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Abstract

Understanding how words change their

meanings over time is key to models of

language and cultural evolution, but his-

torical data on meaning is scarce, mak-

ing theories hard to develop and test.

Word embeddings show promise as a di-

achronic tool, but have not been carefully

evaluated. We develop a robust method-

ology for quantifying semantic change

by evaluating word embeddings (PPMI,

SVD, word2vec) against known historical

changes. We then use this methodology

to reveal statistical laws of semantic evo-

lution. Using six historical corpora span-

ning four languages and two centuries, we

propose two quantitative laws of seman-

tic change: (i) the law of conformity—the

rate of semantic change scales with an in-

verse power-law of word frequency; (ii)

the law of innovation—independent of fre-

quency, words that are more polysemous

have higher rates of semantic change.

1 Introduction

Shifts in word meaning exhibit systematic regu-

larities (Bréal, 1897; Ullmann, 1962). The rate

of semantic change, for example, is higher in

some words than others (Blank, 1999) — com-

pare the stable semantic history of cat (from Proto-

Germanic kattuz, “cat”) to the varied meanings of

English cast: “to mould”, “a collection of actors’,

“a hardened bandage”, etc. (all from Old Norse

kasta, “to throw”, Simpson et al., 1989).

Various hypotheses have been offered about

such regularities in semantic change, such as an in-

creasing subjectification of meaning, or the gram-

maticalization of inferences (e.g., Geeraerts, 1997;

Blank, 1999; Traugott and Dasher, 2001).

But many core questions about semantic change

remain unanswered. One is the role of fre-

quency. Frequency plays a key role in other lin-

guistic changes, associated sometimes with faster

change—sound changes like lenition occur in

more frequent words—and sometimes with slower

change—high frequency words are more resistant

to morphological regularization (Bybee, 2007;

Pagel et al., 2007; Lieberman et al., 2007). What

is the role of word frequency in meaning change?

Another unanswered question is the relationship

between semantic change and polysemy. Words

gain senses over time as they semantically drift

(Bréal, 1897; Wilkins, 1993; Hopper and Trau-

gott, 2003), and polysemous words1 occur in

more diverse contexts, affecting lexical access

speed (Adelman et al., 2006) and rates of L2

learning (Crossley et al., 2010). But we don’t

know whether the diverse contextual use of pol-

ysemous words makes them more or less likely

to undergo change (Geeraerts, 1997; Winter et

al., 2014; Xu et al., 2015). Furthermore, poly-

semy is strongly correlated with frequency—high

frequency words have more senses (Zipf, 1945;

İlgen and Karaoglan, 2007)—so understanding

how polysemy relates to semantic change requires

controling for word frequency.

Answering these questions requires new meth-

ods that can go beyond the case-studies of a few

words (often followed over widely different time-

periods) that are our most common diachronic

data (Bréal, 1897; Ullmann, 1962; Blank, 1999;

Hopper and Traugott, 2003; Traugott and Dasher,

2001). One promising avenue is the use of distri-

butional semantics, in which words are embedded

in vector spaces according to their co-occurrence

relationships (Bullinaria and Levy, 2007; Turney

and Pantel, 2010), and the embeddings of words

1We use ‘polysemy’ here to refer to related senses as well
as rarer cases of accidental homonymy.
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Figure 1: Two-dimensional visualization of semantic change in English using SGNS vectors.2 a, The word gay shifted from
meaning “cheerful” or “frolicsome” to referring to homosexuality. b, In the early 20th century broadcast referred to “casting
out seeds”; with the rise of television and radio its meaning shifted to “transmitting signals”. c, Awful underwent a process of
pejoration, as it shifted from meaning “full of awe” to meaning “terrible or appalling” (Simpson et al., 1989).

are then compared across time-periods. This new

direction has been effectively demonstrated in a

number of case-studies (Sagi et al., 2011; Wijaya

and Yeniterzi, 2011; Gulordava and Baroni, 2011;

Jatowt and Duh, 2014) and used to perform large-

scale linguistic change-point detection (Kulkarni

et al., 2014) as well as to test a few specific hy-

potheses, such as whether English synonyms tend

to change meaning in similar ways (Xu and Kemp,

2015). However, these works employ widely dif-

ferent embedding approaches and test their ap-

proaches only on English.

