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Abstract: Blockchain technology has gained immense momentum in the present era of information
and digitalization and is likely to gain extreme popularity among the next generation, with diversified
applications that spread far beyond cryptocurrencies and bitcoin. The application of blockchain
technology is prominently observed in various spheres of social life, such as government administra-
tion, industries, healthcare, finance, and various other domains. In healthcare, the role of blockchain
technology can be visualized in data-sharing, allowing users to choose specific data and control data
access based on user type, which are extremely important for the maintenance of Electronic Health
Records (EHRs). Machine learning and blockchain are two distinct technical fields: machine learning
deals with data analysis and prediction, whereas blockchain emphasizes maintaining data security.
The amalgamation of these two concepts can achieve prediction results from authentic datasets
without compromising integrity. Such predictions have the additional advantage of enhanced trust in
comparison to the application of machine learning algorithms alone. In this paper, we focused on data
pertinent to diabetic retinopathy disease and its prediction. Diabetic retinopathy is a chronic disease
caused by diabetes and leads to complete blindness. The disease requires early diagnosis to reduce
the chances of vision loss. The dataset used is a publicly available dataset collected from the IEEE
data port. The data were pre-processed using the median filtering technique and lesion segmentation
was performed on the image data. These data were further subjected to the Taylor African Vulture
Optimization (AVO) algorithm for hyper-parameter tuning, and then the most significant features
were fed into the SqueezeNet classifier, which predicted the occurrence of diabetic retinopathy (DR)
disease. The final output was saved in the blockchain architecture, which was accessed by the
EHR manager, ensuring authorized access to the prediction results and related patient information.
The results of the classifier were compared with those of earlier research, which demonstrated that
the proposed model is superior to other models when measured by the following metrics: accuracy
(94.2%), sensitivity (94.8%), and specificity (93.4%).

Keywords: blockchain; diabetic retinopathy; TaylorAVO; CNN; EHR

1. Introduction

Recent developments have shown that the blockchain is advantageous for researchers,
since it can safely store personal healthcare information [1]. Healthcare data are quite com-
plex, and must be kept secure from unauthorized access. Blockchain technology provides
a safe environment for storing, sharing, and managing information in IoT networks and
technology. It also encourages the safest and most “trustless” transformation among the
communicating entities and is a decentralized framework where every block is linked
together [2]. EHRs are digitalized versions of patients’ health information, which are
usually documented as health charts in a paper-based system. EHRs provide real-time
patient-centric records that ensure the instant availability of patient information to autho-
rized healthcare professionals. EHRs include patients’ medical and treatment histories,
diagnoses, treatment plans, allergies, immunizations, radiological images, test results, and
various health-related information that enables healthcare providers to make decisions
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about patient care. Several organizations in the health industry can collaborate with in-
dividual EHRs using blockchain [3]. A group of parties offers authentication and costly
data steps for all the contributing participants [4]. Blockchain technology is used in various
applications to improve trust and information privacy, allowing participants to share and
transfer data with a degree of trust and integrity [5]. The convenient health record storage
system is rendered by the EHR manager and improves the electronic access to patients’
manual medical records. This method is utilized to allow patients to reduce, produce,
maintain, and spread the EHR to colleagues, family, and healthcare providers [6].

Blockchain technology has the potential to improve clinical trial information manage-
ment in a variety of ways, including eliminating bottlenecks granting planning permissions,
and streamlining communication between the numerous players involved in the supply
chain. For computerized disease surveillance and overall health monitoring, data collection
and analysis, which may include gathering large amounts of personal or non-sensitive
information, may be needed. Blockchain can revolutionize the storage and sharing of a
patient’s electronic health records. It can provide a more secure, transparent, and traceable
foundation for the exchange of health information. Multiple data management systems
may be interconnected using this technique. A blockchain-based electronic health record
could make it possible for systems in numerous countries to work together [7]. These
patients can transfer their EHRs from one firm to another by sharing their EHRs in various
situations throughout their lifetime. The models built from the massive e-healthcare records
determine performance and reliability [8,9]. Diabetes is a disease that poses a threat to
many lifestyles and leads to widespread damage to human organs, namely the kidney, eyes,
lungs, and heart [10,11]. Diabetic retinopathy is a severe eye disease and one such side
effect of diabetes. The World Health Organization (WHO) estimates that approximately
285 million people worldwide have impaired vision, of which 39 million are blind and 246
million suffer from low vision caused by DR. As the name implies, the retina is specifically
targeted by DR because the high blood glucose levels can damage the retinal vessels [12,13].
Ophthalmologists classify DR into two categories, namely, proliferative diabetic retinopathy
(PDR) and non-proliferative diabetic retinopathy (NPDR). NPDR is further divided into
mild, moderate, and severe stages [14]. It is possible to reduce blindness from DR when it
is diagnosed early and treated effectively. Moreover, a medical practitioner can diagnose
this disease either manually or automatically with the help of a few rudimentary detection
devices. Various medical imaging evaluation models have been considered to effectively
aid in DR diagnosis and prognosis to reduce the burden on eye practitioners [15–17]. Deep
learning methods are one such tool, chosen to study the functions of DR grading. Deep
conventional neural network (DCNN)-based methods were selected to enhance the DR
detection performance [18–20]. CNN was used to extract visual characteristics to train
the network. Patients’ reports are analyzed to detect complications using these features.
This paper presents a novel blockchain-based optimal neural network framework to detect
DR disease. This framework supports medical professionals in the earlier provision of
treatment to diabetic retinopathy patients, ensuring the secure storage and exchange of
healthcare records in the EHRs.

