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 2 

Abstract 27 

Diabetes is the major cause of end stage renal disease globally, and novel treatments 28 

are urgently needed. Current therapeutic approaches for diabetic nephropathy are 29 

focusing on the inhibition of the renin angiotensin aldosterone system, on glycaemic 30 

and lipid control, and life style changes. In this review we will highlight new molecular 31 

insights in our understanding of the initiation and progression of diabetic nephropathy 32 

including glomerular insulin resistance, dysregulation of cellular substrate utilisation, 33 

podocyte-endothelial communication and inhibition of tubular sodium coupled glucose 34 

reabsorption. We believe these mechanisms offer new therapeutic targets that can be 35 

exploited to develop important renoprotective treatments for diabetic nephropathy over 36 

the next decade.  37 

  38 
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INTRODUCTION 39 

Diabetes mellitus is a metabolic disorder associated with chronic micro- and 40 

macrovascular complications. One of the most feared chronic microvascular 41 

complications is diabetic nephropathy (DN), currently the leading cause of end-stage 42 

renal disease (ESRD) in the Western world. Strikingly, 40-45% of patients with type-1 43 

diabetes (T1D) develop DN and reach ESRD or die before its onset. Moreover, 44 

clinicians face a ~30% prevalence of patients with type-2 diabetes (T2D) and DN, with 45 

45% of patients currently on dialysis having a primary diagnosis of diabetes, a 46 

population also at high risk of developing cardiovascular disease [1]. 47 

 48 

An early sign of DN is an increased amount of urinary protein, manifested by 49 

“albuminuria”, which correlates with, and can predict, the progression of renal damage. 50 

Albuminuria arises from defects in the permeability of the glomerular filtration barrier 51 

consisting of glomerular endothelial cells (GECs) separated from specialized epithelia, 52 

called podocytes, by the glomerular basement membrane (GBM)[1]. Podocytes have 53 

extensive inter-digitating foot processes connected together by a slit diaphragm 54 

composed of proteins including nephrin and neph1, which interact with cytoplasmic 55 

adaptor and signalling proteins (PI3-Kinase, CD2AP, AKT, podocin). Nephrin is also 56 

linked with the podocyte actin cytoskeleton; the protein tyrosine kinase Fyn promotes 57 

nephrin phosphorylation which enhances its interaction with PI3-Kinase and PI3K-58 

dependent phosphorylation of AKT and subsequently increases Rac1 activity, leading 59 

to modification of the actin cytoskeleton with maintenance of a normal podocyte 60 

anatomical structure and function [2, 3]. The structure and integrity of the glomerulus 61 

is also maintained by a complex local autocrine/paracrine network between the 62 

podocyte and the GECs consisting of vascular growth factors and vasoactive peptides 63 
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which is disrupted in DN [4]. The GECs are highly fenestrated with a unique 64 

ultrastructure lacking fenestrae diaphragms which facilitate water and small solutes 65 

permeability [5]. GECs are covered by a glycocalyx consisting mainly of proteoglycans 66 

which include core proteins such as syndecan and attached glycosaminoglycan side 67 

chains which appear to be important in regulating the permeability of the glomerulus 68 

[6]. 69 

 70 

Animal and human studies have established that the metabolic and haemodynamic 71 

changes that occur in diabetes lead to ultrastructural alterations of the glomerular 72 

filtration barrier, including podocyte foot process fusion and detachment, GBM 73 

thickening, a reduced endothelial cell glycocalyx, mesangial extracellular matrix 74 

accumulation and glomerulosclerosis (Figure 1). These structural glomerular changes 75 

correlate with increasing albuminuria which has been proposed to be a marker of 76 

generalised systemic vascular dysfunction by the “Steno hypothesis” [7] and could 77 

represent a common pathogenetic mechanism for renal and extra-renal chronic 78 

vascular complications in diabetes [1]. 79 

 80 

Over the last 5-10 years our understanding of the molecular and cellular pathways by 81 

