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ABSTRACT Diabetes, also known as chronic illness, is a group of metabolic diseases due to a high level of

sugar in the blood over a long period. The risk factor and severity of diabetes can be reduced significantly if

the precise early prediction is possible. The robust and accurate prediction of diabetes is highly challenging

due to the limited number of labeled data and also the presence of outliers (or missing values) in the

diabetes datasets. In this literature, we are proposing a robust framework for diabetes prediction where the

outlier rejection, filling the missing values, data standardization, feature selection, K-fold cross-validation,

and different Machine Learning (ML) classifiers (k-nearest Neighbour, Decision Trees, Random Forest,

AdaBoost, Naive Bayes, and XGBoost) and Multilayer Perceptron (MLP) were employed. The weighted

ensembling of different ML models is also proposed, in this literature, to improve the prediction of diabetes

where the weights are estimated from the corresponding Area Under ROC Curve (AUC) of the ML model.

AUC is chosen as the performance metric, which is then maximized during hyperparameter tuning using the

grid search technique. All the experiments, in this literature, were conducted under the same experimental

conditions using the Pima Indian Diabetes Dataset. From all the extensive experiments, our proposed

ensembling classifier is the best performing classifier with the sensitivity, specificity, false omission rate,

diagnostic odds ratio, and AUC as 0.789, 0.934, 0.092, 66.234, and 0.950 respectively which outperforms the

state-of-the-art results by 2.00% in AUC. Our proposed framework for the diabetes prediction outperforms

the other methods discussed in the article. It can also provide better results on the same dataset which can

lead to better performance in diabetes prediction. Our source code for diabetes prediction is made publicly

available.

INDEX TERMS Diabetes prediction, ensembling classifier, machine learning, multilayer perceptron,

missing values and outliers, Pima Indian Diabetic dataset.

I. INTRODUCTION

Diabetes is a very familiar word in the present world and

crucial challenges in both developed and developing coun-

tries [1]. The insulin hormone in the body produced by

the pancreas allows glucose to pass from the food into the

bloodstream. The lack of that hormone due to malfunc-

tioning of the pancreas forms diabetes which can result in

coma, renal and retinal failure, pathological destruction of
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pancreatic beta cells, cardiovascular dysfunction, cerebral

vascular dysfunction, peripheral vascular diseases, sexual

dysfunction, joint failure, weight loss, ulcer, and pathogenic

effects on immunity [2]. Research on diabetes patients

demonstrates that diabetes among adults (over 18 years old)

has risen from 4.7% to 8.5% in 1980 to 2014 respectively and

rapidly growing up in second and third world countries [3].

Statistical results in 2017 show that 451 million people were

living with diabetes worldwide, which will increase to 693

million by 2045 [4]. Another statistical study in [5] shows

the severity of diabetes, where they reported that half a bil-

lion people have diabetes worldwide, and the number will

increase to 25% and 51% respectively in 2030 and 2045.
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However, there is no long term cure for diabetes, but it can be

controlled and prevented if an early prediction is accurately

possible. The prediction of diabetes is a challenging task,

as the distribution of classes for all attributes is not linearly

separable as depicted in Fig. 1.

In recent years, plenty of methods have been proposed

and published for diabetes prediction. A ML based frame-

work was proposed in [7] where authors implemented the

Linear Discriminant Analysis (LDA) [8], Quadratic Dis-

criminant Analysis (QDA) [9], Naive Bayes (NB) [10],

Gaussian Process Classification (GPC) [11], Support Vector

Machine (SVM) [12], Artificial Neural Network (ANN) [13],

AdaBoost (AB) [14], Logistic Regression (LR) [15], Deci-

sion Tree (DT) [16], and Random Forest (RF) [17] with

different dimensionality reduction and cross-validation tech-

niques. They also performed extensive experiments on the

outlier rejection and filling missing values for boosting the

performance of the ML model, where they were able to

obtain the highest possible AUC of 0.930. In [18], authors

employed three different ML classifiers such as DT, SVM,

and NB to prognosticate the likelihood of diabetes with

maximum accuracy. They demonstrated that NB is the best

performing model with the AUC of 0.819. The AB and

bagging ensemble techniques using J48 (c4.5)-DT, as a base

learner and standalone data mining technique (J48), have

been studied and implemented in [19] for the classification

of diabetes mellitus. The experimental results of them prove

that the AB ensemble method is better than bagging and

standalone J48-DT. Genetic programming for the prediction

of diabetes had proposed in [20] where the framework out-

performed as compared to other implemented techniques by

them. Authors, in [21], employed four ML methods such

as DT, ANN, LR, and NB to classify the risk of diabetes

mellitus, where they boosted the robustness by bagging and

boosting techniques. The experimental results show that the

RF algorithm gives optimum results among all the employed

algorithms. Gaussian Process (GP)-based classification tech-

nique was proposed, in [22], using three different kernels

(linear, polynomial, and radial basis function) and compared

against the traditional LDA, QDA, and NB. The authors

also performed extensive experiments to search for the best

cross-validation protocol. Their experiments demonstrate that

the GP-based classifier with the K10 cross-validation proto-

col is the best performing classifier for the diabetes predic-

tion. Although there are numerous frameworks already been

published, in recent years, still, the improvement requires in

the preciseness and robustness for diabetes prediction.