The present generation of healthcare systems requires patient records and relevant
information to be accessed at any place, which could accelerate decision-making and care
by healthcare providers. The traditional EHR systems fail to meet the requirements of
secured data availability and distribution, facing the challenges of unauthorized access
and data tampering [21]. The proposed method focuses on two objectives: Firstly, the
implementation of an optimized deep learning algorithm that enables the accurate detec-
tion of DR. Further, the patient and severity, which are pertinent to the DR parameters
and the resultant diagnostic results post-implementation of the DL algorithm, must be
stored securely and be accessible to authorized stakeholders. Thus, the proposed frame-
work encompasses the use of the TaylorAVO algorithm in association with SqueezeNet
architecture for optimal parameter selection and further classification of the same. DR
detection results, as well as selected parameters regarding patients, are stored in blockchain,
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ensuring data privacy and security. This paper contributes to improvements in the accuracy
of diabetic retinopathy detection using the hybrid model TaylorAVO-SqueezeNet and the
patient EHRs information, which are placed in the blockchain network. This hybrid deep
learning model extracts optimal image features using the TaylorAVO algorithm and trains
them using SqueezeNet. Registration, key generation, and authentication are all stages
of the proposed method. The registration procedure begins with the doctor and patient
entering their information. Following the registration phase, the private key is assigned
and forwarded to the administrative unit. During the authentication process, data are
uploaded and downloaded, along with the patient and the doctor, using the private key.
Finally, the data are secured using the blockchain.

The major contributions of this paper are as follows:

• An exhaustive review of the various applications of blockchain and machine learning
implementations in EHR, highlighting the associated limitations.

• The implementation of the TaylorAVO algorithm, which helps to generate optimal
features from the DR patient data, which are further trained using the SqueezeNet to
ensure effective disease diagnosis.

• The implementation of blockchain technology to store EHRs and ensure that autho-
rized healthcare providers and patients can access the relevant information.

1.1. Motivation

Electronic health records (EHRs) allow healthcare providers to instantly track and
monitor patients’ medical records to enable accelerated decision-making. The traditional
methods of health record management require expensive equipment for monitoring pa-
tients’ vital symptoms, in addition to maintenance of their medical history, leading to the
misutilization of resources, with the associated challenges of reduced efficiency, security,
and reliability. There is a high possibility of such confidential records being tampered with
and manipulated, leading to compromises in patient care. Additionally, the unavailability
of data at any instance for critical decision-making leads to the possibility of patient care
and support being delayed. This acts as the motivation to develop a framework that enables
accurate decision-making, ensuring secure data transmission and availability. The present
study, therefore, proposes a deep-learning-based framework, which includes the use of
optimization techniques to help with the detection of DR with enhanced accuracy. This
framework incorporates the use of blockchain technology, which ensures that DR-related
patient data, detection results, and related treatment plans are secured and can only be
accessed by authorized stakeholders.

1.2. Paper Organization

The structure of the paper is organized as follows: Section 2 discusses the related
studies in the form of a literature review, emphasizing prominent and relevant studies
performed on DR data; Section 3 provides a detailed description of the proposed framework;
Section 4 elucidates the experimental analysis report; Section 5 provides the consolidated
conclusion and highlights the scope of future research.

2. Literature Review

Blockchain is an emerging technology, used in various disciplines, including healthcare
data management. This healthcare data include remote patient observations, maintaining
EHR data, supply chain management for medicines, healthcare data analytics, and research
in the biomedical field, where maintaining security and data integrity is an essential
concern [22,23]. The smart healthcare environment increasingly manages medical records
electronically, as compared to traditional practices. The EHR system reduces the burden of
data redundancy issues, security problems, and effective data management. The eHealth
service provider system could preserve the authentication details of patients and other
service assistants without being dependent on cloud-based services [24]. The authors
in [25,26] proposed a blockchain framework for an EHR-sharing system to provide secure
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and high-quality healthcare data-sharing among all stakeholders. This framework includes
a decentralized third-party system to enhance the consistency of the data and monitor
the various healthcare activities over the network using a health information system.
Regarding security concerns, the authors in [27] considered a blockchain-based secure data
management system using the Internet of Medical Things (IoMT), which includes data
transmission between cloud servers, personal server systems, and medical devices. This
is more interactive and it is more secure for patients and providers to share healthcare
information using these IoMT devices. Bitcoin is becoming increasingly popular as a
digital payment method [28]. The proposed model focused on healthcare data, such as
medical treatments and post and pre-surgery details, which could be linked to digital
payments through the blockchain. All healthcare professionals within the system could
access this application. The authors in [29], presented a framework that offered the early
detection of diabetes using prevalent machine learning algorithms in association with the
maintenance of patients’ EHRs. The patient health records, which were collected using
wearable sensor devices and further distributed through EHR systems, were dependent on
the interplanetary file system (IPFS) that originated in the blockchain. The information was
presented to the EHRs manager, and the data were fed into various ML models, wherein
data processing was performed, which generated predictive outcomes. The system fulfilled
the need for privacy, integrity, and authentication but failed to prevent blockchain attacks.