In this work, we develop a robust methodol-

ogy for quantifying semantic change using embed-

dings by comparing state-of-the-art approaches

(PPMI, SVD, word2vec) on novel benchmarks.

We then apply this methodology in a large-scale

cross-linguistic analysis using 6 corpora spanning

200 years and 4 languages (English, German,

French, and Chinese). Based on this analysis, we

propose two statistical laws relating frequency and

polysemy to semantic change:

• The law of conformity: Rates of semantic

change scale with a negative power of word

frequency.

• The law of innovation: After controlling for

frequency, polysemous words have signifi-

cantly higher rates of semantic change.

2 Diachronic embedding methods

The following sections outline how we construct

diachronic (historical) word embeddings, by first

constructing embeddings in each time-period and

then aligning them over time, and the metrics that

2Appendix B details the visualization method.

we use to quantify semantic change. All of the

learned embeddings and the code we used to ana-

lyze them are made publicly available.3

2.1 Embedding algorithms

We use three methods to construct word em-

beddings within each time-period: PPMI, SVD,

and SGNS (i.e., word2vec).4 These distributional

methods represent each word wi by a vector wi

that captures information about its co-occurrence

statistics. These methods operationalize the ‘dis-

tributional hypothesis’ that word semantics are im-

plicit in co-occurrence relationships (Harris, 1954;

Firth, 1957). The semantic similarity/distance be-

tween two words is approximated by the cosine

similarity/distance between their vectors (Turney

and Pantel, 2010).

2.1.1 PPMI

In the PPMI representations, the vector embedding

for word wi ∈ V contains the positive point-wise

mutual information (PPMI) values between wi and

a large set of pre-specified ‘context’ words. The

word vectors correspond to the rows of the matrix

MPPMI ∈ R
|V|×|VC | with entries given by

MPPMI
i,j = max

{

log

(

p̂(wi, cj)

p̂(w)p̂(cj)

)

− α, 0

}

,

(1)

where cj ∈ VC is a context word and α > 0
is a negative prior, which provides a smooth-

ing bias (Levy et al., 2015). The p̂ correspond

to the smoothed empirical probabilities of word

3
http://nlp.stanford.edu/projects/histwords

4Synchronic applications of these three methods are re-
viewed in detail in Levy et al. (2015).
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Name Language Description Tokens Years POS Source

ENGALL English Google books (all genres) 8.5 × 1011 1800-1999 (Davies, 2010)
ENGFIC English Fiction from Google books 7.5 × 1010 1800-1999 (Davies, 2010)
COHA English Genre-balanced sample 4.1 × 108 1810-2009 (Davies, 2010)
FREALL French Google books (all genres) 1.9 × 1011 1800-1999 (Sagot et al., 2006)
GERALL German Google books (all genres) 4.3 × 1010 1800-1999 (Schneider and Volk, 1998)
CHIALL Chinese Google books (all genres) 6.0 × 1010 1950-1999 (Xue et al., 2005)

Table 1: Six large historical datasets from various languages and sources are used.

(co-)occurrences within fixed-size sliding win-

dows of text. Clipping the PPMI values above zero

ensures they remain finite and has been shown to

dramatically improve results (Bullinaria and Levy,

2007; Levy et al., 2015); intuitively, this clipping

ensures that the representations emphasize posi-

tive word-word correlations over negative ones.

2.1.2 SVD

SVD embeddings correspond to low-dimensional

approximations of the PPMI embeddings learned

via singular value decomposition (Levy et al.,

2015). The vector embedding for word wi is given

by

wSVD
i = (UΣγ)i , (2)

where MPPMI = UΣV⊤ is the truncated singular

value decomposition of MPPMI and γ ∈ [0, 1] is

an eigenvalue weighting parameter. Setting γ < 1
has been shown to dramatically improve embed-

ding qualities (Turney and Pantel, 2010; Bulli-

naria and Levy, 2012). This SVD approach can

be viewed as a generalization of Latent Seman-

tic Analysis (Landauer and Dumais, 1997), where

the term-document matrix is replaced with MPPMI.

Compared to PPMI, SVD representations can be

more robust, as the dimensionality reduction acts

as a form of regularization.