In this literature, We propose a new pipeline for diabetes

prediction from the PIMA Indians Diabetes dataset. Prepro-

cessing, in the proposed pipeline, is the heart of achieving

the state-of-the-art result, which consists of outlier rejection,

filling missing values, data standardization, feature selection,

and K-fold cross-validation. We consider the mean value in

the missing position of attribute rather than median value,

as it has a more central tendency toward the mean of that

attribute distribution. The folding of the dataset for cross-fold

validation is performed carefully to preserve the percent-

age of class proportion, as same as in the original dataset.

Different ML classifiers (k-nearest Neighbour (k-NN), RF,

DT, NB, AB, and XGBoost (XB)) and MLP were imple-

mented in our proposed pipeline. We apply the grid search

technique for selecting the number of hidden layers, number

of neurons in each hidden layer, activation function, neuron

initializer, batch size, learning rate, epoch, percentage of

dropped neurons, loss function, an optimizer of MLP and

hyperparameters of ML models. Extensive experiments are

performed on different combinations of preprocessing and

ML classifiers for maximizing the AUC of diabetes predic-

tion under the same experimental conditions and dataset. The

best ML classifier is then set as a baseline model to evalu-

ate our proposed classifier quantitatively for the prediction

of diabetes precisely. Moreover, we propose an ensembling

classifier by the combination of the ML models for boost-

ing the diabetes prediction. To ensemble the ML models,

soft weighted voting is employed, where the weight for the

individual model was estimated from the respective AUC.

The AUC of the ML model is chosen as the weight of that

model for voting ensembling rather than accuracy since AUC

is unbiased to the class distribution. Extensive experiments on

different combinations of the ML models are accomplished

for searching the best ensemble classifier where the best

performing preprocessing from the previous experiments is

employed.

The organization of the remaining paper is as follows:

Section II presents the dataset, proposed methodology, and

evaluation metrics. In section III, the different experimental

results are reported with the interpretation. Finally, the paper

is concluded with future works in section IV.

II. MATERIALS AND METHODS

This section focuses on materials and methods used for this

study, in the literature, where the subsections II-A, II-B,

and II-C respectively explain the dataset, proposed frame-

work, and hardware & metrics used to evaluate the frame-

work.

A. DATASET

The MLmodels were trained and tested on publicly available

PIMA Indians Diabetes (PID) dataset of 768 female diabetic

patients from the Pima Indian population near Phoenix, Ari-

zona [6]. This dataset consists of 268 diabetic patients (pos-

itive) and 500 non-diabetic patients (negative) with eight

different attributes. The descriptions of the attributes and

brief statistical summary are shown in Table 1. The Pedigree

(Diabetes Pedigree Function) was calculated [6] as in (1).

Pedigree =
∑

i Ki(88 − ADMi) + 20
∑

j Kj(ALCj − 14) + 50
(1)

where i and j respectively denote the relatives who had devel-

oped and NOT developed diabetes. K is the percentage of

shared genes by the relatives (K = 0.500 for the parent or

full sibling, K = 0.250 for a half-sibling, grandparent, aunt
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FIGURE 1. The population distribution of all attributes in the PIMA Indian Diabetes Dataset [6] where blue and orange color distribution
respectively denotes non-diabetes and diabetes class.

TABLE 1. The overview of the diabetic patient cohort.

or uncle and K = 0.125 for a half aunt, half-uncle or first

cousin). ADMi and ACLj is the age of relatives, in years,

at the time of diagnosing and at the last non-diabetic test

respectively.

B. PROPOSED FRAMEWORK

The proposed framework, in this literature, has been illus-

trated in Fig. 2 where the preprocessing of raw data is the

integral step in the proposed pipeline, as the quality of data

can drive the classifiers to learn directly.

1) PREPROCESSING

In the proposed framework, the preprocessing step includes

outlier rejection (P), filling missing values (Q), standard-

ization (R), and feature selection of the attribute which are

briefly described as follows:

The outlier [23] is a markedly deviated observation from

other observations. It requires to be rejected from data distri-

bution as the classifiers are very much sensitive to the data

range and distribution of the attributes. The mathematical

formulation for the outlier rejection in this literature can be

written as in (2).

P(x)=
{

x, if Q1 − 1.5 × IQR ≤ x ≤ Q3 + 1.5×IQR
reject, otherwise

(2)

where x is the instances of the feature vector that lies in n-

dimensional space, x ∈ R
n. Q1, Q3, and IQR is the first

quartile, third quartile, and interquartile range of the attributes

respectively, where Q1, Q3, IQR ∈ R
n.

The attributes, after outlier rejection, were processed to fill

the missing or null values [24] as they could lead to the wrong

prediction for any classifiers. In the proposed framework,

the missing or null values were imputed by themean values of

the attributes rather than dropping, which can be formulated

as in (3). The imputation with the mean is beneficial as it

imputes the continuous data without introducing outliers.

Q(x) =
{

mean(x), if x = null/missed

x, otherwise
(3)

where x is the instances of the feature vector that lies in n-

dimensional space, x ∈ R
n.

The standardization or Z-score normalization is the tech-

nique to rescale the attributes for achieving standard normal

distribution with zero mean and unit variance. The standard-

ization (R), as shown in (4), also reduces the skewness of the

data distribution.

R(x) = x − x̄

σ
(4)

where x is the n-dimensional instances of the feature vector,

x ∈ R
n. x̄ ∈ R

n and σ ∈ R
n are the mean and standard
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FIGURE 2. The proposed block diagram of a robust and automatic diabetes prediction.

deviation of the attributes. However, in many ML models

such as tree-based models are probably the models, where

feature standardization can’t provide a guarantee for signifi-

cant improvement.