The authors in [30] proposed a blockchain safety framework (BSF) for the successful
and secure storage and maintenance of EHRs. This presented a safe and secure technique
for gathering medical statistics for doctors, patients, and insurance agents. The proposed
framework concentrated on the safety of doctors, patients, and events, wherein the structure
supported confidentiality and safety aspects relevant to the healthcare sector. The proposed
methodology and the simulation results enabled effective and secure access to EHR records
within the shortest possible time. However, this method failed to yield similar positive
results in other domains. Traditional methods that focused on DR detection mechanisms
depicted the limitations of diabetic retinopathy detection, especially in the use of healthcare
data. The authors [31] proposed a healthcare framework for the detection of diabetic
disease based on deep machine learning, in addition to the data fusion technique. The deep
ensemble learning method helped to increase the knowledge of fusion-based data to
eliminate the unnecessary burden on the model and further improve its performance.
In [32], a hybrid model was proposed for diagnosing DR from retinal lesion images based
on the medical imaging process and deep learning techniques. DR detection depends on
an image enhancement mechanism and acts as an open issue when using fundus images
with an impact on the model performance.

The authors in [33] performed pre-processing and dimensionality reductions using
PCA. The firefly algorithm was used for feature extraction; then, a deep learning model
was used on the DR dataset, which is publicly available and taken from the UCI repository.
Although the model generated enhanced accuracy, it failed to perform well in the case of
larger datasets or datasets in other domains. The authors in [34] proposed a unique ap-
proach to microaneurysms and hemorrhage detection on fundus images. The methodology
included pre-processing, blood vessel segmentation and removal, fovea localization, and
elimination and function extraction, which helped in DR detection disorders resulting from
microaneurysms and hemorrhages. These methods failed to extract appropriate features
for lesion detection. The authors in [35] proposed a semi-supervised auto-encoder graph
community (SAGN) model, used for DR diagnosis, which helped to eliminate insignificant
constraints. The SAGN method contained three primary modules namely neighbor cor-
relation mining, auto-encoder feature learning, and graph representation. This achieved
an enhanced performance considering the limited labeled retinal images. In [36], the
authors proposed a novel deep convolutional neural network, considering multi-view
retinal images for the automatic prognosis of DR. The experimental results revealed four
image feature extraction perspectives using sharedNet in the case of automated DR detec-
tion. The model ensured enhanced feature extraction by improving the network capability.
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It also required the addition of attention mechanisms in lesion annotations to improve the
effectiveness of the proposed model. The traditional methods improved the security of
health records using various blockchain-based healthcare frameworks, in association with
deep learning methods, to detect the patient’s condition, as presented in Table 1.

Table 1. Various blockchain-based healthcare frameworks in association with deep learn-
ing applications.

Reference Methodology Key Contributions Limitations

[29] Blockchain-based diabetes
detection framework

• Focused on EHRs data to provide
security and disease detection using a
machine learning algorithm

• The blockchain framework was
not tested on other domains

• Prediction accuracy was biased

[30] BSF-EHR

• Development of blockchain security
framework to efficiently store and
secure EHRs information

• Framework failed to generate
positive results in other domains

[31]

The smart healthcare
recommendation system
for multi-view disease
prediction (SHRS-M3DP)

• Development of an SHRS-M3DP
methodology concentrating on disease
detection using the data fusion
technique

• The advanced disease
prediction algorithm was not
used

[32]
Medical image-enhancing
techniques and the CNN
model

• Histogram equalization method was
employed to improve image quality

• CNN model implemented for disease
classification

• Alternative medical databases
were not considered for various
diagnosis-related operations

[33]
Hybrid deep learning
model (PCA-firefly
algorithm)

• A hybrid deep learning model was
developed, concentrating on
dimensionality reduction

• Firefly algorithm implemented for DR
detection

• The framework did not apply to
larger datasets in various
domains

[34]
DR detection for Gaussian
interval type-2 fuzzy
membership (GIT2FMFS)

• GIT2FMFS method proposed to identify
DR stages of microaneurysms and
hemorrhages using the GIT2FMFS
technique on retinal images

• The performance of the model
required further enhancement

[35]
Semi-Supervised Auto
Encoder Graph Network
(SAGN)

• Development of SAGN framework to
grade fundus images from specific
correlation features

• Limited data labeling accuracy
could be improved

[36] MVDRNet

• Development of multi-view diabetic
retinopathy detection mechanism using
the shared net and attention-fusion net
generates feature maps on fundus
images

• Diversified DR retinal disorder
and related data were not
considered

3. Proposed Methodology
3.1. Blockchain-Based Healthcare Framework

The proposed blockchain-based healthcare framework concentrates on handling the
requests of doctors and patients, allowing them to register themselves through the regis-
tration hub. The information from patients and healthcare professionals was gathered at
the registration center unit. The smart device was combined with the registration center
to provide information to the user. The registration center can gather all the required
information, generate a private key with an ID, and deliver this to the administrative unit.
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The EHR manager should provide an authorized ID to each doctor and patient. The EHR
Manager, the User, the Admin Unit, and the Interplanetary File System are the four entities
that make up the authentication procedure. The penalty is displayed for the specific ID if
the authentication is unsuccessful. After successful authentication, the doctor and patient
are certified. The blockchain-based healthcare framework architecture is shown in Figure 1.