which diabetic kidney disease results in damage to the glomerular filtration barrier has 82 

increased. In this review, we will outline recent advances in glomerular insulin 83 

signalling, oxidative and endoplasmic reticulum (ER) stress and podocyte-endothelial 84 

communication that have revealed new exciting therapeutic directions for DN. 85 

 86 

 87 

Insulin resistance as a mechanism for the predisposition of DN 88 



 5 

Insulin is a metabolic hormone which not only regulates glucose and the metabolism 89 

of other substrates but also directly modulates the biology of specific cells in a variety 90 

of tissues. In both T1D and T2D patients, the ability of insulin to elicit cellular responses 91 

is impaired, a concept termed “cellular insulin resistance”, and is associated with DN 92 

[8]. Insulin resistance correlates with the development of microalbuminuria both in T1D 93 

and T2D patients and patients with T1D with DN are more likely to have a strong family 94 

history of insulin resistance when compared with those without DN [9]. Insulin 95 

resistance has been implicated in the development of glomerular hypertension and 96 

hyperfiltration [10], seen in the initial phase of diabetic kidney disease [11]. 97 

Furthermore, in both T1D and T2D patients, insulin resistance per se contributes to 98 

higher salt sensitivity, which closely associates with increases in blood pressure, 99 

albuminuria, and a decline in renal function [12, 13]. 100 

 101 

Within the kidney many different cell types are insulin sensitive and express functional 102 

insulin receptors [14-17]. Furthermore, transgenic mouse models have revealed that 103 

inducing insulin resistance in different nephron compartments results in a variety of 104 

unfavourable renal phenotypes. In the glomerulus, approximately a decade ago it was 105 

discovered that human podocytes respond to insulin [14], and express the hallmark 106 

components of insulin sensitive cells including the insulin receptor, and key glucose 107 

transporters including GLUT4 and GLUT1. To elucidate the biological significance of 108 

insulin signalling in these cells, podocyte specific insulin receptor knockout mice were 109 

generated [18]. These animals developed albuminuria and a number of features of 110 

DN, including increased matrix production, glomerulosclerosis, and GBM thickening, 111 

but all in normoglycaemic conditions, suggesting that insulin resistance of this cell per 112 

se may be an important driver in glomerular diseases. Insulin signaling is important in 113 
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other parts of the nephron. Deletion of the insulin receptor In tubular epithelial cells 114 

widespread led to reduced natriuresis and hypertension [16]. Recent studies have 115 

begun to dissect out the precise function of the insulin receptor in specific tubular 116 

segments. These experiments revealed that loss of the insulin receptor in proximal 117 

tubules results in gluconeogenesis [19] while deletion in collecting ducts increased 118 

natriuresis and lowered blood pressure [20].  119 

 120 

 121 

Diabetes provides an ideal environment consisting of increased adiposity, 122 

hyperglycaemia, and inflammation which are all important players in promoting 123 

podocyte insulin resistance and glomerular dysfunction [17](Table 1). A recent study 124 

has identified SMAD3 within the inflammation/ fibrosis pathway as an important 125 

modulator of podocyte insulin sensitivity in a model of obesity related DN [21]. In this 126 

work, mice fed a high fat diet exhibited an increase in kidney and podocyte SMAD3 127 

expression levels which resulted in a severely fibrotic kidney; in these conditions 128 

SMAD3 knockout animals were protected from kidney damage and fibrosis. In parallel, 129 

fatty acid palmitate induces a SMAD3-mediated podocyte insulin resistance paralleled 130 

by mitochondrial dysfunction in vitro. These responses were exaggerated when 131 

animals became albuminuric, and could be rescued by SMAD3 blockade and 132 

restoration of podocyte insulin signalling [21]. Other studies have demonstrated that 133 

both Nucleotide-binding oligomerization domain containing protein 2 (NOD2)[22] and 134 