The accuracy of the classifiers increases with the incre-

ment of the attribute’s dimension. However, the performance

of the classifiers will tend to reduce when the attribute’s

dimension increases without increasing the samples. Such a

scenario, in machine learning, is referred to as a curse of

dimensionality. Due to a curse of dimensionality, the space

of the feature becomes sparser and sparser which forces the

classifiers to be overfitted by loosing generalizing capability.

In this literature, three most commonly used methods for

the feature selection namely Principle Component Analysis

(PCA) [25], Independent Component Analysis (ICA) [26],

and Correlation-based [27] technique were used to compare

their performance for the PID dataset. The details algorithm

of PCA, ICA and Correlation-based technique are given in

Appendix A, Appendix B, and Appendix C respectively.

2) CROSS-FOLD VALIDATION

The K-fold Cross-validation (KCV) technique is one of the

most widely used approaches by practitioners for model

selection and error estimation of classifiers [28]. The pictorial

presentation of the data splitting (5-fold cross-validation),

used in this literature, is shown in Fig. 3. The PID dataset

has partitioned into K folds. The K −1 folds are used to train

and fine-tune the hyperparameters in the inner loop where the

grid search algorithm [29] was employed. In the outer loop

(K times), the best hyperparameters and the test data were

used to evaluate the model. Since the PID dataset contains

an imbalanced positive and negative samples, the stratified

KCV [30] has been used to preserve the percentage of sam-

ples for each class as same as in the original percentage. The

final performance metric was estimated using the equation as

in (5).

M = 1

K
×

K
∑

n=1

Pn ±

√

√

√

√

√

√

K
∑

n=1

(Pn − P̄)2

K − 1
(5)

where M is the final performance metric for the classifiers

and Pn ∈ R, n = 1, 2, . . . ,K is the performance metric for

each fold.

3) ML MODEL AND ENSEMBLING

Different ML models such as k-NN [31], DT, AB, RF, NB,

and XB [32] have been trained (see Appendix D, Appendix E,

Appendix F, Appendix G, Appendix H, and Appendix I

respectively) and tested in the proposed framework. The

hyperparameters which will tune, in the inner loop, are

shown in Table 2. The ensembling of the ML model is the

well-known technique to boost the performance using a group

of classifiers [33], [34]. In ensembling, the aggregation of

the output from different models can improve the precision

of the prediction. The output from each model, Yj (j =
1, 2, 3, . . . ,m = 6) ∈ R

C assigns C = 2 (either having

diabetes, C1 or not, C2) confidence values Pi ∈ R (i = 1, 2)

to the unseen test data where Pi ∈ [0, 1] and

C
∑

i=1

Pi = 1. The

weighted aggregation of differentMLmodels in this literature

was performed using the equation as in (6).

Peni =

m=6
∑

j=1

(Wj × Pij)

C=2
∑

i=1

m=6
∑

j=1

(Wj × Pij)

(6)

where the weight, Wj is the corresponding AUC of that jth

classifier. Since we are proposing a weighted soft voting

ensemble, we need an imbalanced, as in the PID dataset,

unbiased metric as a weight. That is why we choose AUC as

a weight for the proposed ensembling classifier. The output

of the ensembled model, Y ∈ R
C has the confidence values

Peni ∈ [0, 1]. The final class label of the unseen data, X ∈ R
n

from ensembled model will be Ci if P
en
i = max(Y (X )).

4) MULTILAYER PERCEPTRON (MLP)

Aneural network consists of processing units, called neurons,

where each neuron is connected to other neurons by unidirec-

tional connections of different weights [35]. A feed-forward
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FIGURE 3. The partitioning of the PID dataset for KCV for both the hyperparameters tuning and evaluation.

TABLE 2. Different ML models with hyperparameters to be tuned by the grid search technique in the inner loop.

neural network or MLP used, in this paper, is shown in Fig. 4

which consists of an input-output layer and several hidden

layers. The D-dimensional input vector of any layer of MLP

produces N -dimensional output vector, f (x) : R
D → R

N .

The output of each processing unit can be expressed as in (7).

f (x) = 8





∑

j

wjxj + b



 (7)

where the xj, wj, b and 8 are the inputs, weights, bias to the

neuron and the nonlinear activation function respectively. The

parameters of the neuron are updated as in (8) during the

training using back-propagation [36] to minimize the error,

γ = ytrue − youtput .

wnew = wold + η × γ (8)

where η is the learning rate, which is the amount at which

the weights are updated during the training. However, it is

very uncertain to guesstimate the number of the hidden lay-

ers (HM ) and neurons (NM ) at each hidden layer as they

highly depend on the dataset. The more number of layers

and neurons will have more parameters that can not pro-

vide any guarantee to have better performance. The more

the parameters, the more the samples require in the training
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FIGURE 4. The MLP architecture, with M hidden layers (H) and NM neurons in HM layer, for diabetes prediction in the proposed
framework.

dataset. However, in this paper, we are learning those hyper-

parameters from the PID dataset. The hyperparameters such

as the number of hidden layers, number of neurons in each

hidden layer, activation function, neuron initializer, batch

size, learning rate, epoch, percentage of dropped neurons,

loss function, the optimizer will be used in the grid search

for optimizing to maximize the AUC.

