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SUMMARY

The paper addresses an on-line, simultaneous input and parameter estimation problem for a first-order
system affected by measurement noise. This problem is motivated by practical applications in the area of
engine control. Our approach combines an input observer for the unknown input with a set-membership
algorithm to estimate the parameter. The set-membership algorithm takes advantage of a priori available
information such as (i) known bounds on the unknown input, measurement noise and time rate of change
of the unknown input; (ii) the form of the input observer in which the unknown parameter affects only the
observer output; and (iii) the input observer error bounds for the case when the parameter is known
exactly. The asymptotic properties of the algorithm as the observer gain increases are delineated. It is
shown that for accurate estimation the unknown input needs to approach the known bounds a sufficient
number of times (these time instants need not be known). Powertrain control applications are discussed
and a simulation example based on application to engine control is reported. A generalization of the basic
ideas to higher order systems is also elaborated. Copyright # 2006 John Wiley & Sons, Ltd.

KEY WORDS: input observers; set-membership parameter estimation; adaptive control; engine control

1. INTRODUCTION

In this paper, we consider a problem of simultaneous input and parameter estimation. Although
generalizations to higher order systems will be touched upon later in the paper, for the most part
our developments concern a first-order system,

’x ¼ yTzðtÞ þ uðtÞ ð1Þ

In (1), x is a scalar state variable, u is a scalar input variable, y is an m-vector of constant
parameters, and zðtÞ is an m-vector. Our objective is, by measuring xðtÞ and from the assumption
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that zðtÞ is known at each time t (but not prior to time t), to simultaneously estimate the
unknown input uðtÞ and the unknown constant parameter vector, y:

This problem (even in the first-order case) arises quite frequently in applications. For in-
stance, in mechanical systems first-order dependencies exist between translational velocity and
forces, angular rate of rotation and torques, pressure or mass in a volume and inlet/outlet flows,
etc. In these situations, the practical need to estimate and adapt models of unmeasured forces,
torques or flows can rather naturally lead to the problem formulation which we treat here. We
will touch upon several concrete examples of this kind, which arise in the automotive appli-
cations, later in the paper.

In the subsequent treatment of this problem, we assume that the signal xðtÞ can be measured
but its measurements are contaminated by noise, zðtÞ; so that

yðtÞ ¼ xðtÞ þ zðtÞ; sup
t50

jzðtÞj4m ð2Þ

where m is a known upper bound on the noise.}

It is clear that without additional assumptions y and u are not uniquely identifiable from the
observed time-histories of x and z: Indeed, if y and u are such that ’xðtÞ ¼ yTzðtÞ þ uðtÞ; then with

*uðtÞ ¼ uðtÞ þ 1
2
yTzðtÞ; *y ¼ 1

2
y it is also true that ’xðtÞ ¼ *yTzðtÞ þ *uðtÞ: As we will show in this

paper, if the bounds on the unknown input, u; and its time rate of change are known and are
tight at some time instants (which do not need to be known), then y and u can be accurately
estimated. Specifically, let

%
uðtÞ and %uðtÞ denote, respectively, the lower and upper bounds on uðtÞ

that are known at each time t (but may not be known prior to time t), and let h denote the a
priori known bound on j’uj; i.e.

%
uðtÞ4uðtÞ4%uðtÞ; t50 ð3Þ

sup
t50

j’uðtÞj4h ð4Þ

Even if bounds (3), (4) are known, additional conditions on their tightness at some time
instants will be needed. Indeed, if

%
uðtÞ5uðtÞ5%uðtÞ; t50; supt50 j’uðtÞj5h and ’x ¼ yTzðtÞ þ uðtÞ

then for *uðtÞ ¼ uðtÞ þ ezðtÞ; *y ¼ y� e; where jej is sufficiently small, it also follows that

’xðtÞ ¼ *yTzðtÞ þ *uðtÞ;
%
uðtÞ4*uðtÞ4%uðtÞ; t50; and supt50j’*uðtÞj4h: Specific bound tightness

conditions that guarantee accurate input and parameter estimation will be developed in this
paper.

Bound tightness conditions are typically used in bounded error identification problems (see
e.g. Reference [1]) to assure parameter convergence. Note, however, that system (1), (2) is not in
the form treated in Reference [1]. Earlier conference papers [2, 3] have described our approach
and have included some of the results of this paper.

An estimation algorithm should also take an advantage of any a priori known bounds on the
unknown parameter. Specifically, we assume that at t ¼ 0 it is known that

y 2 Y0 ð5Þ

where Y0 is a specified compact set in Rm:

}The functions z and z are assumed to be Lebesgue-measurable and bounded.
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The paper is organized as follows. In Section 2, we review the estimation procedure
for u based on the input observer proposed in Reference [4] for the case when y is known.
In Section 3, we combine this input observer with a set-membership [5–7] algorithm to estimate
y on-line. The set-membership algorithm takes advantage of bounds (3), (4), (5) and of the input
observer error bound if the parameter were accurately known. A special structure of the
input observer, with the parameter affecting only the observer output equation, facilitates
the application of the set-membership procedure. In Section 4, we summarize the asymptotic
properties of our input and parameter estimation algorithm, as the observer gain increases
and the measurement noise magnitude decreases. The computational implementation of the
set-membership algorithm updates is briefly discussed in Section 5. In Section 6, we discuss the
applications of the results to internal combustion engines.

For the special case of m ¼ 1; our approach and the relevant results have been previously
reported in the conference article [2]. While our approach is closest to Reference [1], the problem
can be also treated with other techniques, including References [8–11]. Reference [12] applies
these techniques to a vehicle adaptive control problem in which vehicle mass and the time-
varying road grade are simultaneously estimated.

Note that a higher dimensional case, ’X ¼ ZTðtÞyþ uðtÞ; where XðtÞ is an n-vector, uðtÞ is an
n-vector and ZðtÞ is an m� n matrix can be viewed as a set of n systems of form (1); the bounds
for y on the basis of each of these first-order systems can be intersected to obtain tighter bounds
for y: Thus this higher dimensional case reduces to the first-order case considered in the paper.
More details about this approach are provided in Appendix A.

2. THE INPUT OBSERVER

In this section, we describe the design of an input observer for system (1), (2) in the case when
y is accurately known. Specifically, we consider an input observer in the form proposed in
Reference [4],

#uðtÞ ¼ eðtÞ þ a0yðtÞ þ yTfðtÞ

’f ¼ � a0f� a0z

’e ¼ � a0e� a20y ð6Þ

Here a0 > 0 is the observer gain and the states of the observer are f and e: Similar filters have
been previously employed in the composite adaptation literature [13].