Figure 1. The proposed model of blockchain-based healthcare framework.

3.1.1. Registartion Center (RC)

Patient information, such as the father’s name, age, and address, is collected and sent
to the doctors with the help of the registration center. The smart device is combined with
the registration center to provide the information to the user. The administration unit is in
charge of the verification. After successful validation, the EHRs Manager can submit the
encoded transactional information to the Interplanetary File system (IPFS).

3.1.2. Smart Devices

The smart device consists of desktops, laptops, smart mobiles, and sensor nodes.
A smart device should be accessible to the patients for login purposes. The information is
subjected to the smart devices’ EHRs manager for further processing. The administration
unit provides information to allow the EHR manager to accept users. It also delivers IoT
data collected from the smart device to the deep learning unit for further diagnosis.

3.1.3. Electronic Health Records (EHRs)

The EHR is a key component of the proposed system. This serves as a centralized
authority that hosts several activities, ensuring optimum performance. The users are
requested to complete the transaction and related requests are sent to the EHR manager.
The administrative unit has the public key as a part of the smart contract, which is used to
verify transactions.

3.1.4. Smart Contracts

The smart contract is connected to the EHRs manager and administration unit. This
is a program that transfers digital assets among gatherings under specific conditions.
The programmers created these smart contracts to meet their unique requirements.

3.1.5. Deep Learning Unit

Deep learning plays a vital role in our proposed system. The publicly available IDIRD-
diabetic retinopathy image dataset was used to train the deep learning model for the
diagnosis of DR-affected patients. The proposed TaylorAVO-SqueezeNet architecture is
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used for disease classification to detect normal and abnormal cases. The EHR manager
receives the diagnosis information and sends it to the IPFS. Finally, the patient records are
stored in the blockchain, ensuring data security.

The entities involved in this methodology are the user, EHR manager, admin unit,
and IPFS. As part of the initialization process, a random number is generated and sent
to the IPFS. Next, the registration process begins, involving three phases of registration,
between the admin unit and the IPFS, the EHR’s manager and the admin unit, and the
user and the admin unit. Post-registration, when the user requests any transaction, this is
performed through appropriate authentication, eliminating the chances of unauthorized
access. The mechanism of authentication involves three phases: interactions between the
admin unit and IPFS, the EHR manager and admin unit, and the user and EHR manager.
Finally, the DR is detected at the EHR manager unit.

Step 1: Initialization phase

This is the first step in the authentication process, in which the IPFS initialization is
completed using a random number and hash function. Here, the random number is in the
range [0, 2].

Step 2: User registration phase

The user registration phase consists of three steps: the registration between the admin
unit and IPFS, the EHR manager and admin unit, the admin unit, and the user. The regis-
tration process is explained in Algorithm 1. The details of each phase are mentioned below.

• Registration between admin unit and IPFS: The admin unit username and password
are generated in the admin unit, which is denoted as Adid, Adpwd. The Adid, Adpwd
is sent to the IPFS; then, the IPFS generates the verification message V1, a random
number (b) and hashing (h). The verification message V1 in the admin unit is sent to
IPFS and stored as V∗1 , along with the random number (d). Finally, the admin unit is
registered with IPFS.

• Registration between the EHR manager and admin unit: An user ID and password are
generated in the EHR manager, which is provided as Eid and Epwd to the administrative
unit. The admin unit generates the verification message V2. In this instance, the
random number ‘a’ and the hashed Eid are concatenated, and the result is added to
the random number ‘c’.

• Registration between admin unit and user: The user ID and password are generated
and sent to the administrative unit in the form of Uid and Upwds, which are further
sent to IPFS. The verification message V3 is generated by combining the hash code
‘h’ and the random number ‘c’. The results are stored in the EHR management.
The random number generated by hashing enables the user to be registered with the
EHRs manager.
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Algorithm 1 Registration Between Admin, EHR manager, and User

procedure ADMIN UNIT TO IPFS
Admin registered with(Adid, Adpwd)
(Adid, Adpwd)→ IPFS
IPFS: h(V1, rand ’d’)→ Admin
if Admin verify V1 then,

IPFS← V∗1 , rand d: Admin
Admin is registered in IPFS

else
Terminated

end if
end procedure
procedure EHR MANAGER TO ADMIN UNIT

EHR Manager(Eid and Epwd)
EHR: (Eid, Epwd)→ Admin Unit
Admin: (Eid, Epwd)→ IPFS
EHR Manager← h(V2): Admin
if EHR verify V∗2 then,

Admin← (V∗2 and rand ‘c’): EHR
EHR is registered with the Admin

else
Terminated

end if
end procedure
procedure ADMIN UNIT TO USER

User(Uid and Upwd)
EHR Manager and IPFS← (Uid and Upwd)
if EHR verify (Uid and Upwd) then,

User← (V3, h): EHR
EHR Manager← (V∗3 ,h and rand ‘c’): User
User verified with (EHR Manager and IPFS)

else
Terminated

end if
if User← EHR: Sk then,

User verified and Upload data
Data stored in Blockchain(R)

else
Terminated

end if
end if

end procedure

Step3: Authentication Phase

The authentication process encompasses the interaction between the admin unit and
IPFS, the EHR manager and admin unit, and the user and EHRs manager, as specified in
Algorithm 2.