C. EVALUATION METRICS

The models were implemented using the Python program-

ming language with different Python and Keras APIs and the

experiments were carried out on amachine runningWindows-

10 operating system with the following hardware configura-

tion: Intel R© CoreTM i7-7700 HQCPU@ 2.80GHz processor

with Install memory (RAM): 16.0GB and GeForce GTX

1060 GPU with 6GB GDDR5 memory.

All the extensive experiments were evaluated using sev-

eral metrics where each metric has a different meaning of

evaluation. The confusion matrix of True Positive (TP), False

Positive (FP), False Negative (FN), and True Negative (TN)

along with different metrics e.g. Sensitivity (Sn), Specificity

(Sp), Precision (Pr), False Omission Rate (FOR), and Diag-

nostic Odds Ratio (DOR) [37] has been reported. The Sn

and Sp are respectively used to quantify the type-II error

(the patient having positive symptoms, but erroneously fails

to be rejected) and type-I error (the patient having negative

symptoms, but detected as positive). Pr, FOR, and DOR have

been used to evaluate the percentage of correctly classified

diabetes patients having positive conditions, the proportion of

the individuals with a negative test result, for which the true

condition is positive, and the effectiveness of a diagnostic test

respectively. Additionally, the Receiver Operating Character-

istics (ROC) with Area Under the ROC Curve (AUC) is also

reported to measure how well predictions are ranked, rather

than their absolute values.

III. RESULTS AND DISCUSSION

This section presents the different extensive experiments

with the corresponding results in several subsections. The

results for preprocessing and MLmodel are described in sub-

sections III-A and III-B respectively. The subsections III-C

and III-D are dedicated to represent the results for MLP and

ensembling classifiers respectively, and the subsection III-E

compares the results.

A. RESULTS FOR PREPROCESSING

The class-wise distribution of the attributes (see Fig. 1)

demonstrates the complexity of distinguishing positive and

negative diabetes in the PID dataset. Most of the attributes

also have the skewness (positive and negative) and leptokurtic

distribution. However, the presence of the outlier introduces

the skewness and kurtosis (see Fig. 5 (a)) in the attribute’s dis-

tribution where the high kurtosis is an indicator of heavy tails

or outliers in the PID dataset. The presence of the skewness

and kurtosis will tend to underestimate and overestimate the

expected value respectively. The result for the outlier rejec-

tion (see Fig. 5) demonstrates that the skewness of the distri-

bution moves to the zero means, which indicates the mean

and median of the attribute have coincided approximately

(see Fig. 5 (b)). The leptokurtic (kurtosis > 3) distribution

of the PID dataset also moves to a mesokurtic distribution

(kurtosis = 3). The confusion matrix of the correlation (see

Fig. 6) presents the result for the outlier rejection and fill-

ing missing values together. The qualitative and quantitative

analysis on the Fig. 6 (a) and Fig. 6 (b) demonstrate that

the correlation of the attribute with the target outcome has

improved after applying outlier rejection and filling the miss-

ing values where the correlation coefficient, especially for the

F3, F4, and F5, have improved significantly. The improved

correlation is the beneficiary for the correlation-based feature

selection (see Appendix C).
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FIGURE 5. The distribution of attributes with box plot (a) with and (b) without outliers, where the first row is for F1, F2, F3, and
F4 attributes (left to right) and the second row is for F5, F6, F7, and F8 attributes (left to right) for both (a) & (b).

FIGURE 6. The confusion matrix of the attribute’s correlation with the outcome for (a) raw and (b) preprocessed PID dataset.

B. RESULTS FOR ML MODEL

Table 3 shows the quantitative results for the selection of the

best performing preprocessing andMLmodel where theAUC

with standard deviation is reported for the comparison among

them. The summary of each model’s capability of achieving

the best AUC from the proposed pipeline, with corresponding
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best preprocessing and attribute selection algorithm as well

as the number of selected attributes, has reported in Table 4.

The best-tuned hyperparameters using the grid search are

also shown in Table 4. The investigation on Table 3 provides

evidence of getting better results from different models when

we employ suitable preprocessing for them.

All the classifiers demonstrate their respective best results

for outlier rejection and filling missing values when the

correlation-based feature selection is employed (see Table 3

and Table 4). The first two experiments, as shown in Table 3,

show that the boosting classifiers (AB & XB) beat all the

classifiers in AUC. The AB performs better for the raw data

(x ∈ R
8), and XB performs better when only the outliers

are rejected (x ∈ R
8) from the PID dataset. The perfor-

mance of the XB has improved by a 0.6% margin when

only the outliers are rejected (P). These two experiments

show that XB is affected by the outlier, in the PID dataset,

more than AB, although XB has extreme gradient boosting

capabilities. There is a possibility of overfitting in XB as it

assigns equal weight to all the weak base-learners, whereas

AB assigns more weight to the weak base-learners having

better performance. The building of a new tree depends on

the residuals of the previous tree, where the outliers will have

much larger residuals than non-outliers. XB does not penalize

those residuals as in AB. Moreover, after applying PCA and

ICA on outlier rejected data, the NB classifier yields better

performance to AUC by improving the AUC of all other clas-

sifiers (k-NN, DT, and RF), even the boosting classifiers (AB

&XB). The reason can claim that the PCA and ICA return the

feature vector with mutually exclusive and uncorrelated fea-

tures. For which, NB performs better than others. However,

for correlation-based feature selection, the XB outperforms

other classifiers, even the NB classifiers for the preprocessing

of P. Since features from the correlation-based selection are

correlated with the outcome and are no more uncorrelated

with each other as in PCA and ICA-based feature selection.

For which, NB fails to be a winner in this experiment.