We next study the observer properties when it is initialized according to the following
procedure:

fð0Þ ¼ zð0Þ

eð0Þ ¼ 1
2
ð
%
uð0Þ þ %uð0ÞÞ � a0yð0Þ � #yTzð0Þ ð7Þ

where #y 2 Y0: Note that with #y ¼ y; it follows that #uð0Þ ¼ 1
2
ð
%
uð0Þ þ %uð0ÞÞ; which is the best

estimate of uð0Þ: The subsequent developments require, however, that we also characterize the
worst-case error when the observer is initialized with #y=y: The observer error bounds are
obtained in the following.
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Proposition 1
If (1)–(6) hold, then for any fð0Þ; zð0Þ the error #uðtÞ � uðtÞ is ultimately bounded (as t!1) in
an interval ½�2a0m� ðh=a0Þ; 2a0mþ ðh=a0Þ�: If, in addition, (7) holds then the error between #uðtÞ
and uðtÞ satisfies the following bound:

j#uðtÞ � uðtÞj4Ra0mðtÞ

Ra0mðtÞ ¼ a0mþ e�a0t
3

4
ð%uð0Þ �

%
uð0ÞÞ2 þ 3a20m

2 þ 3 max
y;#y2Y0

ððy� #yÞTzð0ÞÞ2
 ! 

þ a0mþ
h

a0

� �2
!1=2

ð8Þ

Proof
Let

*#u ¼ eðtÞ þ a0xðtÞ þ yTfðtÞ

¼ #uðtÞ � a0zðtÞ

and

V ¼ 1
2
ð*#u� uÞ2

In the proof, we make repeated use of the identities ðaþ bþ cÞ243a2 þ 3b2 þ 3c2; 2jabj4
ða2=dÞ þ b2d that hold for any a; b; c and d > 0: By differentiating V with respect to time, we
obtain

’V ¼ ð�a0e� a20x� a20zþ a0y
Tzþ a0uþ yTð�a0fÞ þ yTð�a0zÞ � ’uÞð*#u� uÞ

¼ ð�a0ðeþ a0xþ yTf� uÞ � a20z� ’uÞð*#u� uÞ

¼ � a0ð*#u� uÞ2 þ ð�a20z� ’uÞð*#u� uÞ

4 �
a0
2
ð*#u� uÞ2 þ

1

2a0
a20mþ sup

t
j’uðtÞj

� �2

¼ � a0V þ
1

2a0
a20mþ sup

t
j’uðtÞj

� �2

Recall that if for some constant r;
’V4� a0V þ r

then

VðtÞ4e�a0tVð0Þ þ ð1� e�a0tÞ
r

a0
4e�a0tVð0Þ þ

r

a0

Using this and (4), we obtain

VðtÞ4e�a0tVð0Þ þ
ða20mþ supt j’uðtÞjÞ

2

2a20

j*#uðtÞ � uðtÞj4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�a0tð*#uð0Þ � uð0ÞÞ2 þ

ða20mþ hÞ2

a20

s
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This inequality, (2) and #uðtÞ ¼ *#uþ a0zðtÞ show that the error #uðtÞ � uðtÞ is ultimately bounded (as
t!1) in an interval ½�2a0m� ðh=a0Þ; 2a0mþ ðh=a0Þ�: To demonstrate (8), we need to upper
bound ð*#uð0Þ � uð0ÞÞ2 under the assumption that (7) holds. From (7), we have

*#uð0Þ ¼ 1
2
ð
%
uð0Þ þ %uð0ÞÞ � a0zð0Þ þ ðy� #yÞTzð0Þ

Using (3), we conclude that

ð*#uð0Þ � uð0ÞÞ24
1

2
ð
%
uð0Þ þ %uð0ÞÞ � uð0Þ

� �
� a0zð0Þ þ ðy� #yÞTzð0Þ

� �2

4
3

4
ð%uð0Þ �

%
uð0ÞÞ2 þ 3a20m

2 þ 3 max
y;#y2Y0

ððy� #yÞTzð0ÞÞ2

and (8) follows. The proof is complete. &

Remark 1
According to Proposition 1, the error #uðtÞ � uðtÞ is guaranteed to be ultimately bounded (as
t!1) in an interval ½�2a0m� ðh=a0Þ; 2a0mþ ðh=a0Þ�: Consequently, increasing the observer
gain, in general, improves the accuracy of estimating the input but it may make the observer
more sensitive to measurement noise. The interval ultimately bounding the error and Ra0mðtÞ for
large t are minimized if a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=ð2mÞ

p
:

The asymptotic properties of the error bound are summarized in the following.

Proposition 2
Suppose the assumptions of Proposition 1 (including (7)) hold and a0 !1; m! 0; a0m! 0:
Then, Ra0mðtÞ ! 0; and #uðtÞ ! uðtÞ 8t > 0:

Proposition 2 follows immediately from the error bound (8). It implies that a large observer
gain (relative to the rate of change of the input) and negligible noise guarantee accurate input
estimation by the observer. Note, however, that in practical applications the sampling rate
would limit the observer gain even if there is no noise.

A disadvantage of the error bound (8) is that it scales proportionally to the measurement
noise. The following proposition shows that the estimation error can be small even if the
measurement noise is large if this noise is slowly varying (i.e. low frequency). In fact, in this case
the noise magnitude, m; is irrelevant for the error bound.

Proposition 3
Suppose (1)–(6) hold and, in addition, ’z is a Lebesgue-measurable function such that
supt j’zðtÞj4Z: Then for any fð0Þ; zð0Þ the error #uðtÞ � uðtÞ is ultimately bounded (as t!1) in an
interval ½�Z� ðh=a0Þ; Zþ ðh=a0Þ�: If, in addition, (7) holds then the error between #uðtÞ and uðtÞ
satisfies the following bound:

j#uðtÞ � uðtÞj4 %Ra0ZðtÞ

%Ra0ZðtÞ ¼ e�a0t
1

2
ð%uð0Þ �

%
uð0ÞÞ2 þ 2 max

y;#y2Y0
ððy� #yÞTzð0ÞÞ2

 !
þ Zþ

h

a0

� �2
 !1=2

ð9Þ
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Proof
The proof follows similarly to Proposition 1 with

V ¼ 1
2
ð#u� uÞ2

Then,

’V ¼ ð#u� uÞða0ðu� #uÞ þ a0’z� ’uÞ

¼ � a0ðu� #uÞ2 þ ð#u� uÞða0’z� ’uÞ

4 � a0V þ
ða0Zþ hÞ2

2a0
Hence,

VðtÞ4e�a0tVð0Þ þ
ðZþ ðh=a0ÞÞ

2

2

and using

#uð0Þ ¼ eð0Þ þ a0yð0Þ þ yTfð0Þ ¼ 1
2
ð
%
uð0Þ þ %uð0ÞÞ þ ðy� #yÞTfð0Þ

Equation (9) follows similar to the proof of Proposition 2. The proof is complete. &

Bound (9) shows, in particular, that arbitrary constant measurement offsets due to sensor drifts,
i.e. y ¼ xþ z; where ’zðtÞ � 0 can be handled by the observer irrespective of the offset magnitude.