2.1.3 Skip-gram with negative sampling

SGNS ‘neural’ embeddings are optimized to pre-

dict co-occurrence relationships using an approx-

imate objective known as ‘skip-gram with nega-

tive sampling’ (Mikolov et al., 2013). In SGNS,

each word wi is represented by two dense, low-

dimensional vectors: a word vector (wSGNS
i ) and

context vector (cSGNS
i ). These embeddings are op-

timized via stochastic gradient descent so that

p̂(ci|wi) ∝ exp(wSGNS
i · cSGNS

j ), (3)

where p(ci|wi) is the empirical probability of see-

ing context word ci within a fixed-length window

of text, given that this window contains wi. The

SGNS optimization avoids computing the normal-

izing constant in (3) by randomly drawing ‘neg-

ative’ context words, cn, for each target word and

ensuring that exp(wSGNS
i ·cSGNS

n ) is small for these

examples.

SGNS has the benefit of allowing incremental

initialization during learning, where the embed-

dings for time t are initialized with the embed-

dings from time t − ∆ (Kim et al., 2014). We

employ this trick here, though we found that it had

a negligible impact on our results.

2.2 Datasets, pre-processing, and

hyperparameters

We trained models on the 6 datasets described

in Table 1, taken from Google N-Grams (Lin et

al., 2012) and the COHA corpus (Davies, 2010).

The Google N-Gram datasets are extremely large

(comprising ≈6% of all books ever published), but

they also contain many corpus artifacts due, e.g.,

to shifting sampling biases over time (Pechenick

et al., 2015). In contrast, the COHA corpus was

carefully selected to be genre-balanced and rep-

resentative of American English over the last 200

years, though as a result it is two orders of mag-

nitude smaller. The COHA corpus also contains

pre-extracted word lemmas, which we used to val-

idate that our results hold at both the lemma and

raw token levels. All the datasets were aggregated

to the granularity of decades.5

We follow the recommendations of Levy et al.

(2015) in setting the hyperparameters for the em-

bedding methods, though preliminary experiments

were used to tune key settings. For all methods,

we used symmetric context windows of size 4 (on

each side). For SGNS and SVD, we use embed-

dings of size 300. See Appendix A for further im-

plementation and pre-processing details.

5The 2000s decade of the Google data was discarded due
to shifts in the sampling methodology (Michel et al., 2011).
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2.3 Aligning historical embeddings

In order to compare word vectors from differ-

ent time-periods we must ensure that the vectors

are aligned to the same coordinate axes. Ex-

plicit PPMI vectors are naturally aligned, as each

column simply corresponds to a context word.

Low-dimensional embeddings will not be natu-

rally aligned due to the non-unique nature of the

SVD and the stochastic nature of SGNS. In par-

ticular, both these methods may result in arbi-

trary orthogonal transformations, which do not af-

fect pairwise cosine-similarities within-years but

will preclude comparison of the same word across

time. Previous work circumvented this problem

by either avoiding low-dimensional embeddings

(e.g., Gulordava and Baroni, 2011; Jatowt and

Duh, 2014) or by performing heuristic local align-

ments per word (Kulkarni et al., 2014).

We use orthogonal Procrustes to align the

learned low-dimensional embeddings. Defining

W(t) ∈ R
d×|V| as the matrix of word embeddings

learned at year t, we align across time-periods

while preserving cosine similarities by optimizing:

R(t) = arg min
Q⊤Q=I

‖W(t)Q − W(t+1)‖F , (4)

with R(t) ∈ R
d×d. The solution corresponds

to the best rotational alignment and can be ob-

tained efficiently using an application of SVD

(Schönemann, 1966).

2.4 Time-series from historical embeddings

Diachronic word embeddings can be used in two

ways to quantify semantic change: (i) we can mea-

sure changes in pair-wise word similarities over

time, or (ii) we can measure how an individual

word’s embedding shifts over time.