• Authentication between admin unit and IPFS: The authentication message A1 is
generated in the admin unit. The admin ID and password are represented as Adid,
Adpwd. The hashing (h) is combined with the admin ID and the password is integrated
with the time stamp T. Then, the authentication message is sent to the IPFS, and the
IPFS checks the time stamp’s validity. The process continues until the yes criteria are
fulfilled; otherwise, it is terminated.

• Authentication between EHR manager and admin unit: The authentication process
between the EHR manager and the administrative unit is maintained in this phase.
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The authentication message A2, hashed (h) secret key Sk, and the hashed Eid is concate-
nated with the time stamp T. Then, the admin unit verifies the time stamp(T) validity.
The session continues until the yes criteria are fulfilled; otherwise, it is terminated.
The EHR manager stores the authentication message A2, hashed secret key S∗k and
hashed Eid.

• Authentication between the user and EHR manager: The authentication message A3
is generated by the EHR manager for the user, which includes the stored hashed secret
keySk, and security parameter ’y’. Then, the user sends the authentication message to
the EHR manager for verification. After verification, the authentication message A3 is
created, which includes the stored hashed secret key S∗k and User ID combined with
the security parameter y. If the user is verified, then the OTP is sent to the manager
by the user. The OTP is generated with a user ID with the hash function, formed by
the hash function combined with the random number b. The EHR manager generates
OTP, which is sent to the user and stored as OTP*. If the OTP is verified, then the user
is authenticated.

Algorithm 2 Authentication Between Admin, EHR manager, and User

procedure ADMIN UNIT TO IPFS
IPFS← A1(h(Adid, Adpwd), T): Admin
if IPFS verify T then,

A1 Authenticated
else

Terminated
end if

end procedure
procedure EHR MANAGER TO ADMIN UNIT

Admin← A2(h(Eid+ S∗k ): EHR
if Admin verify (A2, T) then,

Eid Authenticated
else

Terminated
end if

end procedure
procedure USER TO EHR MANAGER

EHR← A3(h(Uid+ S∗k ),y): User
if User verify (A3) then,

EHR← OTP: User
else

if OTP verify then,
Uid Authenticated

else
User Terminated

end if
end if

end procedure

3.2. TaylorAVO-SqueezeNet for DR Detection at EHR Manager Unit

The proposed method of DR detection at the EHR unit follows three steps: pre-
processing, lesion segmentation, and classification. The filtering technique used image
pre-processing methodology, wherein medical images are fed into the pre-processing mod-
ule. The process of lesion segmentation is carried out using RP-Net [37]. The proposed
TaylorAVO algorithm is an integration of the Taylor series and African Vultures Optimiza-
tion (AVO) algorithm [38], which is used to train the model. The disease classification was
performed using a deep learning classifier named SqueezeNet [39]. The final classification
results are registered on the blockchain for future usage, ensuring that only authorized
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users can access the same. The architecture of TaylorAVO-SqueezeNet for DR detection is
shown in Figure 2.

Consider that input images collected from the dataset are denoted as images, which
can be expressed as

N = {X1, X2 . . . . . . , Xm, . . . . . . Xz} (1)

wherein the total number of images, Xm, represents the mth image. The input image Xm is
pre-processed for the removal of noise.

3.2.1. Pre-Processing of the Image Using a Median Filter

Image pre-processing is crucial to enhancing the quality of the images, with the
associated advantages of simple processing steps. The median filter approach is used in
this work to minimize the noise from input images. This is called a non-linear filtering
method and preserves the smooth edges of pixel information. The original pixel values
are transmitted to the median of the grayscale pixel values, and these implementations are
specifically used in digital image processing, along with the lesion segmentation process.

Figure 2. The proposed TaylorAVO-SqueezeNet architecture for DR Detection.

3.2.2. TaylorAVO (African Vulture Optimization) Algorithm

The TaylorAVOA is the integration of the AVO algorithm and the Taylor series.
The AVO algorithm simulates the foraging behavior and movement process of African
vultures. The advantage of the Taylor series lies in its simple computation process, with
a short execution time. As part of the algorithm, the numerous vultures are divided into
two groups based on the unique, cruel aspect of the vulture’s behavior. This algorithm
calculates the fitness function (f) for the entire population and finds the best position for the
vulture. It is a metaheuristic algorithm, which uses an optimized rational search expression
to find the best optimal search strategy compared to other nature-inspired algorithms.
The TaylorAVO algorithm has a superior execution speed and a lower computational
cost, providing the best optimal features. The formulation of the Taylor African vulture’s
algorithm works based on four assumptions [38] and pseudo-code for the algorithm, as
shown in Algorithm 3.
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Algorithm 3 The pseudo-code for the Taylor African Vulture algorithm