Remark 2
According to Proposition 3, the error #uðtÞ � uðtÞ is guaranteed to be ultimately bounded (as
t!1) in an interval ½�Z� ðh=a0Þ; Zþ ðh=a0Þ�: This interval and %Ra0ZðtÞ for large t decrease as
a0 increases.

The asymptotic properties of the alternative error bound can be summarized in the following.

Proposition 4
Suppose the assumptions of Proposition 3 (including (7)) hold and a0 !1: Then, %Ra0ZðtÞ ! Z
for any t > 0: Furthermore, if a0 !1; Z! 0 then %Ra0ZðtÞ ! 0 for t > 0:

An additional insight into the results in Propositions 1 and 3 can be obtained if we pre-
multiply both sides of (1) and (2) by the transfer function a0s=ðsþ a0Þ: Then,

a0s
sþ a0

y�
a0s

sþ a0
z ¼ �yTfþ

a0
sþ a0

u

After algebraic manipulations, this implies

a0yþ eþ yTf ¼
a0

sþ a0
uþ

a0s
sþ a0

z

Hence,

u� #u ¼
s

sþ a0
u�

a0s
sþ a0

z
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This easily derived expression confirms and additionally explains the nature of results in Prop-
ositions 1 and 3.

Remark 3
In the derivations of the error bounds and throughout the paper, we assumed that the noise only
affects the measurements of x and that the signal z is noise-free. If the noise affects z; similar
bounds can be derived. Suppose, for example, xðtÞ 2 S is the noise additive to zðtÞ; where
S� Rm is a compact set. Suppose also that the measurement noise zðtÞ in (2) can be decom-
posed into the sum of two terms, zðtÞ ¼ z1ðtÞ þ z2ðtÞ; where supt50 jz

1ðtÞj4m and supt50

j’z2ðtÞj4Z: This assumption on the measurement noise generalizes the two cases which we pre-
viously treated separately, and it may lead to less conservative bounds. Define

k ¼ max
y2Y0;x2S

jyTxj

Then (7) implies the following error bound:

j#uðtÞ � uðtÞj4 *Ra0mZkðtÞ

where

*Ra0mZkðtÞ ¼a0mþ e�a0t ð%uð0Þ�
%
uð0ÞÞ2 þ 4a20m

2þ 4 max
y;#y2Y0;xð0Þ2S

ðððy� #yÞTzð0ÞÞ2 þ ððy� #yÞTxð0ÞÞ2Þ

" # 

þ a0mþ kþ Zþ
h

a0

� �2!1=2

This more general bound, *Ra0mZkðtÞ; can be used in the subsequent developments in exactly the
same manner as either Ra0mðtÞ or %Ra0ZðtÞ:

Remark 4
Our formulation of the input observer (6) and the derivations of the above error bounds have
been performed in continuous-time. In the actual implementation of (6), inadequate (i.e. slow)
sampling and approximation of (6) by a discrete-time system, such as

#uðtÞ ¼ edðtÞ þ a0yðtÞ þ yTfdðtÞ

fd ðtþ DtÞ ¼ e�a0DtfdðtÞ � ð1� e�a0DtÞzðtÞ

edðtþ DtÞ ¼ e�a0DtedðtÞ � ð1� e�a0DtÞa0yðtÞ

may result in additional and nonnegligible errors. These errors due to sampling (easily shown to
be in the order of the sampling period, Dt; under appropriate assumptions) can be estimated and
included in the input observer error bounds. Their treatment and the issues of optimally se-
lecting the sampling rate, to balance good input observer accuracy with the containable com-
puting effort, will be addressed in the future work.

We next consider the case when both u and y are unknown.
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3. ON-LINE PARAMETER ESTIMATION

If the parameter y is not known, then in the input observer (6) we replace y by its estimate #y so
that

#uðtÞ ¼ eðtÞ þ a0yðtÞ þ #yTfðtÞ

’f ¼ � a0f� a0z

’e ¼ � a0e� a20y ð10Þ

Since #y affects only the observer output, #u; and not the observer dynamics (i.e. the equations for
’f and ’e), we may view (10) as an infinite family of concurrent observers for #u; each corre-
sponding to a particular value of #y:

The available information, besides (3) and (5), is either jzðtÞj4m or j’zðtÞj4Z: Suppose, for
example, that jzðtÞj4m and the conditions of Proposition 1 hold (the case when j’zðtÞj4Z and the
conditions of Proposition 3 hold can be treated in the same way). Then, if in (10) we had #y ¼ y
(i.e. we guessed the parameter right), we would have

uðtÞ � Ra0mðtÞ4#uðtÞ4uðtÞ þ Ra0mðtÞ

Using the a priori bound (3), we obtain

%
uðtÞ � Ra0mðtÞ4#uðtÞ4%uðtÞ þ Ra0mðtÞ ð11Þ

Due to (10), inequality (11) is equivalent to

%
uðtÞ � Ra0mðtÞ � eðtÞ � a0yðtÞ4#yTfðtÞ4%uðtÞ þ Ra0mðtÞ � eðtÞ � a0yðtÞ ð12Þ

Definition
A set YðtÞ of plausible parameter estimates at time t > 0 is the set of all #y 2 Rm yielding (12).

Note that YðtÞ is nonempty for each t > 0 because y 2 YðtÞ: Setting Yð0Þ ¼ Y0; we denote

FðtÞ ¼4
\

04t4t

YðtÞ ð13Þ

Since y 2 YðtÞ for t50; y 2 FðtÞ:

Remark 5
Suppose the time-rate of change of the noise is bounded by Z but the upper bound on the noise
magnitude is unknown, as in Proposition 3. Then, (12), (13) still hold but in (12), Ra0mðtÞ should
be replaced by %Ra0ZðtÞ; defined in (9).

Note that, in general, #y 2 FðtÞ does not uniquely identify #y: The selection of a specific #y 2 FðtÞ
at time t can be made in a number of different ways. One choice, motivated by the set-
membership estimation literature (see e.g. Reference [14]), is to use the Chebyshev centre of FðtÞ:
This is the point for which the maximum distance to any other point within FðtÞ is minimized.

Since Fðt1Þ � Fðt2Þ for t15t2; FðtÞ provides tighter and tighter overbounds of the
unknown parameter fyg as t increases. We next seek conditions guaranteeing that FðtÞ for
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t > 0 provides as tight overbound of y as possible and converges to fyg as the observer gain, a0;
increases.

