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ABSTRACT Diabetic retinopathy (DR) is a diabetes complication that affects the eye and can cause
damage from mild vision problems to complete blindness. It has been observed that the eye fundus images
show various kinds of color aberrations and irrelevant illuminations, which degrade the diagnostic analysis
and may hinder the results. In this research, we present a methodology to eliminate these unnecessary
reflectance properties of the images using a novel image processing schema and a stacked deep learning
technique for the diagnosis. For the luminosity normalization of the image, the gray world color constancy
algorithm is implemented which does image desaturation and improves the overall image quality. The
effectiveness of the proposed image enhancement technique is evaluated based on the peak signal to noise
ratio (PSNR) and mean squared error (MSE) of the normalized image. To develop a deep learning based
computer-aided diagnostic system, we present a novel methodology of stacked generalization of convolution
neural networks (CNN). Three custom CNN model weights are fed on the top of a single meta-learner
classifier, which combines the most optimum weights of the three sub-neural networks to obtain superior
metrics of evaluation and robust prediction results. The proposed stacked model reports an overall test
accuracy of 97.92% (binary classification) and 87.45% (multi-class classification). Extensive experimental
results in terms of accuracy, F-measure, sensitivity, specificity, recall and precision reveal that the proposed
methodology of illumination normalization greatly facilitated the deep learning model and yields better
results than various state-of-art techniques.

INDEX TERMS Convolutional neural networks, diabetic retinopathy, early diagnosis, fundus images, gray
world algorithm, ensemble learning

I. INTRODUCTION

Diabetic retinopathy (DR) is a medical condition that is
caused by the damage to the blood vessels of the light-
sensitive tissue at the back of the eye (retina), which can
eventually cause complete blindness and various other eye
problems depending on the severity of the disease. Though
the treatment is available, it is estimated that numerous
people go blind every day because of this disease [1]. It
is observed that 40% − 45% of diabetic patients are likely

to have DR in their life, but due to lack of knowledge and
delayed diagnosis, the condition escalates quickly [2].

The Early Treatment DR Study Research Group (ETDRS)
has shown that if DR is correctly diagnosed on time, it
may reduce the chances of vision loss by 50% [3]. The
prevalence of DR is maximum i.e., 25.04% in the people who
fall in the age bracket of 61-80 [4]. Till now retinal images
are manually assessed by ophthalmologists and clinicians
for predicting DR after the eye fundoscopic exam and to
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analyze signs such as cotton wool spots, retinal swellings,
and hemorrhages [2]. However, it is usually observed that
during image the acquisition process, the fundus images
show various kinds of irrelevant illuminations, non-uniform
light distribution, blurred or darkened candidate regions,
which subsequently affect the diagnostic process and result
in biased predictions[5]. To detect DR, it is essential to
obtain results with high precision irrespective of any bias to
avoid a wrong judgment that may lead to a serious problem
or in some cases, even permanent blindness. During the
fundoscopic test, if the obtained image is highly saturated,
it becomes difficult to carry out a proper visual assessment
test even by a trained ophthalmologist or a clinician and
hence, the presence of non-uniform illuminations can impede
correct predictions [6]. Therefore, luminosity normalization
becomes a significant pre-processing aspect for a diverse set
of retinal images. Some of the previous work have consid-
ered normalizing the luminosity of the retinal images using
various statistical, mathematical, and particularly HSV color
space based models to desaturate the image [5]–[7].

The previous diagnostic studies of DR can be classified
into two types: 1) Automatic detection of the disease (bi-
nary), and b) Classification of different stages of the disease
(multi-class). In our study, our focus is to automate the
diagnostic process and to combine the luminosity normal-
ization pre-processing pipeline with an advanced artificial
intelligence technique. Till now various image processing
techniques have been presented to detect DR by considering
the definitive candidate regions such as cotton wool spots, ex-
udate, hemorrhages, and blood vessels, as reported in [8], [9].
These methods rely on manual feature extraction but, since
most of the retinal images depict non-uniform features, thus
generalizing feature set for all images may give inappropriate
diagnostic results when a large database is considered.

Various architectures of the multi-layered perceptron, con-
volutional neural networks (CNN), and machine learning
algorithms have also been implemented for automatic dis-
ease detection [10]–[12]. However, none of these studies
has addressed the problem of non-uniform reflectance and
over-saturation of a fundus image surface for developing
an unbiased DR diagnostic tool. Therefore, to alleviate this
issue we have presented a novel color constancy technique
to reduce irrelevant reflectance in fundus images and for
the feature extraction of the pre-processed images, a stacked
generalization of deep CNNs is developed, which can also be
considered as a superior cross-validation technique for neural
networks models.

The main contributions of this paper can be summarized
as follows:

• We solve the non-ideal illumination and color degrada-
tion problems by using the gray world color constancy
schema to desaturate the retinal images. This will enable
ophthalmologists to use color of the images as a reliable
cue for recognizing the DR signs and avoid the various
distortions related to light distribution and color, which
may hinder the diagnostic results.

• Scaling factor is an important step in color correction
technique such as gray world in our case, therefore, the
color channel with minimum mean is considered as a
reference to calculate the gray world illuminant.

• To automate the diagnostic process and to make predic-
tions using the desaturated images, a stacked general-
ization of three custom CNNs is developed, which is
fed into a single meta-learner to extract the most opti-
mum weights from the sub-networks to achieve better
performance. This method differs from a usual voting
classifier because the evaluation metrics (e.g. accuracy
and mean squared error) are not averaged or voted, but
rather the meta-learner model gets multiple prediction
probabilities as input, which are combined to generate
better features and thus achieve accurate results.

• We consider the Exponential Linear Unit (ELU) ac-
tivation function for each sub-model due to its fast
convergence and more accurate results.

• To monitor the generalization of error and avoid con-
ditions such as overfitting and bias-variance trade-off
during training, techniques such as exponential learning
rate decay and early-stopping are also applied to give an
overall regularization effect on the proposed model.

• Extensive experiments and comparisons between the
proposed model with the existing works in the diagnosis
of DR have been drawn to validate our model and
findings.

The rest of the paper is organized as follows. Section II
discusses the literature review of DR diagnosis. In Section
III we state our motivations. Image normalization and the
stacked generalization of deep CNNs model are discussed
in Section IV. Section V presents the experimental setup.
Section VI presents the quantitative analysis. The discussion
is presented in Section VII. Finally, our conclusions and
possible future work are presented in Section VIII.