When themissing values are filled (Q) with themean rather

than rejection along with outlier rejection (P), the classifi-

cation performance has boosted significantly. The XB has

won for all the cases of feature selection when both the P

and Q are employed. For P + Q and PCA or ICA, the XB

outperforms the NB, where the NB was the best classifier

for the process, P and PCA or ICA. The preprocess (P + Q)

has more samples comparing the preprocess, P alone, as the

samples were rejected when it was an outlier or missed in

P alone. For the preprocess (P + Q) and correlation-based

feature selection, all the classifiers show their tremendous

success, as there are no missed values and outliers, where the

RF and XB outperform the state-of-the-art by a 0.9% and

1.6% margin in AUC respectively.

Further addition of standardization as a preprocessing

could not increase the performance of the classifiers as it

is not always guaranteed to improve the performance. Tree-

based models are not distance-based models, and hence stan-

dardization could not improve the performance of most of

the ML models in this literature (see Table 3). Moreover,

the standardization of the smaller dataset with fewer instances

used in this literature can increase the possibility of losing

information regarding the mean and standard deviation since

the variability is less.

Remarkably, the employing of correlation-based feature

selection rather than employing PCA and ICA-based tech-

niques improves the AUC of all ML models when we apply

the processing P and Q. The PCA transformed the higher

dimensional space into a lower-dimensional space based on

the orthogonal projections that contain the highest variance.

The higher variance between the features will have lower

covariance, whereas the uncorrelated data is only partially

independent according to the ICA theory. The performance of

the PCA algorithm depends on the number of PCs are being

used, where the separation of the classes is more pronounced

in the direction of smaller variance. Since the ICA finds

the new predetermined mutually independent components,

there is a possibility of losing correlation with the target

outcome. Both the PCA and ICA find the new components in

an unsupervised technique. For which, there is no guarantee

of getting better performance in the PID dataset using PCA

or ICA. On the other hand, the correlation-based feature

selection uses the correlation between the feature and target

outcome to select the features.

From the Table 4, it is also noticed that most of the clas-

sifiers performed better with 6 attributes comparing 4 or 8

attributes which are F1, F2, F4, F5, F6, and F8. This exper-

iment also shows that the features such as diastolic blood

pressure and diabetes pedigree function can be discarded

from the PID dataset for diabetes prediction, as they carry

less information of diabetes comparing other features, as in

the PID dataset. Comparing all the MLmodels in Table 3 and

Table 4, the XB provides the best performance with AUC (±
std.) of 0.946 ± 0.020, as it has extreme gradient boosting

capability to minimize the loss when adding new models in

parallel. The best performance of the diabetes prediction from

the proposed pipeline using the XB model is achieved when

the sum of instance weight in a leaf node less than 5 with the

tree depth 5. The minimum loss reduction to make a further

partition on a leaf node of the tree and the subsample ratio of

to construct the tree were 1.5 and 0.6 respectively to obtain

the highest possible results using the XB model from the

proposed pipeline.

C. RESULTS FOR MLP

The extensive experiments were conducted on the PID dataset

for diabetes prediction to obtain the best MLP architecture.

Eight different models of MLP, with 1 ∼ 8 hidden layers,

were implemented and tested, where the number of neurons

was the hyperparameter to select optimum numbers. The

experimental results are shown in Fig. 7, where it shows

that the MLP architecture of M = 3 hidden layers (H1,

H2, and H3) with N1 = 16, N2 = 64, and N3 = 64

neurons was chosen as the best architecture. The addition of

more hidden layers with fewer samples as in the PID dataset
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TABLE 3. The summary of all extensive experiments for the selection of the best performing preprocessing, feature selection methods with selected
attribute numbers, and classifier. The last column represents the best performing classifier for any preprocessing, whereas the underlined blue color
denotes the best preprocessing for each classifier.

TABLE 4. The best performing ML model and preprocessing along with tuned hyperparameters with highest possible AUC.

will tend to limit the generalizing capability of the MLP

model, as depicted in Fig. 7. The extensive depth in the MLP

model may also lead the model to be overfitted and often has

gradient fading problems due to the limited numbers of data,

as in the PID dataset.

The results on the best MLP architecture for different pre-

processing are shown in Table 6, where all the neurons were

initialized and activated by a normal distribution and ReLU

function [38] respectively. We use the dropout layer [39] by

randomly dropping 60% neurons to tackle the overfitting.

We trained our MLP model on 200 epochs with respective

learning rate and batch sizes as 0.001 and 8. The results

in Table 6 demonstrate that the outliers rejection and filling

missing values drive the performance of the MLP model by
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TABLE 5. The different MLP architectures with the corresponding number of hidden layers and the number of neurons.

TABLE 6. The summary of all extensive experiments on the MLP model, where all the hyperparameters from the grid search were kept constant
throughout the experiment.

FIGURE 7. The performance of different MLP architectures to select the
best one with the highest AUC, where the best corresponding models are
shown in Table 5.

a 7.1% margin in AUC from raw data. Only the preprocess

(P) can not improve the performance due to fewer samples,

as both outliers and missing values are rejected in the pro-

cess, P. The highest AUC from the MLP model is 0.902

with a standard deviation of 0.020 when we perform both the

outliers rejection and filling missing values (P+Q). It is also

demonstrated that the correlation-based feature selection is

better in the PID dataset for diabetes prediction as similar to

previous experiments on ML models (see subsection III-B).

The ICA also performed as same as the correlation-based fea-

ture selection, the standard deviation for later one is much less

than the former. For which later one has less inter-fold vari-

ation. Further addition of standardization with outliers rejec-

tion and filling missing values can not improve the results,

as there is a possibility of losing information regarding the

mean and standard deviation due to the less variability in the

PID dataset.