Pair-wise similarity time-series Measuring

how the cosine-similarity between pairs of words

changes over time allows us to test hypotheses

about specific linguistic or cultural shifts in a con-

trolled manner. We quantify shifts by computing

the similarity time-series

s(t)(wi, wj) = cos-sim(w
(t)
i ,w

(t)
j ) (5)

between two words wi and wj over a time-period

(t, ..., t + ∆). We then measure the Spearman

correlation (ρ) of this series against time, which

allows us to assess the magnitude and signifi-

cance of pairwise similarity shifts; since the Spear-

man correlation is non-parametric, this measure

essentially detects whether the similarity series in-

creased/decreased over time in a significant man-

ner, regardless of the ‘shape’ of this curve.6

Measuring semantic displacement After

aligning the embeddings for individual time-

periods, we can use the aligned word vectors to

compute the semantic displacement that a word

has undergone during a certain time-period. In

particular, we can directly compute the cosine-

distance between a word’s representation for

different time-periods, i.e. cos-dist(wt,wt+∆),
as a measure of semantic change. We can also

use this measure to quantify ‘rates’ of semantic

change for different words by looking at the

displacement between consecutive time-points.

3 Comparison of different approaches

We compare the different distributional ap-

proaches on a set of benchmarks designed to test

their scientific utility. We evaluate both their syn-

chronic accuracy (i.e., ability to capture word sim-

ilarity within individual time-periods) and their di-

achronic validity (i.e., ability to quantify semantic

changes over time).

3.1 Synchronic Accuracy

We evaluated the synchronic (within-time-period)

accuracy of the methods using a standard modern

benchmark and the 1990s portion of the ENGALL

data. On Bruni et al. (2012)’s MEN similarity task

of matching human judgments of word similari-

ties, SVD performed best (ρ = 0.739), followed

by PPMI (ρ = 0.687) and SGNS (ρ = 0.649).

These results echo the findings of Levy et al.

(2015), who found SVD to perform best on sim-

ilarity tasks while SGNS performed best on anal-

ogy tasks (which are not the focus of this work).

3.2 Diachronic Validity

We evaluate the diachronic validity of the methods

on two historical semantic tasks: detecting known

shifts and discovering shifts from data. For both

these tasks, we performed detailed evaluations on

a small set of examples (28 known shifts and the

top-10 “discovered” shifts by each method). Us-

ing these reasonably-sized evaluation sets allowed

the authors to evaluate each case rigorously using

existing literature and historical corpora.

6Other metrics or change-point detection approaches, e.g.
mean shifts (Kulkarni et al., 2014) could also be used.

1492



Word Moving towards Moving away Shift start Source

gay homosexual, lesbian happy, showy ca 1920 (Kulkarni et al., 2014)
fatal illness, lethal fate, inevitable <1800 (Jatowt and Duh, 2014)
awful disgusting, mess impressive, majestic <1800 (Simpson et al., 1989)
nice pleasant, lovely refined, dainty ca 1900 (Wijaya and Yeniterzi, 2011)
broadcast transmit, radio scatter, seed ca 1920 (Jeffers and Lehiste, 1979)
monitor display, screen — ca 1930 (Simpson et al., 1989)
record tape, album — ca 1920 (Kulkarni et al., 2014)
guy fellow, man — ca 1850 (Wijaya and Yeniterzi, 2011)
call phone, message — ca 1890 (Simpson et al., 1989)

Table 2: Set of attested historical shifts used to evaluate the methods. The examples are taken from previous works on semantic
change and from the Oxford English Dictionary (OED), e.g. using ‘obsolete’ tags. The shift start points were estimated using
attestation dates in the OED. The first six examples are words that shifted dramatically in meaning while the remaining four are
words that acquired new meanings (while potentially also keeping their old ones).

Method Corpus % Correct %Sig.

PPMI
ENGALL 96.9 84.4
COHA 100.0 88.0

SVD
ENGALL 100.0 90.6
COHA 100.0 96.0

SGNS
ENGALL 100.0 93.8
COHA 100.0 72.0

Table 3: Performance on detection task, i.e. ability to cap-
ture the attested shifts from Table 2. SGNS and SVD capture
the correct directionality of the shifts in all cases (%Correct),
e.g., gay becomes more similar to homosexual, but there are
differences in whether the methods deem the shifts to be sta-
tistically significant at the p < 0.05 level (%Sig).