4. ASYMPTOTIC PROPERTIES

Consider the asymptotic properties of the set FðtÞ; defined by (13), as a0 !1;m! 0;ma0 ! 0:
Subtracting yTfðtÞ from each part of inequality (12), we obtain an equivalent inequality,

ð
%
uðtÞ � uðtÞÞ þ ðuðtÞ � eðtÞ � a0yðtÞ � yTfðtÞÞ � Ra0mðtÞ

4ð#y� yÞTfðtÞ4ð%uðtÞ � uðtÞÞ þ ðuðtÞ � eðtÞ � a0yðtÞ � yTfðtÞÞ þ Ra0mðtÞ

Applying Proposition 1, we obtain the estimate

ð
%
uðtÞ � uðtÞÞ � 2Ra0mðtÞ4ð#y� yÞTfðtÞ4ð%uðtÞ � uðtÞÞ þ 2Ra0mðtÞ ð14Þ

Inequality (14) leads to the tightest constraints on ð#y� yÞ at the time instants when the
bounds

%
uðtÞ and %uðtÞ are tight. Specifically, suppose there exist time instants t11; . . . ; t

n1
1 and

t12; . . . ; t
n2
2 such that uðti1Þ ¼

%
uðti1Þ; i ¼ 1; . . . ; n1; uðti2Þ ¼ %uðti2Þ; i ¼ 1; . . . ; n2: At these time

instants, (14) implies

fTðti1Þð#y� yÞ5� 2Ra0mðt
i
1Þ; i ¼ 1; . . . ; n1

fTðtj2Þð#y� yÞ42Ra0mðt
j
2Þ; j ¼ 1; . . . ; n2

ð15Þ

Theorem 1
Suppose FðtÞ is defined by (13) and there exist time instants t11; . . . ; t

n1
1 > 0 and t12; . . . ; t

n2
2 > 0 such

that

uðti1Þ ¼
%
uðti1Þ; i ¼ 1; . . . ; n1

uðtj2Þ ¼ %uðtj2Þ; j ¼ 1; . . . ; n2
ð16Þ

Define a matrix

S ¼

zTðt11Þ

zTðt21Þ

..

.

zTðtn11 Þ

�zTðt12Þ

..

.

�zTðtn22 Þ

2
666666666666666664

3
777777777777777775

2 Rðn1þn2Þ�m ð17Þ

Suppose the only solution to the system of linear inequalities

S *y40; *y 2 Rm ð18Þ
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is *y ¼ 0: Suppose further that z in (1) is differentiable with ’z being bounded. Then for
t > maxft11; . . . ; t

n1
1 ; t

1
2; . . . ; t

n2
2 g it follows that FðtÞ ! fyg and #uðtÞ ! uðtÞ as a0 !1; m! 0; and

a0m! 0:

Proof
From (15), the following set inclusion holds for t > maxft11; . . . ; t

n1
1 ; t

1
2; . . . ; t

n2
2 g:

FðtÞ � fyg þQ1
[

Q2ða0;mÞ ð19Þ

where

Q1 ¼f*y 2 Rm : 9#y 2 Y0; y 2 Y0 such that *y ¼ #y� y

zTðti1Þ*y40; � zðtj2Þ
T *y40; i ¼ 1; . . . ; n1; j ¼ 1; . . . ; n2g

Q2ða0;mÞ ¼ f*y 2 Rm : 9#y 2 Y0; y 2 Y0 such that

*y ¼ #y� y; 05zTðti1Þ*y42Ra0mðt
i
1Þ � ðfðt

i
1Þ þ zðti1ÞÞ

T *y

05� zTðtj2Þ*y42Ra0mðt
j
2Þ � ðfðt

j
2Þ þ zðtj2ÞÞ

T *y

i ¼ 1; . . . ; n1; j ¼ 1; . . . ; n2:g

Since S *y40 implies *y ¼ 0; it follows that Q1 ¼ f0g and S has full column rank. The latter and
the compactness of Y0 imply that Q2ða0; mÞ is bounded. As a0 !1; it follows, with the help of
integration by parts, that

fðti1Þ þ zðti1Þ ¼ e�a0t
i
1zð0Þ �

Z ti
1

0

e�a0ðt
i
1
�tÞa0zðtÞ dtþ zðti1Þ

¼ e�a0t
i
1zð0Þ � zðti1Þ þ

Z ti
1

0

e�a0ðt
i
1
�tÞ ’zðtÞ dtþ zðti1Þ

! 0

for i ¼ 1; . . . ; n1: Similarly, as a0 !1; it follows that fðt
j
2Þ þ zðtj2Þ ! 0; j ¼ 1; . . . ; n2: Further, as

a0 !1; m! 0; a0m! 0 it follows that Ra0mðt
i
1Þ ! 0 and Ra0mðt

j
2Þ ! 0; i ¼ 1; . . . ; n1;

j ¼ 1; . . . ; n2: Thus Q2ða0;mÞ ! f0g: This completes the proof. &

Remark 6
Suppose that the time-rate of change of the noise is bounded by Z; as in Proposition 3. Then,
with FðtÞ defined by (12), (13), where Ra0m is replaced by %Ra0Z in (12), and under the remaining
assumptions of Theorem 1, the result of Theorem 1 holds as a0 !1; Z! 0:

Remark 7
Theorem 1 indicates that accurate input and parameter estimation becomes possible when the
unknown input touches its bounds a sufficient number of times. Note that the knowledge of
what these time instants are is not required.

Figure 1 illustrates graphically conditions (17)–(18) in the case m ¼ 2; n1 ¼ 2; n2 ¼ 1:
As Figure 1(a) shows, it may be possible to accurately estimate (in the sense of Theorem 1)
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two unknown parameters if the unknown input touches its bounds just three times. Figure 1(b)
indicates, however, that three touches may not always be enough.

In the general case, the inequality consequence, S *y40 implies *y ¼ 0; can be checked using a
linear programming solver (this is a feasibility problem) or, more elegantly, via the Farkas
lemma. Specifically, the necessary and sufficient condition for it to hold is the existence of a
matrix X 2 Rðn1þn2Þ�2m with all nonnegative elements such that

STX ¼

1 �1 0 0 � � � 0 0

0 0 1 �1 � � � 0 0

..

. ..
. ..

. ..
.
� � � ..

. ..
.

0 0 0 0 � � � 1 �1

2
6666664

3
7777775

ð20Þ

The MATLABk function lsqnonneg can be used for a straightforward computational check if X
satisfying (20) with all nonnegative elements exist.