Toll-like receptor (TLR)[23] mediated-inflammation have an adverse effect on 135 

podocyte survival, insulin action, and glomerular permeability to protein. Decreased 136 

circulating adiponectin [24, 25], increased free fatty acids (FFA) levels  [26], and 137 

defects in insulin action promote glomerular cells and podocyte dysfunction, and 138 
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albuminuria [27, 28]. Epigenetic mechanisms may also be important in determining 139 

insulin resistance [29]. This concept has not been studied in great detail to-date, but 140 

Kumar and colleagues have shown that insulin resistance induced by palmitate in 141 

human urinary podocyte cell lines is associated with an increase in histone H3K36me2 142 

and reduced H3K27me3 on the promoter region of FOXO1, a regulator of 143 

gluconeogenic genes. This effect was long-lasting and persisted even after the 144 

normalisation of palmitate levels [30]. 145 

 146 

 147 

Glomerular insulin resistance, endoplasmic reticulum (ER) stress and 148 

autophagy in diabetic glomerulopathy 149 

There are many consequences of insulin resistance within glomeruli, which are likely 150 

to contribute to the progression of DN. One key mechanism is changes to the 151 

mitochondria and the closely connected ER [31]. Mitochondrial metabolic overload 152 

results in increased cellular oxidative stress and ER-stress which leads to the 153 

activation of unfolded protein response (UPR)[32]. UPR is a positive cellular response 154 

that in its early phase either refolds accumulated unfolded proteins, or degrades 155 

unfolded protein by the ubiquitin-proteasome pathway. Misfolded proteins are 156 

detected by the ER membrane stress sensors protein kinase RNA-like ER kinase 157 

(PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6α 158 

(ATF6α) and its activator X-box binding protein-1 (XBP-1), which, in turn, activates 159 

several signalling events and trigger a compensatory response to prevent further 160 

accumulation of misfolded protein. However, when the unfolded protein and cellular 161 

damage exceeds a threshold, chronic and unresolved stress results in a change from 162 

an adaptive to pro-apoptotic responses [32]. 163 
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 164 

There is some evidence that glucose/oxidative stress-mediated ER stress plays a role 165 

in chronic vascular complications in DN [33]. Hyperglycemia, or increased glycation of 166 

proteins have been shown to mediate apoptosis partly through increases in ER stress 167 

in cultured murine podocytes [34, 35]. Activation of the UPR has also been observed 168 

in mouse glomerular mesangial cells exposed to glucose and glucosamine [36], and 169 

in kidneys from diabetic rats administered streptozotocin for 16 weeks [37]. Microarray 170 

analysis of human biopsies from patients with established DN showed that UPR genes 171 

were upregulated proportionally to the severity of diabetic renal lesions [38]. Finally, 172 

recent experimental evidence has demonstrated that pharmacological inhibition of ER 173 

stress and stabilization of the UPR is beneficial in diabetic glomerulopathy [39]. 174 

 175 

Two studies have used transgenic mice to link podocyte insulin resistance with 176 

mitochondrial function and ER stress. Ising and colleagues generated a mouse model 177 

of podocyte mitochondrial dysfunction by specifically knocking out a key molecule in 178 

this cell involved in mitochondrial fusion called prohibitin-2 [40]. This caused a severe 179 

phenotype including glomerulosclerosis, renal failure and death at approximately a 180 

month of age. They then went on to inhibit both the insulin receptor and IGF-1 receptor 181 

(IGF1R) contemporaneously with podocyte-specific knockdown of prohibitin-2. 182 

Inhibiting the insulin receptor alone, or in combination with the IGF1R was partially 183 

protective and resulted in a significantly longer life span of the mice [40]. This suggests 184 

that insulin resistance could reflect a “protective” resetting of cellular substrate 185 

utilisation to shield from excess substrate flow to mitochondria with “impaired” 186 

respiratory capabilities. In another study, Madhusudhan et al. have elegantly shown 187 

that under diabetic conditions ER adaptive mechanisms are impaired in the podocyte 188 
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and that this is exacerbated when the cell is rendered more insulin resistant. Studying 189 

human and murine DN they discovered that nephropathy was associated with 190 

alterations in the UPR with impairment of the nuclear translocation of XBP-1. Genetic 191 

ablation of the transcription factor XBP-1 or activation of ATF6 (downstream of XBP-192 