II. LITERATURE REVIEW

Different techniques have been presented by researchers to
deal with retinal image normalization, balancing luminosity
distribution, contrast normalization, and computer-aided di-
agnostic systems, which have proved to be of great impor-
tance in the field of retinal imaging. The literature survey
of this study covers two major categories of DR works to
ensure that an overall view is given for better understanding.
The works of each category were evaluated based on different
performance metrics and design attributes based on the data
pattern and proposed experimental design.

The first category comprises of works, which solely fo-
cused on an image processing based methodology for DR
detection. Zhou et al. [5] presented a luminosity adjustment
technique in which a luminance matrix is obtained by the
gamma correction of value channel in HSV color space
to improve the quality of individual RGB channels. For
improving the contrast of images, contrast limited adaptive
histogram equalization (CLAHE) technique was used that
involves a kernel based iterative process to normalize the
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histogram of image pixels to avoid congestion of the pixels in
a particular range, thus improving the image quality. In [7],
the authors proposed the histogram equalization-based image
processing technique for fundus image enhancement and
developed a CNN model for classification. They used a small
dataset of 400 images and achieved a sensitivity of 96.67%
and specificity of 93.33%. Bhaskar et al. [13] proposed a
technique to normalize the contrast and luminosity of the
fundus images by assuming that all the neighborhood pixels
are independent and identical to each other. In [14], a retinal
enhancement technique based on Speeded up Adaptive Con-
trast Enhancement (SUACE) algorithm integrated with the
Tyler-coy algorithm was proposed. The SAUCE algorithm
uses a gray-scale image obtained by Principal Component
Analysis (PCS), which was then fed into the Tyler-coy algo-
rithm to remove the discontinuities of blood-vessel for better
prediction results. In 2015, [15] presented an illumination
correction technique using a low-pass filter and Gaussian
filter. By using the low pass filter, the background of the
image is normalized and then superimposed with the results
of the Gaussian filter, thus removing any sort of foreground
noise that existed earlier. Singh et al. [16] used the usual
histogram equalization technique for low-radiance images to
clip away the pixel-values based on the threshold, which was
calculated by taking the average median value of the image
to enhance the normalization results. They used structural
similarity index measure and the Euclidean distance to val-
idate their prediction results. Although numerous techniques
proposed methodologies for image contrast enhancement, but
none of them focused on image desaturation for developing a
DR system.

The second category depicts the various deep/ machine
learning methodologies, which have been presented for early
DR detection. Most of the previous work was focused on the
development of traditional machine learning and ensemble
deep learning techniques. Recently, Zhou et al. [10] proposed
a multiple instance learning technique, which is a weakly
supervised technique to detect DR in fundus images. Initial
image processing steps such as resizing, Gaussian smoothing
were implemented before feature extraction. Their detection
model was divided into two parts. First, they created a bag
of image patches for detecting lesions. Second, a pre-trained
Alexnet [17] model was utilized for automatic feature extrac-
tion. The model achieved an AUC score of 92.5%. In [18],
an ensemble approach using deep transfer learning models
to detect DR was proposed. The models including ResNet
[19], Densenet [20], Inception [21], and Xception [22] for
extracting features and performed extensive hyperparameter
tuning to achieve better results. They gave per-class metrics
where the highest AUC of the imbalanced class was 97%, but
they did not consider any image pre-processing technique to
normalize the images. The authors used a dataset of images
that contains spatial noise and distortions such as blurring and
darkened corners, which require a more advanced technique
to get reliable results.

A stacking technique of machine learning algorithms was

presented in [1] to prepare a DR screening tool. Lesions
and microaneurysms are extracted and then classified us-
ing an ensemble classifier. The model’s performance was
evaluated using accuracy, sensitivity, and specificity, and
achieved 90%, 91%, 90%, respectively. In 2017, another
improved ensemble technique was presented by Somasun-
daram and Alli [23]. Machine learning bagging ensemble
classifier (ML-BEC) was considered for the prediction of
DR. They implemented the t-distributed Stochastic neighbor
embedding (t-SNE) algorithm to separate the images into
similar and dissimilar pairs. Saleh et al. [24] presented an
ensemble technique for DR risk assessment, which justifies
the presence or absence of the disease. They prepared a
dominance-based rough set balanced rule ensemble (DRSA-
BRE) and compared their works with the random forest
classifier. The best sensitivity score achieved was near 80%.
Similarly, various DR detection methods have been presented
in this field [25]–[27]. However, none of these solve the
problem of non-uniform illuminations, which can play a
major role in detection of proliferative and Non-proliferative
DR.

Table 1 summarizes the most relevant work from two
major categories for DR detection along with the used perfor-
mance evaluation metrics and their limitations. From the pre-
sented research literature in Table 1, we can infer that most
of the techniques focused on retinal contrast enhancement
and machine/deep learning models for classification without
addressing the non-uniform reflectance of fundus data during
image acquisition. Therefore, to alleviate these issues we
developed a pipeline for image illumination normalization
and a novel feature extraction model for early DR detection.

III. MOTIVATION

Since most of the proposed approaches focused mostly on
machine learning, deep learning, and image processing tech-
niques to extract candidate features such as lesions, hem-
orrhages, exudates and cotton-wool spots but they ignored
solving the variance in scene illumination and light degrada-
tion, which affects the performance and may result in biased
prediction results. In our proposed method, we have used
a dataset that has multi-sourced images. Therefore, various
types of noise and distortions are encountered in the images.
To overcome such issues, we aim to explore the research area
of combining artificial intelligence and image processing to
develop a complete illumination proof diagnostic tool for
DR. The methodology that has been applied is discussed in
the following sections.

IV. METHODOLOGY

Figure 1 demonstrates the different stages of the proposed
methodology in the form of a model pipeline. After the data
acquisition, the image luminosity is normalized by the color
constancy based gray world algorithm. The image processing
pipeline is shown in the figure in which the illuminant K ′

from the images is used to normalize the image. The data is
split into training and test sets for the stacking convolutional
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TABLE 1: A summary of the related works presented in this study.