We note that a condition from the identification literature, that the matrix J ¼Pn1
i¼1 zðti1Þz

Tðti1Þ þ
Pn2

j¼1 zðtj2Þz
Tðtj2Þ is positive-definite, is only necessary but, as simple exam-

ples in the case m ¼ 1 show, not sufficient for S *y40 to imply *y ¼ 0: However, if FðtÞ is defined
by (13), J is positive-definite and n1 ¼ n2; ti1 ¼ ti2; i ¼ 1; . . . ; n1 (i.e.

%
uðti1Þ ¼ uðti1Þ ¼ %uðti1Þ), then

FðtÞ ! fyg and #uðtÞ ! uðtÞ for t5maxft11; . . . ; t
n1
1 g as a0 !1; m! 0; a0m! 0: The same result

holds if FðtÞ is defined as in Remark 7 and a0 !1; Z! 0:
Suppose now that for any T > 0 there exist time instants ti1 > T ; i ¼ 1; . . . ; n1; and tj2 > T ;

j ¼ 1; . . . ; n2; which satisfy the conditions of Theorem 1 (i.e. conditions of Theorem 1 hold

z(  )t1
1

-z(  )t2
1

z(  )t1
2

(a)

z(  )t1
1

-z(  )t2
1

z(  )t1
2

(b)

θ1θ1

θ2
θ2

∼ ∼

∼∼

Figure 1. Graphical illustrations of conditions (17)–(18) for m ¼ 2; n1 ¼ 2 and n2 ¼ 1: (a) conditions hold;
and (b) conditions do not hold.

kMATLAB is a registered trademark of the MathWorks Inc. of Natick, MA.

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (in press)

SIMULTANEOUS INPUT AND PARAMETER ESTIMATION



persistently). Then the asymptotic bounds on FðtÞ as t!1 can be characterized on the basis of
(19). In particular, for any d > 0; there exist T > 0 such that if the matrix F is defined by (17)
with z replaced by f and is of full column rank, and if t > maxfti1; t

j
2; i ¼ 1; . . . ; n1; j ¼ 1; . . . ; n2g;

then

FðtÞ � fyg þ ðdþ 4a0mþ ð2h=a0ÞÞjjðFTFÞ�1FTjjB1

where jj � jj denotes 1-matrix norm and B1 is the 1-norm unit ball in Rm:

5. COMPUTATIONAL DETAILS

While the on-line implementation of the input observer (10) is straightforward, the on-line
implementation of (13) warrants further discussion.

Firstly, the continuous-time version of (13) can be replaced by a sampled-data version,
FðtÞ � FdðkÞ:

FdðkÞ ¼
\

t¼0;D;...;k�D

YðtÞ; k � D4t5ðkþ 1Þ � D

Yð0Þ ¼Y0 ð21Þ

where D is the time period between two updates of Fd : In a recursive form,

Fdðkþ 1Þ ¼ FdðkÞ
\

Yððkþ 1Þ � DÞ; Fd ð0Þ ¼ Y0 ð22Þ

Note that FðtÞ 2 FdðkÞ for k � D4t5ðkþ 1Þ � D: Furthermore, if the assumptions of Theorem 1
(or Remark 6) hold for ti1 ¼ ki1D; tj2 ¼ kj2D; k

i
1; k

j
2 2 Z

þ; i ¼ 1; . . . ; n1; j ¼ 1; . . . ; n2 then the
conclusion of Theorem 1 (or Remark 6, respectively) holds for FdðkÞ; k5maxfk11; . . . ; k

n1
1 ;

k12; . . . ; k
n2
2 g:

Secondly, for real-time implementation it is highly desirable that the representation
of Fd ðkÞ; update (22) and the computation of the Chebyshev centre of FdðkÞ (since #yðtÞ
for k � D4t5ðkþ 1ÞD is set equal to the Chebyshev centre of FdðkÞ) are as simple as
possible.

Standard algorithms in the set-membership literature can be used for on-line construction of
easily computable overbounds of Fd ðkÞ: Well-developed procedures exist based on bounding
methods for an intersection of an ellipsoid and a strip [15] or a parallelotope and a strip [16]. See
also Reference [1].

In our work, motivated by specific automotive applications, we followed a similar approach
where we even further sacrificed the tightness of the overbound for the simplicity of imple-
mentation and computations, which are important considerations for the automotive applica-
tions where computational resources (chronometrics and memory) are very limited.

Specifically, in our approach we replace the updates of FdðkÞ with the updates of an
m-dimensional rectangle, PðkÞ; which overbounds FdðkÞ; i.e. FdðkÞ � PðkÞ: In the case m ¼ 1 a
simple algorithm of [2] is sufficient. These computational procedures are reviewed in more detail
in Appendix B.
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6. POWERTRAIN CONTROL APPLICATIONS

The first example is based on an internal combustion engine intake manifold filling and emp-
tying dynamics,

’p ¼
R � Tm

Vm
ðWth þWegr �WcylÞ ð23Þ

where p is the measured intake manifold pressure, Wth is the flow through the engine throttle
measured by a mass flow sensor, Wegr is the flow through the exhaust gas recirculation (EGR)
valve and Wcyl is the mean-value of the flow into the engine cylinders. The flows Wegr and Wcyl

are not measured. The R; Vm and Tm are, respectively, the gas constant, the intake manifold
volume, and the gas temperature in the intake manifold. See Figure 2.

Both Wcyl and Wegr need to be accurately estimated for good air–fuel ratio and spark control,
and this estimation is therefore essential for vehicle drivability, fuel economy and emissions
reduction. Furthermore, an EGR flow estimate can be used for a feedforward compensation in
partial air pressure control system [17]. The cylinder flow, Wcyl; can be estimated according to
the following equation [18]:

Wcyl ¼Wcyl;0¼
4 N

RTm
ðkcyl;0 þ kcyl;1 � pÞ ð24Þ

where N is the engine speed and kcyl;0; kcyl;1 are parameters. With aging, soot deposits may form
in the intake runners (this is especially a problem in direct injection spark ignition engines, see
Reference [18]). These deposits can reduce the flow area in ways dependent on unique driving
and environmental factors for each vehicle, and difficult to predict in advance. The part-to-part
manufacturing variabilities can also render estimate (24) inaccurate. Thus there is a benefit to
using on-line adaptation to improve the cylinder flow estimate over time. For example, an
adaptive model may have the form,

Wcyl ¼ y1 �Wcyl;0 ð25Þ

where y1 is a constant parameter to be estimated on-line. The model for the EGR flow,Wegr; can
be developed on the basis of the compressible flow ‘orifice’ equation,