1) in the podocyte of diabetic mice aggravates DN. Of interest, mice with genetically 193 

impaired podocyte insulin signalling exhibited impaired UPR (XBP-1 activation) that 194 

was associated with more severe diabetic kidney disease when compared with 195 

diabetic controls [41]. 196 

 197 

Autophagy, regulated by the mammalian target of rapamycin complex 1 (mTORC1) 198 

is, with the UPR, essential to maintain cellular homeostasis and in the context of ER 199 

stress contributes towards the elimination of toxic and damaged cellular components 200 

[42]. Haploinsufficiency of mTORC1 in podocytes or administration of rapamycin (a 201 

mTORC1 inhibitor) resulting in activation of autophagy [43], has been shown to 202 

prevent progressive DN [44, 45]. In contrast, mTORC1 activation in podocytes, 203 

resulting in inhibition of autophagy, leads to accelerated DN [46]. Loss of insulin 204 

sensitivity in cultured podocytes results in suppression of autophagy and addition of 205 

rapamycin in these cells attenuates insulin resistance [47]. 206 

 207 

 208 

Insulin resistance, the glomerular cell cytoskeleton and other mechanisms 209 

Experiments using podocyte cell lines have begun to reveal other downstream targets 210 

of insulin resistance which may play a role in DN. Addition of exogenous insulin to 211 

human podocytes in culture led to cytoskeletal rearrangement [18], a process which 212 

has been pharmacologically targeted using small molecules as a novel therapy for DN 213 
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[48]. Other studies [49] have identified the cytoskeleton protein septin-7 as playing an 214 

important role in the regulation of insulin-mediated translocation of GLUT4 vesicles to 215 

the plasma membrane and the control of podocyte glucose transport. Insulin may also 216 

modulate calcium signalling in podocytes which has been shown to be important in 217 

maintaining cytoskeletal dynamics by altering the expression of canonical transient 218 

receptor potential-6 channel-TRPC6 [50] and large-conductance Ca(2+)-activated 219 

K(+) channels [51].  220 

 221 

Insulin stimulates the Phosphoinositide 3-kinase (PI3K) pathway and causes AKT 222 

activation. In normal physiology, insulin stimulation of podocytes results in AKT 223 

phosphorylation (activation), while, in insulin-resistant disease settings such as 224 

diabetes, a number of reports have shown an early loss of glomerular AKT 225 

phosphorylation whilst AKT signaling is maintained in the tubular compartment of the 226 

kidney [28].  AKT exists in three isoforms with AKT2 being located specifically in the 227 

podocyte within the kidney [52]. A loss of podocyte AKT2 activation is detrimental 228 

when there is chronic kidney disease associated with nephron loss [52]. AKT2 is the 229 

major isoform through which insulin signals [53]. It is currently not completely clear if 230 

the loss of renal AKT activation is detrimental in the setting of diabetes as a number 231 

of studies have shown an increase in AKT phosphorylation in the vasculature in 232 

experimental animal models of diabetes [54-58], and pharmacological inhibition of the 233 

AKT activation by AS101, may confer renoprotection in diabetes [59]. More work will 234 

have to be performed to dissect the exact role of AKT in diabetic kidney disease. 235 

