a high-fat diet compared with control mice (102).

Several mechanisms potentially contribute to the link
between elevated cholesterol and breast cancer growth.
As cholesterol is a major component of the plasma
membrane, rapidly dividing cells such as cancer cells
require large amounts of cholesterol for membrane
synthesis; therefore, high levels of circulating cholesterol
may provide the substrate for cell proliferation. How-
ever, cancer cells may be availing of elevated exogenous
cholesterol in other ways. Cholesterol is the precursor of
many sex hormones, including progesterone, estrogens,
androgens, and their derivatives. The large cohort study
in the Women’s Health Initiative indicated the admin-
istration of the lipophilic statins independently contrib-
uted to a reduction in late-stage breast cancer, especially
for the patients with ER-positive breast cancer and an-
drogen receptor–positive breast cancer. The androgen
receptor is expressed in some TNBC (103). These results
suggest that cholesterol may be used by cancer cells to
synthesize sex hormones and thus lead to resistance to
systemic hormonal therapies. In addition to the steroid
sex hormones, some oxysterol metabolites of cholesterol such
as 27-hydroxycholesterol (27HC) and25-hydroxycholesterol
were recently found to play important roles in breast cancer
growth (102, 104, 105). 27HC is an endogenous selective ER
modulator. It has recently been shown to promote the growth
of ER-positive human and murine breast cancers in mice. In
functional studies, it was found that 27HC binds to ER to
induce a conformational change. The effect of 27HC on the
ER is different in various tissues. 27HC works as the ER
antagonist in vascular endothelial cells and murine models of
cardiovascular disease, whereas it acts as an ER agonist in
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hepatoma, colorectal, and breast cancer cells. 27HC is
also an agonist of liver X receptor (LXR), which induces
EMT and subsequent metastasis when activated in
breast cancer cells (106). Cholesterol levels are normally
tightly controlled by both sterol regulatory element-
binding protein-2 and LXR, which suppress cholesterol
uptake via the LDLR and increase cholesterol efflux (107,
108). However, in human ER-negative breast cancer cells
(MDA-MB-231), no downregulation of the LDLR occurs,
and no increase in cholesterol efflux gene transcription is
detected. Intracellular cholesterol concentrations are high
in this breast cancer cell line (109, 110). The role of LXR in
the proliferation of breast cancer is still controversial.
Although some studies report that an agonist of LXR
promoted both proliferation and lung metastasis of MCF-
7 cell xenografts (102). Another group showed that LXR-
activated macrophages reduced MCF-7 proliferation and
increased apoptosis in vitro (111). Recently, the Nelson
laboratory (112) reported that 27HC acts on immune
myeloid cells residing at the distal metastatic sites, thus
promoting an immune-suppressive environment to facil-
itate breast cancer metastasis.

In addition to statin treatment, other cholesterol-
lowering therapies including the proprotein convertase
subtilisin/kexin type 9 inhibitors and inhibitors of 27HC
synthesis [sterol 27-hydroxylase (CYP27A1) inhibitors]
may also potentially demonstrate benefit in patients
with cancer, especially in the statin-resistant or statin-
intolerant patients. Studies have not yet been performed
with these agents to determine if they will improve re-
sponses to therapies, reduce recurrences, or prolong
survival in the setting of cancer.

Adipose Tissue

Obese and many patients with T2D have significantly
increased total adipose tissue mass compared with the
normal-weight population. Large amounts of adipose
tissue, including subcutaneous and visceral adipose tis-
sue, surround many organs where cancers, such as the
breast cancer, develop (113). Adipose tissue is an im-
portant endocrine organ that produces adipokines, in-
flammatory cytokines, and small amounts of estrogen by
aromatization of androgens (114). These adipose tissue
factors could affect other organs through both paracrine
and endocrine effects. In addition, adipose tissue in-
flammation may be a favorable environment for the
development of cancer. Recently, more studies suggest
that adipose tissue factors (cytokines and adipokines)
and adipose tissue inflammation also contribute to cancer
progression.

Leptin is an important adipokine-regulating appetite
and energy balance through its effects on the brain.Many

obese individuals acquire leptin resistance and have high
levels of circulating leptin (115). Leptin receptor expression
has been detected in human breast cancer (116). Leptin
binds to the leptin receptor, leading to the activation of
several signaling pathways, including Janus kinase/signal
transducer and activator of transcription (Stat) signaling,
MAPK/ERK, PI3K/Akt, and suppressor of cytokine sig-
naling pathways, promoting cancer cells survival, pro-
liferation, and metastasis (116). A recent study found that
enhanced leptin signaling promotes cancer stem cell
enrichment and EMT, thus driving obesity-associated
TNBC progression in transgenic MMTV-Wnt-1 mice,
orthotopic murine E-Wnt and M-Wnt tumors, and
human MDA-MB-231 xenografts (117).