Wegr ¼ fegr
p

pex

� �
� Aegr �

pexffiffiffiffiffiffiffi
Tex

p ð26Þ

Intake Manifold

EGR Valve 

Wth

Wegr

Throttle

UEGO

MAF

MAPTEMP
Wcyl

Figure 2. Internal combustion engine with exhaust gas recirculation (EGR).
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where pex is the exhaust pressure, Tex is the exhaust temperature, Aegr is the effective flow area of
the EGR valve which is a function of measured EGR valve position, and fegr is a known
function of the pressure ratio across the EGR valve:

fegrðxÞ ¼

g1=2
2

gþ 1

� �ðgþ1Þ=2ðg�1Þ
if x40:5

x1=g
2g

g� 1
½1� xðg�1Þ=g�

� �1=2

if x > 0:5

8>>>><
>>>>:

Here g; the ratio of specific heats, is considered to be constant ðg ¼ 1:4Þ: In reality, Wegr is
difficult to estimate based on (26) because pex and Tex are not measured, and Aegr may change
over time due to soot deposits [18]. Additionally, (26) only applies for small openings of the
EGR valve, and for large openings Aegr exhibits engine speed dependence. Thus a natural
approach is to treat Wegr as an unknown input and estimate it on-line simultaneously with y1 in
(25). An adaptive multiplier, y2; can also be introduced to compensate mass air flow sensor
drifts so that Wth ¼ y2 �Wth;0: Specifically, if we let

x ¼ p; z1 ¼ �
RTm

Vm
Wcyl;0; z2 ¼

RTm

Vm
Wth;0

u ¼
RTm

Vm
Wegr; y ¼

y1

y2

" #
; z ¼

z1

z2

" # ð27Þ

then the system takes the standard form (1).
We assume that in (5),

Y0 ¼ ½0:7; 1:9� � ½0:9; 1:7�

so that the nominal parameter estimates are #y1 ¼ #y2 ¼ 1:3: Note that this problem is challenging
since all three flows Wcyl; Wth and Wegr are uncertain and the measurements of pressure, p; are
noisy. Our estimation algorithm will be applied to trajectories of the pressure and of the three
flows resulting from changing throttle and the EGR valve positions during a 12 s time period.
These trajectories are shown in Figure 3.

The a priori knowledge of bounds on the unknown input is not an unreasonable assumption.
For example, in the EGR flow estimation problem, while (26) cannot be used to accurately
estimate Wegr it still can be used to accurately estimate the upper and lower bounds on Wegr:

The bounds on the EGR flow,
%
W egr and %W egr; are also shown in Figure 3. These bounds are

estimated on-line from Equation (26) using measured intake manifold pressure, p; and known
ranges of exhaust pressure, pex; temperature, Tex; and EGR valve effective flow area, Aegr: In (3),

%
u ¼ ðRTm=VmÞ

%
W egr; %u ¼ ðRTm=VmÞ %W egr: The nominal cylinder flow estimate, #W cyl ¼ #y1Wcyl;0

with #y1 ¼ 1:3 is significantly higher than the actual cylinder flow, Wcyl; because the latter
corresponds to Wcyl ¼ y1Wcyl;0 with y1 ¼ 0:8: Similarly, the nominal throttle flow estimate,
#W th ¼ #y2Wth;0 with #y2 ¼ 1:3 is significantly higher than the actual throttle flow, Wth ¼ y2Wth;0

with y2 ¼ 1:0:
The upper bound on the measurement noise in (2) was assumed to be m ¼ 1 kPa; and

h ¼ 101:87 in (4) was estimated by model simulation. The input observer gain a0 was set based
on Remark 1 as a0 ¼ ðh=ð2mÞÞ

0:5 ¼ 7:14: The time-dependent input observer error bound,
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Ra0mðtÞ; was calculated according to (8). Figure 4 shows the time-dependent input observer error
bound, Ra0mðtÞ; calculated according to (8).

Figure 5 shows that the simultaneous input and parameter estimation can be accomplished
quite well by our algorithm. The estimated EGR flow, #W egr; converges to the actual EGR flow,
Wegr; very fast and, in fact, as Figure 6 shows, the area of the rectangle PðkÞ; which bounds
plausible parameter estimates at t ¼ kD; is reduced by a factor of 13.5 within just 12 s: The
parameter estimates, #y1; #y2 converge to a small neighbourhood of y1; y2 within the same time
period.

Other powertrain control applications include the speed dynamics of an internal combustion
engine which are described by the following equation:

J ’o ¼ teng � tload

where J is a known inertia of the crankshaft and tload is an unknown load torque on the
crankshaft. The engine torque, teng;may be nominally characterized by a model, teng;0; but aging
and piece-to-piece variability can render this nominal model inaccurate. Assuming that the
uncertainty can be adequately captured by an offset and a multiplier, so that teng ¼ y1 � teng;0 þ
y2; and by defining

x ¼ o; u ¼ �
1

J
tload; z1 ¼

1

J
teng;0; z2 ¼

1

J
� 1

y ¼
y1

y2

" #
; z ¼

z1

z2

" #
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Figure 3. Time histories (from (a) at the top to (d) at the bottom) of: (a) x ¼ p (solid) and noisy meas-
urement y (dashed); (b) Wcyl (solid) and #W cyl ¼ #y1Wcyl;0 with #y1 ¼ 1:3 (dashed); (c) Wth (solid) and

#W th ¼ #y2Wth;0 with #y1 ¼ 1:3 (dashed); and (d) Wegr (solid),
%
W egr (dashed) and %W egr (dashed).
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the system is transformed into the standard form (1). The accurate knowledge of teng is required
for engine and powertrain control, in particular, for drivability and engine/transmission
coordination during gear shifts. Additionally, the estimate of tload can be included in the feed-
forward compensation to improve idle speed or cruise control. Experiments are currently being
pursued for this application that will be reported elsewhere.
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Figure 4. Time history of Ra0mðtÞ:
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Figure 5. Time histories (from (a) at the top to (c) at the bottom) of: (a) true parameter y1 (solid),
parameter estimate #y1 ¼ c1 (dashed), parameter bounds c1 þ l1 and c1 � l1 (dashed); (b) true parameter y2
(solid), parameter estimate #y2 ¼ c2 (dashed), parameter bounds c2 þ l2 and c2 � l2 (dashed); and (c) actual

EGR flow Wegr (solid) and estimated EGR flow, #W egr (dashed).
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7. CONCLUDING REMARKS

In this paper, we addressed a problem of simultaneously estimating an input and an unknown
parameter in a dynamic system. This problem is not solvable without special assumptions. We
showed that this problem can be treated by combining a conventional input observer with a set-
membership algorithm for parameter estimation. The set-membership algorithm provides a set
of plausible parameter estimates consistent with the a priori available information including
bounds on the unknown input and expected input observer errors for the case with no par-
ametric uncertainty. The potential applications to engine control have been discussed and
illustrated with a simulation example.