 236 

Insulin can also modulate the renin-angiotensin-aldosterone system, critical for 237 

regulating glomerular haemodynamics in DN, by increasing the expression and activity 238 
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of angiotensin converting enzyme-2 (ACE2)[60]. Further work is required to identify 239 

other downstream targets of podocyte insulin signalling ideally using systems biology 240 

genomic and proteomic approaches. Candidate molecules altered by insulin signalling 241 

might include recently identified genes found to be associated with the early stages of 242 

albuminuria in in-bred strains of mice [61]. 243 

 244 

 245 

Reactive oxygen species and diabetic nephropathy 246 

Over the last decade, an attractive unifying hypothesis has been put forward to explain 247 

diabetic microvascular complications; specifically it was postulated that an excess in 248 

cellular substrate availability leads to an increase in reactive oxygen species (ROS) 249 

which in turn drives vascular complications in DN [62]. However, this unifying 250 

hypothesis has been challenged by the negative results of antioxidant-based clinical 251 

trials [63], and a new theory of “mitochondrial hormesis” has been proposed [64], 252 

whereby the increased mitochondrial superoxide production is considered an indicator 253 

of healthy mitochondria and physiologic oxidative phosphorylation. 254 

 255 

Recent research has found a reduction of superoxide in the kidneys of streptozotocin 256 

(STZ)-induced diabetic Akita-mice, as assessed by a combination of in vivo real-time 257 

transcutaneous fluorescence, confocal microscopy, and electron paramagnetic 258 

resonance analysis [65]. The authors of this study found that chronic exposure to high 259 

glucose levels (as occurs in diabetes) results in disrupted mitochondria, which was 260 

associated with a reduced respiration and a lowering in mitochondrial superoxide. 261 

Interestingly, genetic or pharmacological correction of mitochondrial dysfunction by 262 
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improving substrate utilisation was recently found to be renoprotective in a mouse 263 

model of tubulointerstitial fibrosis [66].  264 

 265 

From experimental animal studies it appears that increased cytosolic superoxide and 266 

other non-mitochondrial sources of ROS generation play a prominent role in diabetic 267 

kidney disease and that strategies involving a more targeted (towards specific cellular 268 

compartments such as the cytosol) antioxidant approach, may be important to optimize 269 

renoprotection in diabetes [67]. Along these lines, human studies have shown that 270 

leukocytes obtained from patients with diabetes and DN (when compared with non-271 

diabetics or patients with diabetes without DN) have a reduced maximal respiration 272 

and reserve capacity [68, 69] suggesting that chronic metabolic stress in the presence 273 

of a reduced mitochondrial function (being this primary or secondary) will manifest with 274 

low ATP-linked respiration, low reserve capacity and reduced mitochondrial ROS 275 

generation. 276 

 277 

It could be speculated that metabolic stress could initially (early phase) promote an 278 

excess production of mitochondrial superoxide [62] that will lead, in a subsequent 279 

chronic phase (late phase), towards mitochondrial damage, progressive deterioration 280 

in bioenergetic cellular function, reduced ATP synthesis and cell death. Future work 281 

will address these questions, and need to evaluate whether cells are able to maintain 282 

adequate number of healthy mitochondria which can then burn sufficient substrates for 283 

energy production and maintain a “balanced” level of ROS (Figure 2). 284 

 285 

AMP-activated protein kinase (AMPK) is a stress-activated kinase that is activated in 286 

response to depleting ATP to preserve cell survival under conditions of reduced 287 



 13 

substrate utilisation. AMPK activation has been involved in mitochondrial biogenesis 288 

by leading to increased mitochondrial substrate utilisation and ATP generation, in 289 

parallel with stimulation of antioxidant gene expression to ensure an optimal redox 290 

balance [70]. Reduced AMPK, as seen in the diabetic kidney of both rodents and 291 

humans [65], is associated with reduced catabolic activity (mitochondrial function) [65], 292 

and reduced AMPK-mediated inhibition of NADPH oxidase (Nox2) resulting in 293 

increased ROS production [71, 72]. Taken together, these results suggest that, in the 294 

diabetic kidney, upregulation of AMPK could be therapeutically beneficial in DN [73] to 295 

regulate nutrient utilisation and mitochondrial function towards maintenance of an 296 

optimum redox balance. 297 

 298 

Overall, more work is required in the DN field to dissect between these opposing 299 

theories specifically by examining mitochondrial function and specific ROS moieties 300 