procedure
Initialization of the server model
while (termination condition is not reached) do
Calculate the objective function with Equation (2)
Update KBestVulture1 be the position of 1st optimal vulture
Update KBestVulture2 be the position of 2st optimal vulture
Taylor expression for error rate computation with Equation (5)
for (all vulture(Kh) do
select A(H)
Update H based on Equation (6)
if (f ≥ 1) then

if (K1 ≥ randa1 ) then
Update the vulture’s position with Equation (3)

else
Update the vulture’s position

end if
end if
if (|f| < 1) then

if (|f| ≥ 0.5) then
if (K2 ≥ randa2 ) then

Update the vulture’s position by Equation (4)
else

Update the vulture’s position by Equation (6)
end if
if (K2 ≥ randa3 ) then

Update the vultures position based on Equation (3)
else

Update the vultures position based on Equation (4)
end if

end if
return KBestVulture1

end if
end procedure

• In the initial stage, the vultures move to find food and choose the best position for
each group. The probability of finding the best solution is based on search parameter
values lying between 0 and 1.

Qi =
fi

∑n
r=1 fi

(2)

• For collecting the food, the vultures travel very long distances when they are highly
active and energetic. If they lack sufficient strength, they fail to travel long distances.
Thus, in such circumstances, the vultures become more violent when acquiring food.
This behavior is expressed as follows:

U = (2× rand a1 + 1)× b×
[

1− iter h
maxiter

]
+ f (3)

f = z×
(

sinq
(

θ

2
× iter h

maxiter

)
+ cos

(
θ

2
× iter h

maxiter

)
− 1

)
(4)

where U denotes gratified vulture, iterh defines the total number of the current itera-
tion, q represents the constraint of the static number set, and the value of q is 2.5; r and
1 and z represent the random value, and maxiter defines the whole iterations. When
b drops to 0, this reflects that the vulture is starving. When b crosses 0, this shows
that the vulture becomes replete, and is denoted as U. When U is greater than one, the
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vultures consider the food in various positions, and the AVO algorithm outperforms
the exploration phase. When U is smaller than one, the AVO algorithm begins with
the exploitation step. Before starting the exploration phase, the Taylor series expres-
sion is utilized to reduce the error rate while performing the number of iterations by
vultures. Moreover, this helps to calculate the error rate to obtain the optimized values
in each phase.

∞

∑
x=0

f (x)(m)

x!
(z−m)x (5)

Here, f (x) is the differentiation function and m specifies approximation for nth derivative.
• In the exploration phase, vultures follow random paths to search for their food. This

is represented by the parameter Q1, whose value should lie between 0 and 1 for any
strategy. In this phase, randa1 is generated and is limited to 0 and 1. If the randa1 is
greater than or equal to Q1, the expression (5) is utilized. When randa1 is smaller than
or equal to Q1, the expression (7) is used. These approaches are used to enhance the
search strategies of the vultures with these random coefficient values.

Q(i + 1) = BV(i)− H(i)× f (6)

H(i) = |Y× BV(i)−Q(i)| (7)

Q(i + 1) = BV(i)− f + rand a2 × ((ub− lb)× randa3 +lb) (8)

• The exploitation phase was divided into two phases based on the movement of
vultures. The first phase of exploitation is divided into rotating flight and siege flight
phases. If the ‘f’ value is greater than or equal to 0.5, the vulture is repleted. In
this scenario, there is a conflict when obtaining food for weak vultures from other,
predominant ones.

Q(i + 1) = G(i)× ( f + randa4)− S(t) (9)

S(t) = R(i)− P(i) (10)

The vulture moves in a circular motion, and the best two vultures’ positions are given
as follows:

C1 = R(i)×
(

rand a5 ×Q(i)
2π

)
× cos(Q(i)) (11)

C2 = R(i)×
(

rand a6 ×Q(i)
2π

)
× sin(Q(i)) (12)

• In the exploitation second phase, if the ‘f’ value is smaller than 0.5, then all the vultures
have combined to search for food, and the two vultures’ best positions are identified.
In other situations, the vultures become more arrogant in searching for food when
they become weak.

P1 = BV1(i)−
BV1(i)×Q(i)
BV1(i)−Q(i)2 × f (13)

P2 = BV2(i)−
BV2(i)×Q(i)
BV2(i)−Q(i)2 × f (14)

3.2.3. SqeezeNet Structure

SqueezeNet is a convolutional neural network model that consists of 18 layers [39].
The model intends to reduce the parameters while performing down-sampling. The archi-
tecture allows for the loading of a pre-trained version of the network, considering more
than a million images from the ImageNet database. A smaller neural network with fewer
features is the ultimate objective, because it can be accessed more quickly through the inter-
net and make more effective use of the computer memory cost. The architecture enables
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the ML models to be deployed in embedded systems, which include resource-constrained
applications. The purpose of developing compressed networks is to reduce the commu-
nication across servers during the process of distributed training. The smaller number of
CNNs requires a reduced bandwidth when exporting newer models from the cloud to
the remote systems, ensuring optimized memory utilization. The architecture includes
multiple layers with activation energy, which can be implemented in two ways: without the
heavy compression method and with the combined compression method, thus achieving
the highest level of accuracy. Many compression techniques are commonly used, including
single-value decomposition, deep compression, quantization, and network pruning.