References Methodology Performance evaluation metrics Limitations

Mei et al. [5] Image processing methodology
for image enhancement

Average standard deviation Image enhancement is discussed, however, its
advantage in DR detection is missing

ÃŰmer et al. 2018 [7] Sensitivity and Specificity The experimental dataset consisted of only 400
retinal images

A. M. et al. 2017 [14] True positive rate, false positive rate, Accuracy The obtained experimental accuracy is less than
the previous state-of-art methods

Mustafa et al. 2015 [15] Signal noise ratio (SNR) Utilized Gaussian filter for noise correction, but
did not discuss any disease detection module

Navdeep et al.2019 [16] Structural similarity index (SSI), Euclidean dis-
tance

Used histogram equalization for image en-
hancement, but preprocessing steps for lumi-
nosity normalization were not taken

BÃąlint et al. 2014 [1] Machine Learning and Deep
Learning for feature extraction

Accuracy, Sensitivity, Specificity Used ensemble machine learning algorithms,
however, obtained less accuracy on the dataset

Lei et al. 2017 [10] Area under curve (AUC) Transfer learning used for feature extraction but
did not present extensive comparative analysis
in the study

Sehrish et al. 2019 [17] AUC Ensemble of transfer learning models was pro-
posed; however, image luminosity normaliza-
tion was not done. AUC value is also less

S.K et al. 2017 [18] Accuracy, Classification time, DR detection
rate

A bagging classifier was used but no image
preprocessing steps for irrelevant illuminations
were taken.

Emran et al. 2018 [19] Sensitivity Proposed a machine learning ensemble model
for feature extraction, but model sensitivity was
only 80%.

Proposed Methodology Stacked CNNS F-measure, precision, recall, accuracy, AUC,
sensitivity, specificity, mean squared error
(MSE), Peak signal to noise ratio (PSNR), Con-
fusion Matrix analysis.

A diagnostic system is proposed based on a
novel gray world assumption for luminosity
normalization and a stacked integrated deep
learning algorithm for feature extraction. Data
augmentation is also applied. One limitation
we observed is that our model neglected the
fainting lesions even after the image normaliza-
tion was done and thus, it might be difficult to
predict the mild stage of DR. However, some
advanced candidate region-based segmentation
techniques could be used for candidate feature
extraction to achieve better results.

 

FIGURE 1: A diagrammatic flow of the proposed methodology and the training process.
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model. Three different sub-models of CNNs are fed into a
single meta-learner classifier for feature extraction. The fu-
sion strategy of the stacking model is based on the weighted
majority from each of the sub-model for generating better
features for classification. Data augmentation technique is
also applied to improve the diversity of images in the dataset.
Finally, the meta-learner classifier produces the diagnostic
result as healthy (No DR) or unhealthy (DR).

A. LUMINOSITY NORMALIZATION USING GRAY WORLD

ALGORITHM

We use a color constancy algorithm for image normalization
as a pre-processing step. In our experiments, we dealt with
a dataset that contains images from multiple sources having
color variations, varying illuminations, and a non-uniform
light distribution, which resulted in a large amount of hetero-
geneity among images. In case of retinal images, heterogene-
ity among images can cause a major difference in appearance,
for example, some part of the image gets highlighted near the
center, but boundaries get blurred, and these non-uniformities
can seriously affect the diagnostic results. Therefore, it is
necessary to propose a color calibration methodology for
these images [28]. We have implemented the color constancy
algorithm to remove the unnecessary surface reflectance and
to make the color of the image invariant to such illuminations
and other color-related aberrations. Generally, there are four
common color constancy algorithms: Gray World, Shades of
Gray, General Gray World, and Max-RGB. In this paper, we
have consider the Gray World algorithm.

Gray world algorithm assumes that the average surface
reflectance of the image is achromatic and therefore varia-
tions could be done by including the average pixel values and
scaling them by a scaling factor, which is computationally
inexpensive to calculate. Gray world is also a statistical
algorithm, which uses less computation power. According to
[29] most of the existing algorithms are based on assump-
tions. For instance, the Max-RGB color constancy algorithm
assumes the presence of white patch in the image to calculate
the illuminant, whereas the gray world algorithm uses the
average reflectance, and encourages a data-driven approach
in color constancy [30].

As explained above, it is assumed in the gray world al-
gorithm that the (R,G,B) color channels have linear values,
which means that the average reflection in standard light is
gray. But it is not what we see in real life. It is based on
the hypothesis that the average of each channel (R,G,B) in an
image I is always equal, i.e., gray [31]. However, the average
is not constant and is either greater or less than the gray
value. This deviation from the original gray value gives us
the illumination change. The illuminant of the image is then
estimated in the RGB mode, which is then used to normalize
each channel of the image to transform the image under a
canonical light resource.

The stepwise algorithm of this popular luminosity normal-
ization schema is explained below.

STEP 1: Pixel Level Normalization

Initially, to get the color of the light source, pixel-level
normalization is carried out by calculating the average pixel
value of each sensor channel. Consider an image as:

I = [Rwh, Gwh, Bwh] (1)

Rwh, Gwh, and Bwh represent the sensor channels, whereas
w and h depict the image width and height, respectively. The
mean pixel value can be calculated as:

µj =
1

j

∑

j

Ij (2)

Here, j = R,G,B.

STEP 2: Gray World Illuminant Calculation

In the gray world color correction, one of the color channels
is selected as a reference to calculate the illuminant but the
intensity of the resultant normalized image degrades and
may hinder the diagnostic results. Therefore, in the proposed
method, a compressed color channel technique of the Gray
world algorithm is used in which the color channel with
minimum average magnitude is selected as proposed in [32].
The scaling factors obtained based on this magnitude can be
expressed as:

βr =
X̄min

R̄wh

(3)

βg =
X̄min

Ḡwh

(4)

βb =
X̄min

B̄wh

(5)

Thus, the resultant illuminant belongs to each sensor channel
of the image. For example, if the image is I , then the
component of illuminant is ec, where c ∈ [R,G,B].

STEP 3: Scaling Individual Image Channel

The normalized image is obtained by scaling each individual
color channel by multiplying it with the scaling factor as:

R′ = Rwh × βr (6)

G′ = Gwh × βg (7)

B′ = Bwh × βb (8)

R′, G′, and B′ represent the normalized channels of the
resultant color normalised image.