both in vitro and in tissues. 301 

 302 

 303 

Vascular endothelial growth factor-A (VEGFA) and the glycocalyx 304 

Recent studies have shown a connection between insulin resistance and the 305 

subsequent production of VEGFA in podocytes [74]. This finding is likely to be 306 

important in the setting of DN with many elegant studies using transgenic mice 307 

highlighting the importance of podocyte VEGFA levels in the progression of this 308 

condition [4]. A new aspect of VEGFA signalling in the glomerulus is potential cross 309 

talk between VEGFA secreted from podocytes and the GECs glycocalyx in the setting 310 

of diabetes. There is clear evidence that the GECs glycocalyx is lost both systemically 311 

and within the diabetic glomerulus, and that this contributes to both cardiovascular and 312 
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renal complications [6]. Mechanistically there are a number of pathways which led to 313 

loss of the glomerular glycocalyx including hyperglycaemia [75], and ROS [76].  314 

 315 

During the early phases of diabetes an increase in VEGFA causes glycocalyx 316 

shedding from the GECs. Furthermore, the inhibitory isoform of VEGFA called VEGF-317 

A165b also plays a role in maintaining the GECs glycocalyx in diabetes. Oltean et al. 318 

[77] have shown that in diabetic patients with progressive nephropathy, the renal 319 

expression of VEGF-A165b is lost. They went on to develop a number of murine models 320 

of DN and have shown that genetic overexpression or pharmacological administration 321 

of VEGF-A165b to the mouse, acting through VEGF receptor 2 in the GECs, restores 322 

damaged glomerular endothelial glycocalyx and improves renal function. VEGF-A165b 323 

also improved the permeability of isolated human diabetic glomeruli suggesting the 324 

response is conserved across murine and human species [77]. 325 

 326 

VEGFA signalling is only one component of a complex system of molecular cross talk 327 

between the podocyte and glycocalyx. New insights have revealed that molecules 328 

produced by the endothelium can signal to the podocyte and then back to the 329 

glomerular glycocalyx. Using transgenic murine models and conditionally immortalised 330 

murine podocytes and GECs, Garsen et al have shown that endothelin-1 (ET-1), an 331 

endothelial derived vasoconstrictor, is released by the GECs in diabetic conditions and 332 

leads to shedding of the glycocalyx [78]. This is prevented by deleting the ET-1 333 

receptor specifically in the podocyte. This is therapeutically intriguing as there are ET-334 

1 receptor antagonists that have been shown to ameliorate early microalbuminuric 335 

diabetic kidney disease [79]. In the future, therapeutic approaches to maintain the 336 

GECs glycocalyx should be explored in more detail (Figure 3). 337 
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 338 

 339 

SGLT2 and kidney disease 340 

Poor glycaemic control and hyperinsulinaemia (at least in the early phase of diabetes) 341 

lead to upregulation of SGLT2 expression and proximal tubular SGLT2-mediated 342 

sodium-glucose reabsorption [80], which in turns is believed to also contribute to higher 343 

blood pressure levels [81]. SGLT2 inhibitors have recently been developed as oral 344 

hypoglycaemic agents [82]. The SGLT2 antagonists block the sodium-coupled energy 345 

dependent glucose proximal tubular reabsorption resulting in improvement in diabetes 346 

control, weight loss and blood pressure lowering. Recent clinical trials have 347 

demonstrated a dramatic cardiovascular [83] and renoprotective [84] effect of the 348 

SGLT2 inhibitor empaglifozin. 349 

The mechanism by which SGLT2 inhibitors exert their renoprotective effects is 350 

currently unknown. One possibility is that the improvement in renal disease is 351 

secondary to activation of tubuloglomerular feedback, a prime mechanism that 352 

determines a reduction in glomerular capillary pressure [85]. A complementary 353 

mechanism may be that the inhibition of enhanced tubuli sodium-coupled glucose 354 

transport seen in diabetes would result in diminished tubulointerstitial injury and 355 

progression of DN [81]. The use of SGLT2 inhibitors in combination with inhibitors of 356 

the renin-angiotensin-aldosterone system in patients with diabetes may confer some 357 

renoprotection via upregulation of ACE2 and angiotensin 1-7/ 1-9 [86] which retains a 358 

vasodilatory, anti-proliferative, anti-inflammatory and anti-oxidative stress effect [87].  359 