Fire Module: The "squeeze" convolution layer with only 1*1 filters comprises the fire
module. This information is transmitted to the expand layer, which comprises 1*1 and 3*3
convolution filters. The module uses three tunable dimensions—s1∗1, e1∗1, and e3∗3. Here,
s1∗1 represents the number of filters in the squeeze layer, e3∗3 represents the number of 3*3
filters in the expand layer, and e1∗1 represents the number of 1*1 filters in the expand layer.

While conducting extensive research into the potential design space for CNN archi-
tectures, we came across several new CNNs, one of which is called SqueezeNet. This
squeezeNet architecture is more sophisticated and allows for numerous applications to
be developed in a limited environment. The primary advantage of using SqueezeNet lies
in the use of fewer parameters than the traditional AlexNet architecture while yielding
the same level of accuracy. The SqueezeNet model thus classifies whether a patient is
affected by DR, utilizing minimal computational resources. Once the classification process
is completed, the results are stored in the blockchain, which can only be downloaded by
the authorized individual. The following Table 2 lists the symbols that are frequently used
in algorithm implementations.

Table 2. Symbols Description.

Symbols Description

a,b,c,d Random numbers
h Hash function

Adid Admin username
Adpwd Admin password

Eid EHR manager username
Epwd EHR manager password
Uid User ID

Upwd User password
Sk Secret key
V1 Verification message 1
V2 Verification message 2
V3 Verification message 3
R Medical data
T Timestamp
y Security parameter

4. Results and Discussion

The implementation of the proposed model was performed using PYTHON. The hard-
ware resources included Windows 10 OS, an Intel processor, and 8 GB RAM. The sug-
gested model was assessed using the measures of accuracy, specificity, and sensitivity.
The proposed TaylorAVO-SqueezeNet framework was compared to the existing models
and prominent studies—‘’ Blockchain security framework for electronic health records
of patients (BSF-EHR) [30], convolutional neural network (CNN) [31], Granular interval
type-2 membership functions (GIT2FMFS) [34], and Semantic adaptive graph network
(SAGN) [36]”—showing its superior performance. A brief explanation of the evaluation
measures is provided in the following paragraph:
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Accuracy: This is defined as the measure representing the proportion of true-positive
results in the total observations. It is computed as

ACC =
Ap + An

Ap + An + Bp + Bn
(15)

Sensitivity: Specificity is defined as the identification of the measure of actual positives.

Sensitivity =
Ap

Ap + An
(16)

Specificity: Specificity is defined as the identification of the measure of actual negatives.

Speci f icity =
An

An + Bp
(17)

Here, Ap, An, Bp, and Bn represent the rate of true positive cases, false positive cases, false
negative cases, and true negative cases, respectively.

4.1. Dataset Description

The IndianDRImage Dataset (IDRID) [40] is used to evaluate the experimental out-
comes of DR detection in the proposed framework. A major concern regarding publicly
available healthcare datasets is that their scarcity compels the research community to work
with the few such datasets that are easily available. Thus, based on such a dataset, the
types of applications lag in variability. Additionally, the models developed based on such
datasets may not be suitable for generalized widescale applications. Hence, extensive
characterization of the data is essential for researchers and model developers for quality
evaluations of such datasets. The data can be characterized by a thorough breakdown of
the features in the dataset. Considering this, the IDRID dataset is critically studied in the
present study. The IDRID consists of 516 retinal fundus images, which are divided into
three categories: segmentation, clinical grading, and localization of the images. There are 81
authentic color fundus images in the segmentation process and 516 authentic color fundus
images in the localization and disease-grading process. The quality of the images in the
dataset is enhanced using the median filtering technique, as described later in Section 3.2.1,
as part of the pre-processing [41].

4.2. Experimental Analysis

As shown in Figures 3–6, the performance of the proposed TaylorAVO-SqueezeNet
is examined based on accuracy, sensitivity, and specificity metrics by varying the training
data, k-fold validation, and block size.

Figure 3 represents the performance of the proposed TaylorAVO-SqueezeNet based
on its accuracy, sensitivity, and specificity. Here, the percentage of training data varied in
association with the provision of varied block sizes. The proposed model yields enhanced
results in comparison to the traditional models (BSF-EHR, CNN, GIT2FMFS, SAGN),
considering the variabilities in training data and block size.

Figure 4 represents the performance of the proposed TaylorAVO-SqueezeNet model,
considering accuracy, sensitivity, and specificity metrics, based on the k-fold validation.
The results demonstrate that the proposed model achieves superior performance compared
to conventional models (BSF-EHR, CNN, GIT2FMFS, SAGN) when varying the k-fold data
validation.
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(a) Accuracy. (b) Sensitivity. (c) Specificity.

Figure 3. Evaluation of accuracy, sensitivity, and specificity using TaylorAVO-SqueezeNet with other
traditional models according to varying training data.

(a) Accuracy. (b) Sensitivity. (c) Specificity.

Figure 4. Evaluation of accuracy, sensitivity, and specificity using TaylorAVO-SqueezeNet with other
traditional models according to varying k-fold validation.

(a) Accuracy. (b) Computational Time.