Figure 2 shows the normalised images obtained after ap-
plying the gray world color constancy algorithm.
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FIGURE 2: Results of image normalization using colour constancy algorithm. The first row shows three original images,
whereas the second row shows their corresponding colour normalized images after applying the gray world algorithm. The
yellow arrow points out that features visible in original image such as blood vessels, macula, haemorrhages are not affected
after luminosity normalization.

B. ARTIFICIAL DATA GENERATION

To add more diversity to the dataset, data augmentation
technique is used in which artificial data is generated from
the pre-existing images. The data is generated for each mini
batch in an iterative process during model training. The ap-
plied augmentation steps include horizontal flip, width shift,
height shift, fill mode, and zoom range. Table 2 illustrates
the data augmentation parameters. Figure 3 shows nine gen-
erated images in an iterative process during model training
with a rotation angle set to 74 degrees.

TABLE 2: Data augmentation parameters considered for
retinal image generation.

Parameters Values

Width shift 0.1
Height shift 0.1

Rotation range 15
Zoom range 0.1

Horizontal flip True
Fill mode Nearest

C. CONVOLUTIONAL NEURAL NETWORK

The CNN models are based on the principle of layer-wise
abstraction for feature learning. The complexity as well as
the number of features increase with the model depth. CNNs
follow an analogous feed-forward architecture just like an
artificial neural network, but they are much better in the
generalization for computer vision-related problems. They
are commonly known as ConvNets and usually consist of

an input layer, hidden layers, and an output layers. The
hidden layers have some activation functions, fully connected
layers, and pooling layers. The top layers of a CNN model
tend to learn low-level features such as edges, color, and
shapes, whereas the deeper layer focuses on learning high-
level features.

Typically, CNN models are a stack of alternating con-
volutions with various sizes of filters, pooling, and fully
connected layers. The difference between a fully connected
layer and a convolution layer is that the convolution layer
is partially connected and receives inputs from a sub-area
of the previous layer, whereas in a fully connected layer
all the previous neurons are related to the next neurons for
feature transmission [33]. A kernel or commonly known as
the filter is a sliding window over the image, which is an array
of numbers, where these numbers are the weights that are
updated continuously. The area over which it slides is called
the receptive field. In our model, we apply 3×3 filters with a
depth of 3 since we have colored images of size 96× 96× 3.
The filter convolution over an image results in an element-
wise multiplication with pixel values represented as:

L[m,n] = (f ×h)[m,n] =
∑

j

∑

k

h[j, k]×f [m− j, n−k]

(9)
Here, the input image is f , the kernel is denoted by h, and
the indices of rows and columns are represented by m and
n, respectively. After completion of the first convolutional
layer, a feature map is generated which is the input for the
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FIGURE 3: An illustration of data augmentation in retinal images.

second layer. We consider max pool as the pooling layer,
which down sample the resulting feature maps and increases
the receptive field on the filters [33]. To induce non-linearity
to the feature maps, activation functions are applied. In our
case, we utilize the Exponential Linear Unit (ELU) activation
function, which is defined as:

ELU(x) =

{

x, if x > 0

α(ex − 1), if x ≤ 0
(10)

Although it is computationally expensive but it converges
faster as compared to other activation functions. According
to [34] the presence of the extra parameter α controls the
saturation point for negative values and thereby it is compu-
tationally inexpensive as compared to other functions. This
is what differentiates it from the commonly used Rectified
Linear Unit (Relu) activation function. In a neural network,
forward and backward propagation are one of the most im-
portant factors in determining the convergence performance
of a CNN. The forward propagation has two steps. First, the
calculation of Z, which is determined as:

Z = W [l]
×A[l−1]

×B[l] (11)

Here W is a tensor which has a filter and B is the bias term.
The second step, applying the activation function as follow:

A[l] = K [l](Z [l]) (12)

Here, k denotes the activation function. This process is fol-
lowed by a backward propagation in which partial derivatives
are calculated to update W and B for improving gradient

descent convergence, and reducing the error. The partial
derivative can be calculated as:

DX [l] =
∂L

∂A
(13)

Here, X denotes A[L], W [L], B[L], which are activation,
weight, and bias, respectively. The Weights are updated as:

W = Wi − η
∂l

∂w
(14)

Here, η is the learning rate, Wi is initial weight. For the CNN
model, the images are resized into 96×96×3 before feeding
into the neural network.

D. STACKED GENERALIZATION OF CNNS

The methodology of stacking multiple sub-models into a
single meta-learner classifier to combine the prediction prob-
abilities to reduce the generalization error by deducing indi-
vidual biases of the sub-models is called the stacked general-
ization [35]. It is different from the usual model averaging
methodology in terms of the fusion strategy because the
classification results are not averaged, but the final output is
decided by the weighted majority of the sub-models. In the
case of deep learning, multiple CNNs with different archi-
tectures are merged before giving the final output. Different
ensemble techniques have been applied in similar work [1],
[24], however these were machine learning algorithms-based
techniques, such as ensemble models of K-nearest neighbor,
NaÃŕve Bayes and Decision tree. In contrary, we have used
CNNs for stacked generalization.

In order to reduce the bias in machine learning, usually,
the crude cross-validation techniques such as 10-fold cross-
validation and Leave-one-out cross-validation are applied.
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However, if those techniques are applied in CNNs, the com-
plexity and computational time of the model increase tremen-
dously unlike most of the machine learning algorithms. A
CNN deals with millions of parameters during the forward
and backward propagation [24]. Thus, different fusion-based
ensemble methods have been presented by researchers every
year to combine multiple predictions in the most optimized
way. There are various fusion strategies for ensemble models
including model averaging, where we combine the predic-
tions from several independently trained models as adopted
in [36]. In our case, we use the weighted majority based
fusion technique for the stacked model.

Consider an ensemble of M independent classi-
fiers D1,...,DM , with individual accuracies p1, p2..., pM .
Each classifier Di produces c − dimensional vector
[di,1, ..., di,c]

T ∈ 0, 1c, i = 1, ...M , where di,j =1 if Di

labels x in ωj , and 0 otherwise. The majority vote will result
in an ensemble decision for class ωk if

M
∑

i=1

di,k = maxc
j=1

M
∑

i=1

di,j (15)

When introducing weights or coefficients of importance
bi,i = 1, 2, ...,M , and rewriting Eq.(15 as: choose class label
ωk if

M
∑

i=1

bidi,k = maxc
j=1

M
∑

i=1

bidi,j (16)

The outputs are combined by the maximum weighted major-
ity as shown in Eq. (16) [37]. This results in an improved
overall performance because the models that perform well
individually, contribute more to the final metrics compared
to less performing models. A stacked generalization is a
multi-level learning model because at each level it aims to
select the most appropriate bias for minimizing the overall
generalization error.