Detecting known shifts. First, we tested

whether the methods capture known historical

shifts in meaning. The goal in this task is for

the methods to correctly capture whether pairs of

words moved closer or further apart in semantic

space during a pre-determined time-period. We

use a set of independently attested shifts as an

evaluation set (Table 2). For comparison, we eval-

uated the methods on both the large (but messy)

ENGALL data and the smaller (but clean) COHA

data. On this task, all the methods performed

almost perfectly in terms of capturing the correct

directionality of the shifts (i.e., the pairwise

similarity series have the correct sign on their

Spearman correlation with time), but there were

some differences in whether the methods deemed

the shifts statistically significant at the p < 0.05
level.7 Overall, SGNS performed the best on the

full English data, but its performance dropped

significantly on the smaller COHA dataset, where

SVD performed best. PPMI was noticeably worse

than the other two approaches (Table 3).

Discovering shifts from data. We tested

whether the methods discover reasonable shifts

7All subsequent significance tests are at p < 0.05.

by examining the top-10 words that changed the

most from the 1900s to the 1990s according to

the semantic displacement metric introduced in

Section 2.4 (limiting our analysis to words with

relative frequencies above 10−5 in both decades).

We used the ENGFIC data as the most-changed

list for ENGALL was dominated by scientific

terms due to changes in the corpus sample.

Table 4 shows the top-10 words discovered by

each method. These shifts were judged by the au-

thors as being either clearly genuine, borderline,

or clearly corpus artifacts. SGNS performed by

far the best on this task, with 70% of its top-10

list corresponding to genuine semantic shifts, fol-

lowed by 40% for SVD, and 10% for PPMI. How-

ever, a large portion of the discovered words for

PPMI (and less so SVD) correspond to borderline

cases, e.g. know, that have not necessarily shifted

significantly in meaning but that occur in differ-

ent contexts due to global genre/discourse shifts.

The poor quality of the nearest neighbors gener-

ated by the PPMI algorithm—which are skewed

by PPMI’s sensitivity to rare events—also made

it difficult to assess the quality of its discovered

shifts. SVD was the most sensitive to corpus arti-

facts (e.g., co-occurrences due to cover pages and

advertisements), but it still captured a number of

genuine semantic shifts.

We opted for this small evaluation set and re-

lied on detailed expert judgments to minimize am-

biguity; each potential shift was analyzed in detail

by consulting consulting existing literature (espe-

cially the OED; Simpson et al., 1989) and all dis-

agreements were discussed.

Table 5 details representative example shifts in

English, French, and German. Chinese lacks suf-

ficient historical data for this task, as only years

1950-1999 are usable; however, we do still see
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Method Top-10 words that changed from 1900s to 1990s

PPMI know, got, would, decided, think, stop, remember, started, must, wanted
SVD harry, headed, calls, gay, wherever, male, actually, special, cover, naturally
SGNS wanting, gay, check, starting, major, actually, touching, harry, headed, romance

Table 4: Top-10 English words with the highest semantic displacement values between the 1900s and 1990s. Bolded entries
correspond to real semantic shifts, as deemed by examining the literature and their nearest neighbors; for example, headed
shifted from primarily referring to the “top of a body/entity” to referring to “a direction of travel.” Underlined entries are
borderline cases that are largely due to global genre/discourse shifts; for example, male has not changed in meaning, but its
usage in discussions of “gender equality” is relatively new. Finally, unmarked entries are clear corpus artifacts; for example,
special, cover, and romance are artifacts from the covers of fiction books occasionally including advertisements etc.

Word Language Nearest-neighbors in 1900s Nearest-neighbors in 1990s

wanting English lacking, deficient, lacked, lack, needed wanted, something, wishing, anything,
anybody

asile French refuge, asiles, hospice, vieillards, in-
firmerie

demandeurs, refuge, hospice, visas, ad-
mission

widerstand German scheiterte, volt, stromstärke, leisten,
brechen

opposition, verfolgung, nationalsozialis-
tische, nationalsozialismus, kollaboration

Table 5: Example words that changed dramatically in meaning in three languages, discovered using SGNS embeddings. The
examples were selected from the top-10 most-changed lists between 1900s and 1990s as in Table 4. In English, wanting
underwent subjectification and shifted from meaning “lacking” to referring to subjective ”desire”, as in “the education system
is wanting” (1900s) vs. ”I’ve been wanting to tell you” (1990s). In French asile (“asylum”) shifted from primarily referring
to “hospitals, or infirmaries” to also referring to “asylum seekers, or refugees”. Finally, in German Widerstand (“resistance”)
gained a formal meaning as referring to the local German resistance to Nazism during World War II.

some significant changes for Chinese in this short

time-period, such as 病毒 (“virus”) moving closer

to电脑 (“computer”, ρ = 0.89).