Resistin, named for inducing resistance to insulin, is
primarily produced by macrophages (118). It mediates
insulin resistance by activating the Janus kinase–STAT
signaling pathway to activate suppressor of cytokine
signaling 3, which binds to endogenous IRS1 and IRS2
and promotes their ubiquitination and subsequent deg-
radation (119). Resistin levels are elevated in patients
with both obesity and T2D (120). Some studies suggested
the increased resistin in tumor tissues and serum might
be a biomarker for the diagnosis of breast cancer (121,
122). Recently, several groups have shown resistin
promotes human breast cancer cell growth and metas-
tasis through activation of Stat3 and the ERM family
(ezrin, radixin, and moesin) of proteins (123–126).

Adiponectin is considered an anti-inflammatory adi-
pokine. Epidemiological studies have demonstrated that
in postmenopausal women with breast cancer, the cir-
culating adiponectin levels are significantly lower than
those in women without cancer (127). In vitro studies
have reported that adiponectin suppresses the survival
and proliferation of T47D, MCF-7, and MDA-MB-231
human breast cancer cells (128). Adiponectin can also
inhibit the leptin-mediated migration and invasion of
these human breast cancer cells (129, 130). Adiponectin
is involved in several signal pathways that may con-
tribute to the inhibition of carcinogenesis. Adiponectin
could activate AMP-activated protein kinase, MAPK,
and peroxisome proliferator–activated receptor a path-
ways and block leptin signaling (131–134). Interestingly,
as discussed under “Dyslipidemia” in this review, adi-
ponectin deficiency has been found to promote tumor
growth, increasing cholesterol content and LDLR ex-
pression on breast cancer cells (101).

Gut Microbiome

The human microbiome is a dynamic and functional
entity comprising microorganisms including bacteria, vi-
ruses, protozoa, and fungi (135). Most of the microbiome
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is in the gastrointestinal tract and interdependent with the
host. The microbiome influences the digestion, metab-
olism, epithelial homeostasis, local inflammation, car-
diovascular, and immune functions of the host (136–139).
A study from the Gordon laboratory (140) provided ev-
idence that there are considerable differences in micro-
biome composition from obese people and lean people.
Some studies consecutively exposed the connections be-
tween the gut microbiome and obesity. Fasting-induced
adipose factor (FIAF), also called angiopoietin-like protein
4, is expressed in the intestine, liver, muscle, and adipose
tissue. It is selectively suppressed in the intestinal epithe-
lium. FIAF is an inhibitor of the circulating lipoprotein
lipase, which is an enzyme to hydrolyze triglycerides to
promote their release from the lipoprotein such as chy-
lomicrons and VLDLs (141, 142). Knocking out FIAF in
the obese germ-free mice indicated FIAF is a key regulator
on adipose storage for the gut microbiome (143). Another
molecular mechanism involved in the microbiome-
induced obesogenic progression is lipopolysaccharide
(LPS). LPS is a proinflammatory factor existing in the cell
wall of gram-negative bacteria. It can be absorbed by the
intestine epithelium after the bacteria die. In the intestine,
LPS promotes intestinal permeability and induces the
production of inflammatory cytokines such as TNF-a and
IL-6 (144, 145).

Microbiome perturbations were found to increase the
risk of some cancers. The most well-known case is the
infection of Helicobacter pylori, which can cause gastric
cancer (146). Many studies reported that Fusobacterium
nucleatum, which is on the surface of.50%of colorectal
adenomas, promotes chronic inflammation in the in-
testinal tumormicroenvironment (147). Studies have also
examined links between microbiome alterations and
breast cancer. Plottel and Blaser (148) defined a group of
human gut organisms as the “estrobolome”: “the ag-
gregate of enteric bacterial genes whose products are
capable of metabolizing estrogens.” A high level of the
estrobolome could promote the intestinal reabsorption of
deconjugated estrogens into the circulation. Epidemio-
logic studies suggested that some gut microbiome might
also affect breast cancer risk through estrogen-independent
pathways (149). Another recent study indicated that a
bacterial metabolite, lithocholic acid, can limit the pro-
liferation of breast cancer cells both in vitro and in vivo
(150). Overall, these studies demonstrate that obesity and
diabetes are associated with differences in the intestinal
floral composition. Some of these changes may increase
cancer risk and development by contributing to in-
flammation and altering metabolism. Other bacteria may
secrete tumor-suppressing factors. Improving our un-
derstanding of the composition and characteristics of the
microbiome and learning how to manipulate it for our

benefit may provide a nontoxic way of improving sys-
temic metabolism and preventing and treating cancer.

Conclusions

As obesity and diabetes affect more and more people, it is
critical to understand the mechanisms through which
they contribute to the development and progression of
specific cancers. It is becoming clear that targeting the
cancer with specific therapies but ignoring systemic
metabolic dysfunction may contribute to resistance
to cancer therapy and treatment failure. As our un-
derstanding of the mechanisms tying systemic metab-
olism to cancer grows, it will help to tailor therapies to
specific cancer targets altered by metabolic dysfunction
or to identify the patients who will benefit from therapies
to treat specific metabolic abnormalities.
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