Inhibition of SGLT2 increased expression and activity in diabetes [85] has been 360 

paralleled by activation of AMPK [88], an could promote a favourable renal outcome.  361 
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In parallel to these “renal mechanisms”, natriuresis and plasma volume contraction 362 

paralleled by blood pressure reduction has been also been proposed as a “systemic” 363 

renoprotective mechanisms for SGLT2 inhibitors [89](Figure 4). 364 

 365 

Concluding Remarks and Future Perspectives  366 

Glomerular cellular insulin resistance plays an important role in mitochondrial 367 

dysfunction-ER stress and the UPR, which contribute to glomerular cell dysfunction 368 

and progressive kidney disease. AMPK, with its important role in mitochondrial 369 

function, could represent a potential target for treatment in DN; more studies are 370 

required to assess the role of AMPK on podocyte biology and the regulation of the 371 

glomerular filtration barrier. A link between the tubular compartment and the 372 

glomerulus is evident in the pathophysiology of tubular SGLT2-mediated Na-coupled 373 

glucose reabsorption in diabetes, however it is not yet completely clear what are the 374 

mechanisms underlying these beneficial effects. Future studies will need to better 375 

dissect the cellular mechanisms underlying the proposed pathways outlined in this 376 

article, specifically focusing on the physiology of the nephron as a whole entity, and 377 

by identifying potentially targetable molecules for future treatment.   378 

 379 
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TABLE 1  394 

Diabetes results in inflammation, increased adiposity and chronic hyperglycaemia 395 

which drive podocyte insulin resistance resulting in disruption to podocytes and the 396 

glomerulus.  (NOD2: Nucleotide-binding oligomerization domain containing protein 2, 397 

TLR: Toll-like receptor, SMAD: vertebrate homologues of Sma and Mad; FFAs: free 398 

fatty acids; SHP-1: Src homology-2 domain-containing phos- phatase-1) 399 

 400 

Diabetes related 
phenotypes 

Molecular 
mechanisms 

Glomerular phenotype REF # 

Chronic 
inflammation 

Increased NOD2 

Increased pro-
inflammatory responses 
and impaired insulin 
signaling 

 [22] 

Increased TLR 
Podocyte inflammation 
and insulin resistance  

  [23] 

Increased SMAD 
Mitochondrial 
dysfunction and insulin 
resistance in podocytes 

    [21] 

Obesity 

Decreased 
adiponectin 

Albuminuria and 
increased oxidative 
stress in podocytes 

    [24] 

Increased FFAs 

Inhibition of insulin-
stimulated glucose 
uptake in human 
podocytes 

    [26] 

Elevated blood 
sugar 

Increased SHP-1 
Podocyte insulin 
resistance and 
detachment 

     [27] 

Ubiquitination and 
degradation of 
components of insulin 
signaling pathway  

Diabetic glomerulopathy 
and albuminuria 

     [28] 

 401 
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Figure legends: 402 

 403 

Figure 1: Schematic structure of a normal and diabetic glomeruli.  404 

(A) Schematic representation of a normal glomerular structure. (B) The major 405 

glomerular structural changes occurring in diabetic glomerulopathy. Note the 406 

extensive mesangial expansion, the thickening of the glomerular basement membrane 407 