APPENDIX A: GENERALIZATION TO HIGHER ORDER SYSTEMS

The theoretical developments in this paper mainly concern a first-order system which was
relevant to a particular class of powertrain control applications. We now discuss how certain
classes of higher order systems can be treated.

Suppose a higher order system can be transformed into the form,

’x ¼ ZTðtÞyþ uðtÞ

yðtÞ ¼ xðtÞ þ zðtÞ
ðA1Þ

where x is an n-vector state, ZðtÞ is an m� n matrix, y is an m-vector of constant unknown
parameters, u is an n-vector unknown input, y is an n-vector measured output, and z is an

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

θ1

θ 2

t=0

t=12

(θ1,θ2)

Figure 6. The rectangles Pð0Þ and PðkÞ at t ¼ kD ¼ 12 s:
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n-vector noise. In this case, m;
%
uðtÞ; %uðtÞ and h are n-vectors, and (2), (3), (4) are understood to

apply to each vector component.
System (A1) can be equivalently viewed as a system of n differential equations of the form,

’x1 ¼ Z11ðtÞy1 þ Z21ðtÞy2 þ � � � þ Zm1ðtÞym þ u1ðtÞ

’x2 ¼ Z12ðtÞy1 þ Z22ðtÞy2 þ � � � þ Zm2ðtÞym þ u2ðtÞ

..

.

’xn ¼ Z1nðtÞy1 þ Z2nðtÞy2 þ � � � þ ZmnðtÞym þ unðtÞ

ðA2Þ

where Zij is the ði; jÞth entry of the matrix Z: Each of these differential equations is in the
standard form (1) and can be used as a basis for generating a set-membership estimate (13),
i.e. #y 2 FiðtÞ; at time t: Combining the information for i ¼ 1; . . . ; n; we obtain #y 2

T
i¼1;...;n FiðtÞ:

As a specific example of the transformation into form (A1), consider a general nonlinear system,

’w ¼ f ðwÞ þ gðwÞvþ pðwÞy

where wðtÞ 2 Rq is the state, vðtÞ 2 Rn is the unknown input, and y 2 Y0 � Rm is the vector of
unknown parameters. The objective is to simultaneously estimate vðtÞ and y: Assuming that the
state, w; can be measured, let xðtÞ 2 Rn be some output of the system so that,

x ¼ hðwÞ

Note that the dimensionality of x is the same as that of v: Then,

’x ¼
@h

@w
ðf ðwÞ þ pðwÞyþ gðwÞvÞ ðA3Þ

There are two approaches for converting (A3) into form (A1). In the first approach, we define

Z ¼
@h

@w
pðwÞ

� �T

; u ¼
@h

@w
ðf ðwÞ þ gðwÞvÞ

and obtain a system of form (A1). If the n� n matrix ðð@h=@wÞgðwðtÞÞÞ is invertible then the
estimate of vðtÞ; #vðtÞ; can be uniquely computed from the estimate of uðtÞ; #uðtÞ; as
#vðtÞ ¼ ðð@h=@wÞgðwðtÞÞÞ�1ð#uðtÞ � ð@h=@wÞf ðwðtÞÞÞ: In the second approach to estimating vðtÞ and
y; we view the term, ð@h=@wÞf ðwÞ in (A3), as ð@h=@wÞf ðwÞ � %y; where %y ¼ 1 is an additional constant
parameter to be estimated along with y: In that case, to convert (A3) to form (A1) we can define
u ¼ ðð@h=@wÞgðwÞÞv;

Z ¼

@h

@w
pðwÞ

� �T

@h

@w
f ðwÞ

� �T

2
66664

3
77775; *y ¼

y

%y

" #

and impose (5) in the form *y 2 *Y0 ¼ Y0 � f1g: If the n� n matrix ðð@h=@wÞgðwðtÞÞÞ is invertible,
then the estimate of vðtÞ; #vðtÞ; can be uniquely computed from the estimate of uðtÞ; #uðtÞ; as
#vðtÞ ¼ ðð@h=@wÞgðwðtÞÞÞ�1 #uðtÞ:
To provide a brief illustration of a practical problem which can be treated with these ideas,

suppose in the flow estimation problem treated in Section 6, the air flow sensor is slow and its
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dynamics are

’W th;m þ aWth;m ¼ aWth ðA4Þ

where Wth;m is the air flow sensor measurement, Wth is the actual flow of the air through the
throttle and 1=a is the air flow meter time constant. In this case, one may not use Wth;m in place
of Wth in (23) when estimating Wegr and unknown parameters. Suppose, however, that a
nominal model for the throttle flow, Wth;0; is available. For instance, such a nominal model can
be based on an orifice equation (see Reference [19]), and it determines the throttle flow as a
function of pressure drop across the throttle and throttle position. To compensate for aging and
piece-to-piece variability, an adaptive model for the throttle flow, Wth; can be introduced as
follows:

Wth ¼ y2Wth;0 þ y3

where y2 and y3 are the offset and the multiplier modifiers, respectively. The parameterization of
the cylinder flow is as in Section 6, i.e. Wcyl ¼ y1Wcyl;0: Then the problem of simultaneously
estimating y1; y2; y3 and Wegr on the basis of (23) and (A4) can be solved using the higher order
case approach described in this appendix.

APPENDIX B: A SET-MEMBERSHIP COMPUTATIONAL ALGORITHM

In our approach, we replace the updates of FdðkÞ with the updates of an m-dimensional rec-
tangle, PðkÞ; which overbounds FdðkÞ; i.e. FdðkÞ � PðkÞ: The centre of PðkÞ is denoted by
cðkÞ 2 Rm and its half-sides are l1ðkÞ; . . . ; lmðkÞ; i.e.