Figure 5. Evaluation of accuracy and computation time using TaylorAVO-SqueezeNet with other
traditional models according to varying block size and time.

In Figure 5, Figure 5a represents the performance of the proposed TaylorAVO-SqueezeNet
model, wherein enhanced accuracy is observed with a blocksize increase and the trend is
significant when compared with traditional models. In the same way, Figure 5b illustrates
the decrease in computing time as the size of the blockchain increases, thus validating the
efficiency of the proposed approach compared to conventional models. (BSF-EHR, CNN,
GIT2FMFS, SAGN).
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Figure 6 represents a comparison of the performance of the proposed TaylorAVO-
SqueezeNet in cases of limited and large block sizes, as well as varying training data and
K-fold. The graphs reveal that the performance of the model is enhanced with the increase
in block size.

(a) Accuracy. (b) Sensitivity. (c) Specificity.

Figure 6. Evaluation of accuracy, sensitivity, and specificity using TaylorAVO-SqueezeNet with other
traditional models, varying block size and time.

4.3. Performance Analysis

The proposed TaylorAVO-SqueezeNet model performance is evaluated based on the
minimum and maximum data sizes as well as variations in training data, block size and
k-fold data. In the case of training data variability, the model is evaluated for the metrics
of accuracy, sensitivity, and specificity, wherein it is revealed that the proposed model has
superior outcomes compared to the conventional models (BSF-EHR, CNN, GIT2FMFS,
SAGN). Similarly, a similar outcome is observed in the case of varying k-fold, wherein
the proposed model outperforms the conventional models in the aforementioned metrics.
Further, the block size is also varied, and the model is evaluated considering accuracy and
computation time. In this case, the outcomes validate the proposed model’s superiority.
The consolidated outcomes for varying parameters are represented in Table 3.

Table 3. The analysis of performance metrics for several measures.

Performance
Metrics BSF-EHR CNN GIT2FMFS SAGN

Proposed
TaylorAVO-
SqueezeNet

Limited block size

By varying
training
data

Accuracy 0.8259 0.8647 0.8998 0.9136 0.9368
Sensitivity 0.8583 0.8988 0.9062 0.9272 0.9493
Specificity 0.8167 0.8517 0.8788 0.9012 0.9218

By varying
k-fold

Accuracy 0.8253 0.8583 0.8910 0.9094 0.9363
Sensitivity 0.8576 0.8923 0.9016 0.9271 0.9492
Specificity 0.8160 0.8428 0.8736 0.9007 0.9202

By varying
block size

Accuracy 0.8154 0.8352 0.8500 0.8912 0.9125
Time(sec.) 115.71 110.69 92.59 88.387 79.969

Larger block size

By varying
Training
data

Accuracy 0.8187 0.8709 0.9007 0.9131 0.9426
Sensitivity 0.8278 0.9150 0.9218 0.9282 0.9481
Specificity 0.7788 0.7878 0.8434 0.8813 0.9345

By varying
k-fold

Accuracy 0.8164 0.8604 0.8966 0.9110 0.9415
Sensitivity 0.8258 0.9029 0.9206 0.9253 0.9469
Specificity 0.7781 0.7871 0.8410 0.8805 0.9341
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5. Conclusion and Future Directions

In this paper, we used a novel TaylorAVO-SqueezeNet framework, which enables the
accurate detection of DR using optimized deep learning techniques without compromising
the privacy of EHRs, ensuring optimized security with the use of blockchain. The function-
ing of the model is initiated with the registration and authentication of the patient data
using blockchain. As part of this process, once registration is completed, the admin unit re-
ceives the private key, which enables user authentication. Only authorized and valid users
are allowed to upload or download information, which is further analyzed by the deep
learning model for the detection of disease. The data pre-processing and lesion segmenta-
tion techniques used to improve the quality of the input images are part of the deep learning
model. In addition to this, feature extraction is performed using the TaylorAVO algorithm
to obtain the most significant features. The SqueezeNet classification technique is further
implemented to classify the patient’s dataset based on normal and abnormal conditions.
The results of the classification are finally saved in the blockchain, where only authorized
users can see them. The proposed model was tested and compared to the conventional
models (BSF-EHR, CNN, GIT2FMFS, SAGN) with a training and testing data ratio of 70:30.
The results reveal enhanced accuracy (0.9426), sensitivity (0.9481), and specificity (0.9345).
The model yields optimal performance, utilizing lesser computational time and complexity,
but there are associated challenges pertinent to an increase in computational complexity.
The major issue of blockchain implementation is scalability, especially when dealing with
healthcare records. Each computer that confirms the transactions and maintains the records
in the blockchain ensures secured data storage from the genesis block to the latest or recent
block. The security of the framework is enhanced but faces the associated challenges of
network efficiency when the blockchain grows. This issue is likely to be more prominent
in the case of EHR, as the record size tends to progressively grow with the increase in the
number of patient records. Additionally, although blockchain implementations eliminate
the costs associated with third-party transactions, there are additional costs for integrating
this technology into legacy systems, especially in healthcare. These potential challenges in
the existing framework will be emphasized as part of future work.
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MVDRNet Multi-View Diabetic Retinopathy Detection Mechanism
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
AVO African Vulture Optimization Algorithm
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