D. RESULTS FOR ENSEMBLING MODEL

Since the ML models are ensembled for boosting the per-

formance of the diabetes prediction, the best preprocessing

from the subsection III-B and Table 3 & Table 4 are used in

this experiment. The combination of the above ML models

(N = 6) provides
∑N

i=1
NCi = 63 ensemble models. Among

them only the best performing ensemble model with 2, 3, 4, 5,

and 6 baseline models are reported in Table 7 with their cor-

responding results. The combination of AB and XB provides

the best results for diabetes prediction for the three metrics

out of the five, as shown in Table 7, by beating the other

combinations by the 1.20%, 14.81%, and 0.90% margin in

Sp, DOR, and AUC respectively. The prevalence independent

measure (DOR) of the AB+XB (see Table 7) has a greater

value than the other combinations, which is considered to

be a very good test [40] for the diabetes prediction. The

confusion matrix and ROC curve of the best ensemble model

(AB+XB) are shown in Fig. 8 (a) and Fig. 8 (b) respectively.

The fraction of correctly classified patients among all the

positive predictions is 84.2% using the combination of AB

and XB. From the ROC curve (see Fig. 8 (b)), it is seen

that for false-positive rate of 0.066, the probability of getting

true-positive rate is 0.788 at the model’s accuracy (see the

red star point in Fig. 8 (b)). From the ROC curve, it is also

observed that the inter-fold variation of the AUC is also less

which proves the robustness of the best ensembling classifier

(AB+XB). The performance of AB+XB for diabetes predic-

tion on the PID dataset is the superior, as both the AB and XB

are the boosting type classifiers, where AB is the sequential

boosting and XB is the parallel boosting. The combination

of other ML models with the boosting type models (AB &

XB) can not predict diabetes as good as the boosting types

alone, as shown in Table 7 (2 ∼ 5th rows). Although the

combination of all the 6 models (see Table 7 (5th row)) beats

the best combination (AB+XB) in two metrics out of five,

it has defeated in unbiased measurement (AUC) by a margin

of 1.0%. As a consequence, we can claim that for the diabetes

prediction from the PID dataset, the soft weighted voting of
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TABLE 7. Comparing different ensembling models for selecting the best classifier.

FIGURE 8. (a) Confusion matrix of the highest possible diabetes classification (b) ROC curve of our proposed ensemble model.

TABLE 8. Comparing all the implemented models for diabetes prediction.

serial and parallel boosting classifiers performs better than

serial or parallel boosting classifier alone.

E. RESULTS COMPARISON

In this subsection, all the three experiments (see subsec-

tion III-B, III-C, and III-D) are compared and summarized.

Finally, the best experiment is compared with the state-of-

the-art to validate our contributions in this literature.

Table 8 demonstrates that the proposed weighted-ensemble

of AB and XB produces the best prediction for the three

metrics out of the five metrics, whereas performs as a second

highest with respect to Sp and prevalence independent mea-

surement (DOR). The proposed ensemble model (AB+XB)

yields the best performance concerning Sn, FOR, and AUC

by improving the XB by the margin of 2.1%, 0.8%, and

0.6% respectively. It also beats MLP model in Sn, Sp, FOR,

and AUC respectively by the margin of 3.2%, 3.4%, 1.5%,

and 4.8%. The ensembling model (AB+XB) improves the

true-positive rate compare to the XB model alone, as there

is less possibility of miss-classification in the ensembling

model. The less FOR values in the ensembling model (see

Table 8) demonstrates that negative predictive value is high

with less Type II error in the diabetes prediction. Further-

more, it is also observed that the proposed ensembling model

(AB+XB) yields the best performances for balanced accu-

racy (average of Sn and Sp) by improving the XB and MLP

results by 0.6% and 3.3% respectively, when the proposed

preprocessing (P+Q and correlation-based feature selection)

is employed. As a consequence from the above discussions in

subsections III-B, III-C, III-D, and III-E, it can be concluded

as follows:

The proposed ensembling classifier (AB+XB) appears

better suited for diabetes prediction from the PID dataset. For

ensembling, the base classifiers should have a minimum cor-

relation between them to achieve higher precision in diabetes

prediction (see Table 7). The ensembling of two boosting

(adaptive (AB) and gradient (XB)) type classifier is the best

combination for diabetes prediction. The best combination

(AB+XB), alongwith our proposed preprocessing (P+Q and

correlation-based feature selection), can achieve tremendous

success for diabetes prediction in the PID dataset.
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TABLE 9. Comparative performance of our proposed method against the state-of-the-art works on the same dataset as shown in Table 1.

FromTable 9, it is observed that all themodels perform bet-

ter either in positive or negative diabetes prediction, whereas

the proposedmodel beats themwith improved balanced accu-

racy or AUC or both. The framework proposed in [43], [44]

used the k-NN technique to impute the missing values, where

the algorithm searches the k th neighbor as a missing value.

In such a technique, the new imputed value could be far

from the central tendency of the population distribution. The

performance in the pipeline (see Table 9) employed in [18],

[20], [41], [42], [46] is less as comparing the proposed frame-

work and others in [7], [44], [45]. Those fewer performances

clearly indicate the role of outlier rejection and fillingmissing

values in the PID dataset. The manual feature selection [42]

without considering the correlation and covariance with the

features and target label is the possible reason for getting

less true-positive rates. The above discussion and Table 9

confirm that our proposed ensembling classifier (AB+XB)

for predicting diabetes is a better diagnosis, with an AUC

of 0.950, when the AUC-weighted soft voting and proposed

preprocessing pipeline were employed compared to others.