3.3 Methodological recommendations

PPMI is clearly worse than the other two meth-

ods; it performs poorly on all the benchmark tasks,

is extremely sensitive to rare events, and is prone

to false discoveries from global genre shifts. Be-

tween SVD and SGNS the results are somewhat

equivocal, as both perform best on two out of the

four tasks (synchronic accuracy, ENGALL detec-

tion, COHA detection, discovery). Overall, SVD

performs best on the synchronic accuracy task and

has higher average accuracy on the ‘detection’

task, while SGNS performs best on the ‘discov-

ery’ task. These results suggest that both these

methods are reasonable choices for studies of se-

mantic change but that they each have their own

tradeoffs: SVD is more sensitive, as it performs

well on detection tasks even when using a small

dataset, but this sensitivity also results in false dis-

coveries due to corpus artifacts. In contrast, SGNS

is robust to corpus artifacts in the discovery task,

but it is not sensitive enough to perform well on the

detection task with a small dataset. Qualitatively,

we found SGNS to be most useful for discovering

new shifts and visualizing changes (e.g., Figure 1),

while SVD was most effective for detecting subtle

shifts in usage.

4 Statistical laws of semantic change

We now show how diachronic embeddings can be

used in a large-scale cross-linguistic analysis to re-

veal statistical laws that relate frequency and pol-

ysemy to semantic change. In particular, we ana-

lyze how a word’s rate of semantic change,

∆(t)(wi) = cos-dist(w
(t)
i ,w

(t+1)
i ) (6)

depends on its frequency, f (t)(wi) and a measure

of its polysemy, d(t)(wi) (defined in Section 4.4).

4.1 Setup

We present results using SVD embeddings

(though analogous results were found to hold with

SGNS). Using all four languages and all four

conditions for English (ENGALL, ENGFIC, and

COHA with and without lemmatization), we per-

formed regression analysis on rates of seman-

tic change, ∆(t)(wi); thus, we examined one

data-point per word for each pair of consecutive

decades and analyzed how a word’s frequency

and polysemy at time t correlate with its degree

of semantic displacement over the next decade.

To ensure the robustness of our results, we ana-

lyzed only the top-10000 non–stop words by aver-
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Top-10 most polysemous yet, always, even, little, called, also, sometimes, great, still, quite

Top-10 least polysemous photocopying, retrieval, thirties, mom, sweater, forties, seventeenth,
fifteenth, holster, postage

Table 6: The top-10 most and least polysemous words in the ENGFIC data. Words like yet, even, and still are used in many
diverse ways and are highly polysemous. In contrast, words like photocopying, postage, and holster tend to be used in very
specific well-clustered contexts, corresponding to a single sense; for example, mail and letter are both very likely to occur in
the context of postage and are also likely to co-occur with each other, independent of postage.

a b

Figure 2: Higher frequency words have lower rates of change (a), while polysemous words have higher rates of change (b).
The negative curvature for polysemy—which is significant only at high d(wi)—varies across datasets and was not present with
SGNS, so it is not as robust as the clear linear trend that was seen with all methods and across all datasets. The trendlines show
95% CIs from bootstrapped kernel regressions on the ENGALL data (Li and Racine, 2007).

age historical frequency (lower-frequency words

tend to lack sufficient co-occurrence data across

years) and we discarded proper nouns (changes in

proper noun usage are primarily driven by non-

linguistic factors, e.g. historical events, Traugott

and Dasher, 2001). We also log-transformed the

semantic displacement scores and normalized the

scores to have zero mean and unit variance; we

denote these normalized scores by ∆̃(t)(wi).
We performed our analysis using a linear mixed

model with random intercepts per word and fixed

effects per decade; i.e., we fit βf , βd, and βt s.t.

∆̃(t)(wi) = βf log
(

f (t)(wi)
)

+βd log
(

d(t)(wi)
)

+ βt + zwi
+ ǫ(t)wi

∀wi ∈ V, t ∈ {t0, ..., tn}, (7)

where zwi
∼ N (0, σwi

) is the random intercept

for word wi and ǫ
(t)
wi ∈ N (0, σ) is an error term.