Figure 4 shows the stacked model of CNNs prepared
for our experiments. Three different CNN architectures are
prepared to be fed into the meta-learner classifier. Therefore,
three different copies of the input data for each of the network
is made, and after the concatenation a 3-element vector of
prediction probabilities is created, which can be seen in the
concatenate_7 layer of the stacked model from 3 different
sub-models and 2-class labels after applying the sigmoid
function to produce result as either 0 (No DR) or 1 (DR).

V. PERFORMANCE ANALYSIS

A. DATASET DESCRIPTION

The dataset used in our experiment was acquired from a
Kaggle competition and is a benchmark dataset for DR
diagnosis provided by EyePACS [38]. EyePACS is a web-
based system designed to remotely help patients deal with
DR issues without the need of a doctor. It is a platform where
clinicians could collaborate and share their work, which
could be further used for research purposes. EyePACS shared
their data with Google and Kaggle to host a competition for

tackling DR where people could contribute to open further re-
search areas through using their open-source retinal database.
The dataset is highly imbalanced with the number of healthy
images overshadowing the number of severe and advanced
stage of DR images.

Figure 5 shows a corpus of sample retinal images obtained
from the EyePACS dataset. Since we are detecting DR and
not classifying the stages therefore, we used a subset of
balanced data and the images were divided and put into two
different folders of healthy and unhealthy retinal images.
Figure 6 explains about the feature descriptions of the reti-
nal fundus images used in our experiments. We have used
2471 images and divided them as 20% for validation and
80% for training. All images are colored and kept in the
original .JPEG format. Since images were not acquired by
the same camera and were taken in different lighting condi-
tions with visible illumination variance, color combination,
camera angles, therefore, an image normalization technique
was implemented before feature extraction.

FIGURE 5: Sample fundus images from the EyePACS
dataset.

B. MODEL BUILDING

The goal of our experiment is to make an accurate valida-
tion tool for doctors to detect DR by avoiding unnecessary
reflectance properties of fundus images and making light a
reliable factor other than unnecessary distortions. A stacked
generalization of three different CNNs was prepared and
fed into a meta-learner as shown in Figure 4. Out of 2471
images, 495 images are kept for testing the model and 1976
images are used for training. During the stacking process, it is
important to train the meta-learner on a separate dataset other
than the data on which individual sub-networks are trained to
avoid any sort of overfitting and bias in the results. That is
why each of the sub-model is trained on the same training
set, however the test results by the meta-learner were tested
on a separate test set.

Table 3 gives the information about the class-wise dis-
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FIGURE 4: An illustration of the stacked CNNs concatenated on top of the meta-learner classifier.
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FIGURE 6: DR dataset for fundus image diagnosis. Figure
6 (1) shows the healthy retinal image having no signs of
any type of lesions and hemorrhage. Figure 6 (2) shows the
unhealthy retinal image having mild stage DR because it has
some lesion presence. Figure 6 (3) shows the presence of
yellowish irregular edges known as the hard exudates in the
unhealthy retinal image. Figure 6 (4) shows the unhealthy
retinal image having severe stage of DR due to prominent
presence of cotton wool spots, which are caused due to the
accumulations of the axoplasmic material in the retina.

tribution of the dataset used for our experiments. Image
processing and normalization are applied using libraries such
as OpenCV, NumPy, and PIL and for the model development,
Keras and TensorFlow libraries are used.

TABLE 3: Label wise depiction of dataset division used for
training and testing of the stacked CNN and other transfer
learning models.

Class Labels Training Dataset Testing Dataset
Healthy (No DR) 900 235

Unhealthy (Having DR) 1076 260
Total 1976 495

The different CNNs which are used as sub-models are
comprised of many successive convolution layers, pooling
layers, and batch normalization layers. The architecture of
the three sub-models is not similar in terms of the number
of layers and the combination of pooling and batch normal-
ization. The reason for stacking different architectures is to
achieve different results for better generalization. However,
hyperparameters such as learning rate, batch size, epochs are
identical for each sub-model. The final fully connected layers
are apply sigmoid function to give the binary diagnosis.
Table 4 illustrates the layer-wise ConvNet configuration of
the first CNN which is the part of the stacking model.

The models are trained for 18 epochs with batch size
of 16. Accuracy was considered as the initial metric of
evaluation. Stochastic gradient descends (SGD) was used as

the model optimizer. To prevent the model from overfitting,
hyperparameter tuning was also applied but the problem of
overfitting persisted. To address this issue two important
techniques were utilized. First, we applied a learning rate
decay. The initial learning rate is set to 0.00009 and a rate
decay equivalent to learning rate/100 is applied. Therefore,
a gradual decrease in the learning rate with a factor of 100
improved the gradient descend convergence. Second, two
regularization techniques are also implemented which are
discussed in the next subsection.

C. REGULARIZATION BY CALL-BACK FUNCTIONS

Call-back is a set of functions that are applied to induce a
regularization effect to generalize the deep learning model
and stabilize the estimates to combate overfitting. Usually,
the regularization techniques increase the bias and reduce
the variance of the model [39]. First, we applied a strategy
known as early stopping in which the training is stopped
prematurely as the validation loss tends to increase resulting
in a steep increase in the loss curve and decrease in the
model performance, and thus giving us an optimal stopping
point. For early stopping, the hyper-parameter patience was
set to 2. In the deep learning models, it is commonly seen
that the validation loss vs. training loss graph gets stuck at
an inflection point, where the loss does not decrease and
no improvement in performance is detected. That inflection
point looks like a plateau formed in the graph. Thus, the
second function we used for regularization was to reduce the
learning rate by a factor of 100 when such plateau is reached
during the training process.

D. MODIFIED DEEP TRANSFER LEARNING MODEL

To fairly compare our findings, we implemented two different
deep transfer learning models, which are ResNet50 [19]
and VGG-16 [40]. Transfer learning models can be used in
different ways to transfer the learned features from pretrained
models [41]. However, the most prominent work follows two
scenarios, which are known as feature extraction and fine-
tuning. In our experiments, we utilize the pretrained models
as feature extractors.