IV. CONCLUSION AND FUTURE WORK

In this literature, diabetes prediction has been accomplished

using the proposed ensemble model from the PID dataset,

where the preprocessing plays a crucial role in robust and

precise prediction. The quality of the dataset was improved

by the proposed preprocessing scheme, where outlier

rejection and filling missing values was a core concern. Such

Algorithm 1 The Steps of Implementing the PCA-Based

Feature Selection

Input: The original n-dimensional data, X ∈ R
n with N

number of sample and variance threshold,

Tvariance
Output: The reduced k-dimensional data, Y ∈ R

k

1 Load X ∈ R
n and compute it’s mean, X̄ = 1

N

N
∑

i=1

Xi,

where X̄ ∈ R
n

2 Compute the n× n covariance matrix,

Cn×n =
N

∑

i=1

(Xi − X̄ )(Xi − X̄ )T

3 Compute eigen decomposition of Cn×n as PDP−1,

where P ∈ R
n is the matrix of eigen vectors and Dn×n is

the diagonal matrix with eigenvalues on the diagonal

4 Sort the eigen vectors by descending order to choose

first k eigen vectors that will have variance ≥ Tvariance
and form a new projection matrix,Wn×k

5 Project data X into a new k-dimensional space by

Y = W TX , where Y ∈ R
k

a preprocessing can improve the kurtosis and skewness of the

attribute distribution in the PID dataset. The correlation-based

attribute selection can improve the correlation between

attribute and target outcome, whereas PCA and ICA care
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Algorithm 2 The Steps of Implementing the ICA-Based

Feature Selection

Input: The original n-dimensional data, X ∈ R
n

Output: The reduced k-dimensional data, Y ∈ R
k

1 Set non-quadratic nonlinear function, G for the

approximation of neg-entropy

2 InitializeW of W × H = X , where W , H , and X are the

ratios of the sources during mixing, the matrix

containing the different components, and the mixed

output respectively.

3 Perform PCA on X by X = PCA(X ) as in IV-A

4 whileW changes do

5 W = mean(X ∗ G(W · X )) − mean(G′(W T · X )),
where G′ is the first derivative of non-quadratic
nonlinear function, G

6 W = orthogonalize(W )

7 Compute, Y = W · X , where Y ∈ R
k

Algorithm 3 The Steps of Implementing the

Correlation-Based Feature Selection

Input: The original n-dimensional data, X ∈ R
n and

expected outcome, YT ∈ R

Output: The reduced k-dimensional data, Y ∈ R
k

1 for i ≤ n do

2 riT =
∑

(Xi−X̄i)(YT−ȲT )√
∑

(Xi−X̄i)2×
√

∑

(YT−ȲT )2

3 Sort the correlation, riT by descending order to choose

first k features for Y ∈ R
k

Algorithm 4 The Steps of Implementing k-Nearest

Neighbour (k-NN)

Input: The n-dimensional data, X ∈ R
n and target

outcome, Y ∈ R

Output: The posterior probability, P ∈ [0, 1] of unseen

test data, x, where

C
∑

i=1

Pi = 1 and C = 2

(diabetes present (C1) or not (C2))

1 Calculate geometric distances, Dh for k query points,

Dh =
k

∑

i=1

|Xi − xi|q
1
q

, where Xi = current instance, xi =

query instance, q = order [47].

2 Form a set, S with closest k points

3 Estimates the posterior probability, P for each class

P(C = j|X = x) = 1
K

∑

i∈S
f (Ci = j), where f (x) is the

indicator function to assign the class (1 when patient

having diabetes and 0 otherwise)

only the inter-attribute redundancy. In case of tree-based

classifier, data standardization can not provide any guarantee

to improve the performance. The robustness validation of the

Algorithm 5 The Steps of Implementing Decision

Tree (DT)

Input: The n-dimensional data, X ∈ R
n and target

outcome, Y ∈ R

Output: The posterior probability, P ∈ [0, 1] of unseen

test data, x, where

C
∑

i=1

Pi = 1 and C = 2

(diabetes present (C1) or not (C2))

1 Split θ = (j, tm) into Qleft (θ ) and Qright (θ ) subsets,

where θ consisting of a feature, j and threshold, tm
2 Compute the impurity at k th node using an impurity

function (H ),

G(Q, θ ) = nleft
Nm

H (Qleft (θ )) + nright
Nm

H (Qright (θ )), where

H =
∑

C

PmC × (1 − PmC ) or

H = −
∑

C

PmC × log(pmC ) and

PmC = 1
Nm

∑

xi∈Rm
I (yi = C)

3 Minimise the impurity by selecting the parameters,

θ∗ = argminθ G(Q, θ )

4 Repeat the above processes for subsets Qleft (θ
∗) and

Qright (θ
∗) until depth reach to Nm < minsamples or

Nm = 1

Algorithm 6 The Steps of Implementing AdaBoost (AB)

Input: The n-dimensional data, X ∈ R
n with N number

of sample and target outcome, Y ∈ R

Output: The posterior probability, P ∈ [0, 1] of unseen

test data, x, where

C
∑

i=1

Pi = 1 and C = 2

(diabetes present (C1) or not (C2))

1 Initialize weight sample, D(i) = 1
N
, where

i = 1, 2, . . . ,N

2 for t ≤ T (n_Classifiers) do

3 Train a weak learner using distribution Dt [48].

4 Select a weak hypothesis, ht : Rn → R with low

weight error, ǫt = Pri∼Dt [ht (xi) 6= Y ]

5 Choose αt = 1
2
ln( 1−ǫt

ǫt
) and update,

Dt+1(i) = Dt (i)e
−αt Yht (xi)

zt
, where i = 1, . . . ,N and zt is the

normalization factor.