βf , βd and βt correspond to the fixed effects for

frequency, polysemy and the decade t, respec-

tively8. Intuitively, this model estimates the effects

of frequency and polysemy on semantic change,

while controlling for temporal trends and correct-

ing for the fact that measurements on same word

will be correlated across time. We fit (7) using the

standard restricted maximum likelihood algorithm

(McCulloch and Neuhaus, 2001; Appendix C).

8Note that time is treated as a categorical variable, as each
decade has its own fixed effect.

4.2 Overview of results

We find that, across languages, rates of semantic

change obey a scaling relation of the form

∆(wi) ∝ f(wi)
βf × d(wi)

βd , (8)

with βf < 0 and βd > 0. This finding implies that

frequent words change at slower rates while pol-

ysemous words change faster, and that both these

relations scale as power laws.

4.3 Law of conformity: Frequently used

words change at slower rates

Using the model in equation (7), we found that

the logarithm of a word’s frequency, log(f(wi)),
has a significant and substantial negative effect on

rates of semantic change in all settings (Figures 2a

and 3a). Given the use of log-transforms in pre-

processing the data this implies rates of semantic

change are proportional to a negative power (βf )

of frequency, i.e.

∆(wi) ∝ f(wi)
βf , (9)

with βf ∈ [−1.26,−0.27] across lan-

guages/datasets. The relatively large range

of values for βf is due to the fact that the COHA

datasets are outliers due to their substantially

smaller sample sizes (Figure 3; the range is

βf ∈ [−0.66,−0.27] with COHA excluded).
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Figure 3: a, The estimated linear effect of log-frequency (β̂f ) is significantly negative across all languages. The effect is
significantly stronger in the COHA data, but this is likely due to its small sample size (∼100× smaller than the other datasets);
the small sample size introduces random variance that may artificially inflate the effect of frequency. From the COHA data,
we also see that the result holds regardless of whether lemmatization is used. b, Analogous trends hold for the linear effect of

the polysemy score (β̂d), which is strong and significantly positive across all conditions. Again, we see that the smaller COHA
datasets are mild outliers.9 95% CIs are shown.

4.4 Law of innovation: Polysemous words

change at faster rates

There is a common hypothesis in the linguistic lit-

erature that “words become semantically extended

by being used in diverse contexts” (Winter et al.,

2014), an idea that dates back to the writings of

Bréal (1897). We tested this notion by examining

the relationship between polysemy and semantic

change in our data.

Quantifying polysemy

Measuring word polysemy is a difficult and

fraught task, as even “ground truth” dictionaries

differ in the number of senses they assign to words

(Simpson et al., 1989; Fellbaum, 1998). We cir-

cumvent this issue by measuring a word’s contex-

tual diversity as a proxy for its polysemousness.

The intuition behind our measure is that words

that occur in many distinct, unrelated contexts will

tend to be highly polysemous. This view of pol-

ysemy also fits with previous work on semantic

change, which emphasizes the role of contextual

diversity (Bréal, 1897; Winter et al., 2014).

We measure a word’s contextual diversity, and

thus polysemy, by examining its neighborhood in

an empirical co-occurrence network. We con-

struct empirical co-occurrence networks using the

PPMI measure defined in Section 2. In these net-

works words are connected to each other if they

co-occur more than one would expect by chance

(after smoothing). The polysemy of a word is then

measured as its local clustering coefficient within

9The COHA data is ∼100× smaller, which has a global
effect on the construction of the co-occurrence network (e.g.,
lower average degree) used to compute polysemy scores.

this network (Watts and Strogatz, 1998):

d(wi) = −

∑

ci,cj∈NPPMI(wi)
I {PPMI(ci, cj) > 0}

|NPPMI(wi)|(|NPPMI(wi)| − 1)
,

(10)

where NPPMI(wi) = {wj : PPMI(wi, wj) > 0}.

This measure counts the proportion of wi’s neigh-

bors that are also neighbors of each other. Accord-

ing to this measure, a word will have a high clus-

tering coefficient (and thus a low polysemy score)

if the words that it co-occurs with also tend to co-

occur with each other. Polysemous words that are

contextually diverse will have low clustering co-

efficients, since they appear in disjointed or unre-

lated contexts.