We used the same dataset and divided it in the similar
ratio as done for the stacked generalization CNN model. Data
augmentation was also applied for improving the diversity
of the data. Both ReseNet50 and VGG-16 models were fine-
tuned as it is necessary to improve the performance. In our
case we did the layer-wise fine tuning similar to [42], [43], as
it is more effective and less time consuming. We added the
fully connected layer head to ResNet50 and VGG-16, which
consists of a pooling layer, fully connected layer and the final
layer having sigmoid function to give us the binary output.
The weights of both VGG-16 and ResNet50 were frozen so
that only the fully connected layers were adjusted. Similarly,
we trained the networks for 18 epochs with a batch-size of
16.
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TABLE 4: Layerwise configuration of a single CNN architecture which is fed into the meta-learner classifier.

Operation Layer Filter Size Padding Strides Output Image Size Dropout Activation

Convolution Layer 3× 3× 32 same 1 96× 96× 32 - Elu
Convolution Layer 3× 3× 32 - 1 94× 94× 32 - -

Max-pool2D 2× 2 valid - 47× 47× 32 - -
Batch-Normalization - - - 47× 47× 32 - -
Convolution Layer 3× 3× 32 same 1 47× 47× 32 - Elu
Convolution Layer 3× 3× 64 valid 1 45× 45× 64 - -

Max-pool2D 2× 2 valid - 22× 22× 64 - -
Batch-Normalization - - - 22× 22× 64 - -
Convolution Layer 3× 3× 64 same 1 22× 22× 64 - Elu
Convolution Layer 3× 3× 128 valid 1 20× 20× 128 - -

Max-pool2D 2× 2 valid 1 10× 10× 128 - -
Dropout - - - 10× 10× 128 10% -

Convolution Layer 3× 3× 128 same 1 10× 10× 128 - Elu
Batch-Normalization - - - 10× 10× 128 - -
Convolution Layer 3× 3× 512 same valid 8× 8× 512 - Elu

Max-pool2D 2× 2 valid 1 4× 4× 512 - -
Flattening Layer - - - 8192 - -

Fully Connected Layer - - - 512 - Elu
Dropout - - - 512 50% -
Output - - - 1 - -

VI. QUANTITATIVE ANALYSIS

Three major checkpoints are cleared in our experiments.
First, solving the multi-sourced dataset problem of normal-
izing non-uniform luminosity by desaturating images using
their statistical features such as mean pixel values and an
optimum scaling factor. Second, developing an automated
detection system for the normalized fundus images using an
advanced artificial intelligence technique known as stacked
generalization of CNNs, which uses the principle of weighted
majority of sub-models. Third, to support our experimental
results with proof, various comparisons are drawn with the
benchmark deep transfer learning models.

A. LUMINOSITY NORMALIZATION ANALYSIS

The results of the proposed image illumination normalization
technique are shown in Figure 2. It is visible that the images
are color calibrated using the gray world algorithm. After
applying this algorithm, the images are desaturated using
the illuminant, which is taken as the minimum magnitude
color channel. This aids in the transformation of a uni-
formly luminous image, and thus removing the presence
of the unnecessary reflectance. The saturation loss of these
images helped to reduce unnecessary hindrance like noise,
non-uniform light distribution, and non-ideal illuminations.
Therefore these images are reliable and could be used for
further analysis. In medical imaging, degradation of image
features is a major issue while implementing normalization
techniques. The yellow arrows in Figure 2 clearly show the
presence of features such as blood vessels, hemorrhages,
retinal macula, which play a major role in decision-making
for DR diagnosis.

To support our arguments and provide more concrete proof
for the proposed luminosity normalization technique we have
calculated the Peak signal-to-noise ratio (PSNR) and mean
squared error (MSE) of the transformed image. PSNR can be
defined as the ratio between the maximum possible power
of a signal and the power of corrupting noise that affects

the quality of its representation [44]. PSNR is measured in
Decibels (dB) and in most cases, a higher value of PSNR
indicates that the enhanced or reconstructed image is of
superior quality. On the other hand, MSE tells us about the
difference in the images by computing the average of the
squared errors between two images. The lesser the value of
MSE, the better the image enhancement technique. Mathe-
matically, PSNR and MSE can be defined as follows:

PSNR = 10 log10(
(2n − 1)2

MSE
) (17)

MSE =
1

MN

M
∑

i=1

N
∑

j=1

(k(i, j)− l(i, j))2 (18)

Here, M and N define the number of rows and columns in the
image, respectively. k(i, j) represents the original referenced
image and l(i, j) represents the luminosity normalised image.
n stands for the max value of a pixel in the image. Figure 7
shows the difference between statistical values of PSNR and
MSE between normal gray image and gray world normalised
image.

B. STACKED CNN MODEL ANALYSIS

The images of our model are available in the .JPEG format.
Since it is a lossy compression, the images lose a signifi-
cant amount of information that makes the feature extrac-
tion imprecise and difficult as explained in [45]. Therefore,
a superior feature extraction technique known as stacked
generalization of CNNs has been implemented. Since it is
a binary classification task, high values of accuracy and
other evaluation metrics are expected. To prepare a robust
model, hyperparameter tuning is performed, which shows the
potential fluctuation and improvement in accuracy and loss.
The experimental results reveal that the proposed stacked
CNN model achieves an accuracy of 97.92% on the training
set with a training loss of 0.066. On the test set the model
achieves an accuracy of 97.77% with a test loss of 0.078.
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FIGURE 7: Statistical comparative analysis between normal gray image and gray world normalized image based on PSNR and
MSE values.

Table 5 shows the evaluation metrics obtained after using var-
ious activation functions with and without data augmentation.
It can be clearly observed that the ELU activation function
works best with data augmentation and gave better results in
terms of accuracy, sensitivity, and specificity.

Table 6 depicts the performance metrics such as train loss,
test loss, train accuracy, test accuracy, and area under curve
(AUC) values in comparison with the other deep transfer
learning models. Experimental results reveal that the pro-
posed model achieves an AUC value of 0.9979. AUC is
an important performance measure that proves the model’s
reliability over other solutions.