6 Output posterior probability: P(x) = sign(
∑T

t=1 atht (x))

XB, MLP, and proposed ensemble classifier was verified by

using the 5-fold cross-validation. Hyperparameters of differ-

ent classifiers can drive the learning capability of those clas-

sifiers, which were optimized using a grid search technique

in our proposed framework. The AUC as a weight to build a

generic ensembling classifier is better, as it considers more

priority to the model having more AUC. Random tree-based

classifiers are well suited for the data to be classified when
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Algorithm 7 The Steps of Implementing Random Forest

(RF)

Input: The n-dimensional data, X ∈ R
n and target

outcome, Y ∈ R

Output: The posterior probability, P ∈ [0, 1] of unseen

test data, x, where

C
∑

i=1

Pi = 1 and C = 2

(diabetes present (C1) or not (C2))

1 for b = 1 to N (n_Bagging) do

2 Draw a bootstrap sample, (Xb, Yb) from given

(X ∈ R
n, Y ∈ R)

3 Grow a random-forest tree Tb using Xb and Yb by

repeating recursively using the following steps until

the minimum node size is nmin.

1) Randomly select m variables from the given n

variables

2) Pick the best variable or split-point among the

m variables

3) Split the node into two daughter nodes

Output the ensemble of trees will be {Tb}N1
4 The posterior probability, P̂NRF (x) = Voting{P̂k (x)}N1 ,
where P̂k (x) is the class prediction of the kth
random-forest.

Algorithm 8 The Steps of Implementing Naive Bayes

(NB)

Input: The n-dimensional data, X ∈ R
n and target

outcome, Y ∈ R

Output: The posterior probability, P ∈ [0, 1] of unseen

test data, x, where

C
∑

i=1

Pi = 1 and C = 2

(diabetes present (C1) or not (C2))

1 Compute the prior probabilities for each of the

class [49], P(Y = C1) = NC1
N

and P(Y = C2) = NC2
N

,

where N is the number of sample

2 The output posterior probability of class for the given

predictor (attributes), P(Ci|X ) = P(X |Ci)×P(Y=Ci)
P(X )

, where

P(X |Ci) is the likelihood of the predictor for a given
class and P(X ) is the prior probability of predictor.

inter-class redundancy is much higher (not linearly separa-

ble), as in the PID dataset. The comparative results demon-

strate that our proposed framework has outperformed other

frameworks on AUC, which has shown great potentiality for

diabetes prediction from the PID dataset. The ensembling

of two boosting type classifiers (AB and XB) is the best

combination for diabetes prediction, as the base classifiers

should have a minimum correlation between them. The

higher precision in diabetes prediction from the PID dataset

using the best combination (AB+XB) can be achieved when

our proposed preprocessing (P + Q and correlation-based

feature selection) is applied. In the future, the proposed

Algorithm 9 The Steps of Implementing XGboost (XB)

Input: The n-dimensional data, X ∈ R
n and target

outcome, Y ∈ R

Output: The posterior probability, P ∈ [0, 1] of unseen

test data, x, where

C
∑

i=1

Pi = 1 and C = 2

(diabetes present (C1) or not (C2))

1 Initialize the model with constant value:

Fo(x) = argminγ

N
∑

i=1

L(Y , γ ) [32], where L(Y , F(x)) is

the differentiable loss function and N is the number of

sample

2 for m = 1 to M (n_Iterations) do

3 Compute pseudo-residuals, rim = −[ δL(Y ,F(Xi))
δF(Xi)

],

where i = 1, 2, . . . ,N

4 Fit a base tree, hm using training set (Xi, rim) for

i = 1, 2, . . . ,N

5 Compute multiplier γm by

γm = argminγ

n
∑

i=1

L(Yi,Fm−1(Xi) + γ hm(Xi))

6 Update the model by Fm(x) = Fm−1(x) + γmhm(x)

7 Fm(x) is the desired posterior probability, P ∈ [0, 1]

trained model will be used to build a web app with a

user-friendly interface. Additionally, the proposed framework

will be applied to other medical contexts to verify their gen-

erality and versatility to predict the disease classes.

APPENDIX

ALGORITHMS FOR THE FEATURE SELECTION AND ML

CLASSIFIERS FOR DIABETES PREDICTION

A. PCA-BASED FEATURE SELECTION

see Algorithm 1.

B. ICA-BASED FEATURE SELECTION

see Algorithm 2.

C. CORRELATION-BASED FEATURE SELECTION

see Algorithm 3.

D. ALGORITHM FOR IMPLEMENTING K-NEAREST

NEIGHBOUR

see Algorithm 4.

E. ALGORITHMS FOR IMPLEMENTING DECISION TREE

see Algorithm 5.

F. ALGORITHMS FOR IMPLEMENTING AdaBoost

see Algorithm 6.

G. ALGORITHMS FOR IMPLEMENTING RANDOM FOREST

see Algorithm 7.
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H. ALGORITHMS FOR IMPLEMENTING NAIVE BAYES

see Algorithm 8.

I. ALGORITHMS FOR IMPLEMENTING XGboost

see Algorithm 9.
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