(GBM), the detachment of podocyte, and the impairment in the glycocalyx and 408 

glomerular endothelial cells (GECs). 409 

 410 

Figure 2: Hypothetical shift of superoxide level imbalance in diabetic 411 

complications. 412 

Acute (early phase) exposure of cells to elevated glucose levels results in upregulation 413 

of glucose oxidation with pyruvate-mediated stimulation of the tricarboxylic acid (TCA) 414 

cycle with increased production of electron donors (NADH, FADH2) that, via the 415 

electron transport chain, will results in an excess generation of superoxide (O2
-). Cells 416 

chronically exposed to elevated glucose levels (late phase) will result in reduction in 417 

the availability of acetyl-CoA (secondary to inhibition of pyruvate dehydrogenase 418 

activity) for the mitochondria resulting in reduced electron transport chain activity, a 419 

fall in mitochondrial ATP production, less mitochondria superoxide production and 420 

cellular dysfunction. 421 

 422 

Figure 3: Glomerular cell cross-talk and glycocalyx.  423 

Transmission electron microscopy image of the glomerular filtration barrier (podocyte 424 

glomerular basement membrane (GBM), glomerular endothelial cells (GEC), and 425 

glycocalyx) highlighting how molecules produced by the podocytes and endothelium 426 
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(via the podocyte) can signal to the glomerular glycocalyx. Recently identified key 427 

molecules such as VEGF-A165b, VEGF-C, and angiopoietin-1 (ANGPT1) confer a 428 

beneficial effect (green arrows) towards glycocalyx maintenance. Conversely VEGF-429 

A165 and Endothelin (secreted by GECs and signals to the Endothelin-1 receptor in the 430 

podocyte causing this cell to release heparanase, which then acts on the glomerular 431 

glycocalyx to cleave heparin sulphate) promote shedding of the GECs glycocalyx (red 432 

arrows).  433 

 434 

Figure 4: Proposed SGLT2 inhibition-mediated renoprotective mechanisms. 435 

SGLT2 inhibition blocks sodium-glucose coupled glucose reabsorption at the S1 S2 436 

segment of the proximal tubule. The net result is loss of glucose and sodium (the latter 437 

especially in patients on renin angiotensin aldosterone blockade) in the urine, with 438 

secondary weight loss, improvement in glycaemic control, blood pressure fall, and 439 

plasma volume contraction. These effects confer cardiac and renal protection in 440 

patients with diabetes. (ACE2: angiotensin converting enzyme 2) 441 

  442 
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OUTSTANDING QUESTIONS BOX 

 

- What are the main pathway/s that link insulin action, mitochondrial function and UPR? 

- What are the mitochondrial-driven mechanisms that predispose towards faster kidney 

disease progression in diabetes? Is there an alteration in the mitochondria driven UPR-

mediated response towards cell survival or is it a primary alteration in UPR response?  

- Does AMPK, with its important role as a regulator of nutrient utilisation and mitochondrial 

function, represent a real answer to diabetes mediated ER-stress mitochondria 

dysfunction, UPR, and, if so, what are the mechanisms? 

- Could targeting the glycocalyx be a new therapeutic approach for diabetic nephropathy? 

What are the important molecular signals from the podocyte and endothelium which 

regulate the glycocalyx? 

- How does SGLT2 inhibition confer reno-protection? Is it about SGLT2-driven sodium and 

volume loss (systemic effect) or tubuloglomerular feedback and inflammation (intrarenal 

effect)? Are these mechanisms behind the renoprotective effects of these drugs? 

 

 



TRENDS BOX: 

- Insulin resistance is a key mechanism for diabetic glomerulopathy. 

- Disruption in the molecular communication between glomerular podocytes and endothelia 

is critical in the progression of diabetic nephropathy. 

- Raised (but not too elevated) mitochondrial superoxide cellular levels in parallel with 

healthy mitochondria are protective against progression of diabetic kidney disease. 

- A reduction in maximal mitochondrial respiration and reserve capacity could represent an 

important driving force for kidney disease progression in diabetes. 

- Inhibition of SGLT2-mediated sodium-coupled glucose transport confers renoprotection of 

similar magnitude of inhibitors of the renin-angiotensin-aldosterone system. 

 

 