PðkÞ ¼ fy ¼ ½y1; . . . ; ym�T 2 Rm : ciðkÞ � liðkÞ4yi4ciðkÞ þ liðkÞ; i ¼ 1; . . . ;mg ðB1Þ

Note that the Chebyshev centre of PðkÞ is cðkÞ and thus #yðtÞ ¼ cðkÞ for k � D4t5ðkþ 1Þ � D:
A new rectangle, PðkÞ; is formed recursively so that Pðk� 1Þ

T
YðkDÞ � PðkÞ: The compu-

tationally straightforward procedure to update cðkÞ and lðkÞ amounts to tightening each side of
the rectangle Pðk� 1Þ to overbound the set Pðk� 1Þ

T
YðkDÞ:

Referring to (12), note first that YðkDÞ ¼ fy 2 Rm : sðkÞyþ r1ðkÞ40;�sðkÞyþ r2ðkÞ40g;
where

sðkÞ ¼ fTðkDÞ

r1ðkÞ ¼ �%uðkDÞ � Ra0mðkDÞ þ eðkDÞ þ a0yðkDÞ

r2ðkÞ ¼
%
uðkDÞ � Ra0mðkDÞ � eðkDÞ � a0yðkDÞ

Therefore, YðkDÞ is the set ‘in-between’ two parallel hyper-planes H1ðkÞ ¼ fy 2 Rm :
sðkÞyþ r1ðkÞ ¼ 0g and H2ðkÞ ¼ fy 2 Rm : sðkÞy� r2ðkÞ ¼ 0g: To determine whether an
ðm� 1Þ-dimensional face of the rectangle can be tightened, we determine all intersections of
H1 and H2 with the extended edges of the rectangle perpendicular to that face. The extended
edges are straight lines that pass through the edges. A face can be tightened if these intersection
points, which are explicitly and easily computable, and the opposite face lie in the same half-
space. Figure A1 illustrates the procedure in the case m ¼ 2: Note that the result is independent
of the order in which the sides are tightened.
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This algorithm for updating cðk� 1Þ and lðk� 1Þ to, respectively, cðkÞ and lðkÞ is now
explicitly specified.

Algorithm for updating Pðk� 1Þ to PðkÞ; k > 0

Step 1: If sðkÞ=0 proceed to Step 2. If sðkÞ ¼ 0; r1ðkÞ40; r2ðkÞ40 assign cðkÞ :¼ cðk� 1Þ;
lðkÞ :¼ lðk� 1Þ; Exit. If sðkÞ ¼ 0 and either r1ðkÞ > 0 or r2ðkÞ > 0; then PðkÞ ¼ |; Exit and follow
the Reset procedure.

Step 2: Set i ¼ 0; cðkÞ :¼ cðk� 1Þ; lðkÞ :¼ lðk� 1Þ:
Step 3: Set i ¼ i þ 1:
Step 4: If siðkÞ ¼ 0 then Goto Step 3. If siðkÞ=0; compute all intersection points, yqi ;

q ¼ 1; . . . ; 2m; of H1 and H2 with the extended edges parallel to the ith ort in Rm:

yqi ¼
1

siðkÞ
ð�s1ðkÞðc1ðkÞ � l1ðkÞÞ � � � � � si�1ðkÞðci�1ðkÞ � li�1ðkÞÞ

� siþ1ðkÞðciþ1ðk� 1Þ � liþ1ðk� 1ÞÞ � � � �

� smðkÞðcmðk� 1Þ � lmðk� 1ÞÞ � r1ðkÞÞ

yqi ¼
1

siðkÞ
ð�s1ðkÞðc1ðkÞ � l1ðkÞÞ � � � � � si�1ðkÞðci�1ðkÞ � li�1ðkÞÞ

� siþ1ðkÞðciþ1ðk� 1Þ � liþ1ðk� 1ÞÞ � � � � � smðkÞðcmðk� 1Þ � lmðk� 1ÞÞ þ r2ðkÞÞ

Step 5: Set
gmax ¼ minfmaxfyqi ; q ¼ 1; . . . ; 2mg; ciðk� 1Þ þ liðk� 1Þg

gmin ¼ maxfminfyqi ; q ¼ 1; . . . ; 2mg; ciðk� 1Þ � liðk� 1Þg

H1 H2

c1(k)+l1(k)c1(k)-l1(k)c1(k-1)-l1(k-1) c1(k-1)+l1(k-1)

θ1 θ1

θ2

θ3

θ4

γ 
maxγ 

min

H1 H2

c2(k)-l2(k)=

c2(k-1)-l2(k-1)

θ2

θ3

θ4

c2(k)+l2(k)=

c2(k-1)+l2(k-1)

(a) (b)

Figure A1. Algorithm for updating Pðk� 1Þ to PðkÞ for m ¼ 2: (a) update of c1ðk� 1Þ; l1ðk� 1Þ to
c1ðkÞ; l1ðkÞ; both vertical faces are tightened; and (b) update of c2ðk� 1Þ; l2ðk� 1Þ to c2ðkÞ; l2ðkÞ; the

horizontal faces cannot be tightened.
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and

ciðkÞ ¼ 1
2
ðgmax þ gminÞ

liðkÞ ¼ 1
2
ðgmax � gminÞ

Step 6: If liðkÞ50; then PðkÞ ¼ |; Exit and follow the Reset procedure. Otherwise, Goto
Step 7.

Step 7: While i5m; Goto Step 3. Otherwise, Exit.

The algorithm can be initialized with cð0Þ and lð0Þ for which the corresponding Pð0Þ in (B1)
overbounds Y0; i.e. Y0 � Pð0Þ: For m ¼ 1; a different, even simpler to implement algorithm for
updating #yðtÞ has been reported in Reference [2]. That algorithm, however, tends to keep #yðtÞ at
or near the boundary of FdðkÞ and not close to its Chebyshev centre.

The Reset procedure is used if PðkÞ ¼ | for some k: This cannot happen under the ideal
assumptions, but it may happen in the real application if the assumptions are violated, for
example, as a result of an abrupt change in the unknown parameter y or due to the bounds not
being satisfied. To account for possible abrupt parameter changes, the Reset procedure assigns
cðkÞ ¼ cðk� 1Þ; lðkÞ ¼ lð0Þ thereby reconstituting the rectangle PðkÞ to its original size and
centring it around the latest valid parameter estimate, cðk� 1Þ: Strategies can also be devised to
revise the bounds m; h;

%
u and %u on-line if PðkÞ ¼ | tends to occur frequently.

For the case m ¼ 1; an alternative and even easier to implement parameter estimation pro-
cedure has been proposed in Reference [2]. In Reference [2], if sðkÞ=0 then the update law for
the parameter estimate, #yðkDÞ; takes the following form:

#yðkDÞ ¼

r2ðkÞ
sðkÞ

if sðkÞ#yððk� 1ÞDÞ5r2ðkÞ

�r1ðkÞ
sðkÞ

if sðkÞ#yððk� 1ÞDÞ > �r1ðkÞ

#yððk� 1ÞDÞ if r2ðkÞ4sðkÞ#yððk� 1ÞDÞ4� r1ðkÞ

8>>>>>><
>>>>>>:

If sðkÞ ¼ 0 then #yðkDÞ=#yððk� 1ÞDÞ; since, under our assumptions, �r1ðkÞ5r2ðkÞ: This proce-
dure guarantees that #yðkDÞ 2 FdðkDÞ; although, in general, #yðkDÞ is not the Chebyshev centre of
Fd ðkDÞ:
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