Table 7 shows a report containing precision, recall, and F-
measure scores of all the competent models. These are impor-
tant metrics in the evaluation of a computer-aided diagnostic
system. Precision score depicts the exactness and tells how
often the predicted value is correct, whereas the F1-measure,
which is the harmonic mean of recall and precision, reveals
the test accuracy. From Table 7, we observe that the proposed
stacked CNN model outperforms all other competitive mod-
els.

Figure 8 shows the confusion matrix for each model,
which summarizes the predicted results and the type of
errors compactly over the test set. Although VGG-16 has a
lesser number of false negatives (FN) as compared to the
stacked CNN model but the model obtains greater number
of false positives (FP) and lesser number of true negatives
(TN). However, the proposed stacking ensemble model has
a greater number of TN and zero FP, which reveals its

TABLE 7: Comparative analysis between the proposed
model and other deep transfer learning models on similar
dataset.

Architecture Precision Recall F1-Score

VGG-16 0.92 0.97 0.94
ResNet50 1.00 0.94 0.96

CNN 1.00 0.95 0.974
Stacked CNNs 1.00 0.96 0.979

accuracy for both healthy (No DR) and unhealthy (Having
DR) images. From Figure 8 (d) we observe that our proposed
model has got only 11 FN, which means that only 11 out of
495 patients are falsely predicted as not having DR. Since we
are dealing with a real-life problem in the medical domain,
reducing false negatives as well as achieving considerably
higher values for true positives are important. The medical
domain is a field of precision, it is important to consider such
metrics of evaluation that directly deal with the correct and
incorrect predictions. So, we have considered sensitivity and
specificity, which are discussed in detail below.

C. SENSITIVITY AND SPECIFICITY ANALYSIS

Sensitivity and specificity play a crucial role in the medical
domain. Higher values of sensitivity and specificity prove the
reliability of a diagnostic model. Sensitivity is the ability of
the model to successfully predict the actual positive value
[46], which in our case, to correctly predict the unhealthy
fundus image of a patient as having DR. Mathematically, it
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TABLE 5: Performance of different activation functions in the proposed model with data augmentation.

Learning Rate Evaluation Metrics
Without Data Augmentation With Data Augmentation

Relu LeakyRelu Elu Relu LeakyRelu Elu

0.00001
Accuracy 94.45% 96.77% 96.32% 95.67% 95.72% 94.23%

Sensitivity 95.32% 94.31% 92.23% 96.12% 93.13% 91.63%

specificity 91.09% 93.06% 90.42% 93.33% 91.49% 90.47%

0.00003
Accuracy 95.21% 89.73% 96.99% 94.33% 96.72% 97.12%

Sensitivity 96.89% 90.08% 91.74% 92.24% 96.00% 95.21%

specificity 91.08% 88.32% 90.99% 90.52% 93.34% 94.11%

0.00009
Accuracy 95.72% 85.92% 96.59% 92.21% 93.24% 97.77%

Sensitivity 94.88% 91.82% 90.12% 94.23% 89.42% 96.86%

specificity 93.91% 90.21% 89.74% 95.21% 90.21% 100%

TABLE 6: An evaluation metric report of the proposed models.

Model Training Loss Test Loss Train Accuracy Test Accuracy AUC

VGG-16 0.115 0.132 95.85% 94.34% 0.9910
ResNet50 0.082 0.095 97.36% 96.96% 0.9972
CNN 0.083 0.098 97.46% 97.37% 0.9980
Stacked CNNs without data augmentation 0.160 0.188 94.92% 92.99% 0.9776
Stacked CNNs with data augmentation 0.066 0.078 97.92% 97.77% 0.9979

can be measured in terms of percentage as:

Senstivity =
TP

TP + FN
× 100 (19)

Specificity, on the other hand, shows how accurately is the
model in detecting those people who do not have DR. In
other words, it correctly predicts the healthy fundus image.
Achieving high values of specificity may also have a business
impact as it can save time for an ophthalmologist to carry out
further tests if an earlier report is correctly predicted negative.
Mathematically, specificity can be measured in terms of
percentage as:

Specificity =
TN

TN + FP
× 100 (20)

The sensitivity, specificity, and accuracy of our proposed
models are plotted in Figure 9, where we can see that our pro-
posed stacking ensemble CNN model achieves higher scores
than other competitive models. However, the sensitivity of
VGG-16 is a slightly higher than other models, but due to
more false positives, its specificity is low.

FIGURE 9: Bar plots for evaluation metrics of the proposed
stacked CNNs model with VGG-16, CNN, and ResNet50.

D. PERFORMANCE DURING TEST PHASE

We closely monitored the performance of the proposed
stacked CNN model with and other competent deep transfer
learning models during training and testing stages. However
monitoring at testing stage is very important to see the per-
formance on unseen data to validate the generalizability and
cross-check how well the model has learned during training.
All the models are trained for the same number of epochs on
the same dataset to minimize all the possible redundancies
and discrepancies. Figure 10 shows the convergence of the
loss curve during the testing phase. It is visible that the
proposed model outperforms all other models till the end of
all the iterations as its loss curve goes to the global optimum
point of 0.078.

 

FIGURE 10: Test stage performance analysis of the proposed
stacked CNN model with competitive transfer learning mod-
els.

VII. DISCUSSION

The contribution of our experiments includes the use of a
publicly available EyePACS dataset from Kaggle. The im-
age data is multi-sourced with various discrepancies due to
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FIGURE 8: Confusion matrices of the proposed model and other compared models. (a) CNN, (b) VGG-16, (c) ResNet50, and
(d) stacked CNN model.

various reasons such as different cameras and lighting con-
ditions. Therefore, image normalization is very important.
The images are pre-processed for luminosity normalization
using the gray world color constancy algorithm to enhance
the candidate regions by reducing the unnecessary lighting
and reflectance. To confirm and support the results of our
normalization step, we analyzed the enhanced images based
on PSNR and MSE measures. The PSNR value was improved
as shown in Figure 7, which proves the importance and effect
of our color correction schema.

Researchers have presented similar work related to color
constancy and retinal image enhancement using various tech-
niques as described in the literature review. However, an au-
tomated tool using these techniques has not been presented.
Most of the algorithms focused on extracting features such
as cotton wool spots, exudates, lesion presence, hemorrhage
detection for disease diagnosis, but did not discuss luminos-
ity normalization as a pre-processing step. The diagnostic
decision-making stage was handled by stacked generalization
of CNNs, which proved to be better than other competitive
models including VGG-16, ResNet50 and CNNs. Compar-
isons are also drawn between the proposed model and other

models in terms of accuracy, sensitivity, specificity, precision,
recall, and F-measure.

There are two main theories behind developing an auto-
mated validation tool that could remove the non-ideal illu-
minations from retinal fundus images using deep learning.
The first was to reduce the human effort in extracting manual
features for Diagnosis and let the power of artificial intelli-
gence and image processing techniques extract and enhance
features automatically. The second was the adaptability of
deep learning models to solve a variety of problems and the
availability of optimization methodologies such as various
regularization techniques for better performance. Our major
focus was also to reduce the number of false negatives and
the experimental results on unseen test data showed that
only 2.2% false negatives, which proves the reliability of our
model. Our method is also economically viable to implement
as it does not require expensive equipment/gadgets with high
graphical processing unit (GPU) power. According to [47]
sensitivity values achieved in detecting DR greater than 60%
proves to be cost-effective. Since our model was trained with
a dataset having a lot of variances, it also proves the high
adaptability and robustness of our model to perform accu-
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rately with fundus images having non-ideal illuminations.

TABLE 8: Performance analysis of related works on binary
fundus dataset.

Study Accuracy Sensitivity Specificity

Zago et al. [12] 91.2% 94.0% NA
Tahira et al.[27] 95.2% 96.1% 96.5%

Moazam et al.[48] 87.72% 92.4% 81.25%

Hemanth et al.[49] 97.00% 94.00% 98.00%

Gadekallu et al.[50] 97.30% 91% 97%

Stacked CNN model 97.92% 97.77% 100%

Table 8 compares the performance of the proposed model
on binary classification with previous work conducted on
DR detection using similar multi-sourced datasets. To verify
the results, our proposed model has been tested on several
binary and multi-class datasets. It can be observed that [50]
obtained an accuracy of 97.30%, however, the sensitivity
of their model is lower compared to our proposed stacked
model. Therefore, our model is superior in detecting true
positives accurately.

Table 9 compares the performance of our model with
previous studies for multi class classification on the Kaggle
dataset [51]. The dataset has five satges of DR including:
healthy, mild, moderate, severe, advanced as summarized in
Table 10. The proposed model achieved the highest sensitiv-
ity and specificity values and outperformed all other models
with a final test accuracy of 87.45%. This accuracy score is
inferior to the binary classification results due to the imbal-
anced data as depicted in the given dataset. Table 11 presents
the performance of the proposed model on various binary
and multi-class datasets in terms of accuracy and precision.
Considering all metrics of Tables 8, 9, and 10 together, it can
be concluded that the proposed model outperforms state-of-
art models and is successful in both binary and multi-class
classification of DR.

Figure 11 depicts the sensitivity and specificity of the
proposed models compared with the different machine/deep
learning methods carried out in the literature [2], [23].

TABLE 9: Performance analysis of related works on multi-
class fundus dataset.

Study Accuracy Sensitivity Specificity

Sehrish et al. [18] 80.8% NA 86.7%

Alexander et al.[52] NA 92% 72%

Carson et al.[53] 74.5% 95% 96%

Chetoui et al.[54] NA 95.8% 97.1%

Stacked CNN model 87.45% 96.30% 97.28%

TABLE 10: Class distribution of the Kaggle multi-class
dataset [51].

Healthy Mild Moderate Severe Advanced Total

25810 2443 5292 873 708 35126

Figure 12 shows the ROC curve of the proposed model for
binary classification task where it obtains an AUC value of
0.99. The results provided in Table 8 and Figure 12 prove the
potential of the proposed stacking deep learning technique.

Our model is able to outperform the conventional methods
for diagnosis. Finally, our stacked generalization of CNNs
achieve accuracy of 97.92% on the train set and 97.77%
on the test set, a sensitivity of 96.86%, and a specificity
of 100% in binary classification. The Proposed model also
outperforms ResNet50 in terms of accuracy and F-measure.
For multi-class classification, the model achieves train and
test accuracy of 96.45%, 96.30% respectively as reported in
Table 9.

 

FIGURE 11: Sensitivity and specificity based graphical anal-
ysis of the proposed model with the work of [2], [23].

 

FIGURE 12: ROC curve of the proposed stacked CNN model
with AUC value of 0.99.

VIII. CONCLUSION AND FUTURE WORK

We proposed to solve the problem of non-ideal illuminations
in the retinal fundus images using the gray world algorithm
and to develop an automated DR prediction system. A stack
generalization-based ensemble model is prepared using three
different CNNs. The performance of image normalization
is measured using statistical metrics such as the PSNR and
MSE of the original and enhanced images. The stacked
ensemble model is an advanced technique of stacking dif-
ferent neural networks whose combined results are produced
based on a fusion strategy that combines the best weights
of the individual neural networks. Machine learning models
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TABLE 11: Performance evaluation of the proposed model on the publicly available fundus datasets.

Dataset Number of samples Classification
Accuracy

Precision
Train Test

DIAREDBI [55] 89 Binary 97.84% 96.21% 0.96
Messidor [56] 1200 Multi-class 97.42% 95.21% 0.95

DDR [57] 13673 Multi-class 94.25% 92.13% 0.92
IDRID [58] 516 Multi-class 97.42% 95.23% 0.95
STARE [59] 20 Binary 98.57% 98.11% 0.98
E-Optha [60] 381 Binary 98.48% 97.31% 0.97

are extensively utilized to classify and detect DR in fun-
dus images. However, these techniques require suitable pre-
processing and feature extraction methods to improve the
results especially when the images are from different sources.
DR images are generally taken from different cameras under
different lighting conditions and to mitigate these effects we
adopted an efficient color constancy technique. Extensive
experiments are conducted to evaluate the performance of
the proposed model in binary as well as multi-class DR
classification tasks. Considering the obtained results using
various evaluation metrics, we validate our model, which
outperforms state-of-art models in binary and multi-class
classification tasks.

For future work, we think of diversifying and increasing
the images in the dataset for improving the feature extraction
capabilities. Metaheuristic techniques can be used for hyper-
parameter optimization to achieve more competitive results.
The patient’s family medical history, daily diet, and nutrition
intake can be included in the dataset to provide insightful
information for the disease.
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