Variants of this measure are often used in word-

sense discrimination and correlate with, e.g., num-

ber of senses in WordNet (Dorow and Widdows,

2003; Ferret, 2004). However, we found that

it was slightly biased towards rating contextually

diverse discourse function words (e.g., also) as

highly polysemous, which needs to be taken into

account when interpreting our results. We opted to

use this measure, despite this bias, because it has

the strong benefit of being clearly interpretable: it

simply measures the extent to which a word ap-

pears in diverse textual contexts. Table 6 gives ex-

amples of the least and most polysemous words in

the ENGFIC data, according to this score.

As expected, this measure has significant intrin-

sic positive correlation with frequency. Across

datasets, we found Pearson correlations in the

range 0.45 < r < 0.8 (all p < 0.05), confirm-

ing frequent words tend to be used in a greater di-

versity of contexts. As a consequence of this high

correlation, we interpret the effect of this measure

only after controlling for frequency (this control is

naturally captured in equation (7)).
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Polysemy and semantic change

After fitting the model in equation (7), we found

that the logarithm of the polysemy score exhibits a

strong positive effect on rates of semantic change,

throughout all four languages (Figure 3b). As with

frequency, the relation takes the form of a power

law

∆(wi) ∝ d(wi)
βd , (11)

with a language/corpus dependent scaling constant

in βd ∈ [0.37, 0.77]. Note that this relation-

ship is a complete reversal from what one would

expect according to d(wi)’s positive correlation

with frequency; i.e., since frequency and poly-

semy are highly positively correlated, one would

expect them to have similar effects on seman-

tic change, but we found that the effect of poly-

semy completely reversed after controlling for fre-

quency. Figure 2b shows the relationship of pol-

ysemy with rates of semantic change in the EN-

GALL data after regressing out effect of frequency

(using the method of Graham, 2003).

5 Discussion

We show how distributional methods can reveal

statistical laws of semantic change and offer a ro-

bust methodology for future work in this area.

Our work builds upon a wealth of previous

research on quantitative approaches to semantic

change, including prior work with distributional

methods (Sagi et al., 2011; Wijaya and Yeniterzi,

2011; Gulordava and Baroni, 2011; Jatowt and

Duh, 2014; Kulkarni et al., 2014; Xu and Kemp,

2015), as well as recent work on detecting the

emergence of novel word senses (Lau et al., 2012;

Mitra et al., 2014; Cook et al., 2014; Mitra et al.,

2015; Frermann and Lapata, 2016). We extend

these lines of work by rigorously comparing dif-

ferent approaches to quantifying semantic change

and by using these methods to propose new statis-

tical laws of semantic change.

The two statistical laws we propose have strong

implications for future work in historical seman-

tics. The law of conformity—frequent words

change more slowly—clarifies frequency’s role

in semantic change. Future studies of semantic

change must account for frequency’s conforming

effect: when examining the interaction between

some linguistic process and semantic change, the

law of conformity should serve as a null model in

which the interaction is driven primarily by under-

lying frequency effects.

The law of innovation—polysemous words

change more quickly—quantifies the central role

polysemy plays in semantic change, an issue that

has concerned linguists for more than 100 years

(Bréal, 1897). Previous works argued that seman-

tic change leads to polysemy (Wilkins, 1993; Hop-

per and Traugott, 2003). However, our results

show that polysemous words change faster, which

suggests that polysemy may actually lead to se-

mantic change.

Overall, these two factors—frequency and

polysemy—explain between 48% and 88% of the

variance10 in rates of semantic change (across con-

ditions). This remarkable degree of explanatory

power indicates that frequency and polysemy are

perhaps the two most crucial linguistic factors that

explain rates of semantic change over time.

These empirical statistical laws also lend them-

selves to various causal mechanisms. The law

of conformity might be a consequence of learn-

ing: perhaps people are more likely to use rare

words mistakenly in novel ways, a mechanism for-

malizable by Bayesian models of word learning

and corresponding to the biological notion of ge-

netic drift (Reali and Griffiths, 2010). Or per-

haps a sociocultural conformity bias makes people

less likely to accept novel innovations of common

words, a mechanism analogous to the biological

process of purifying selection (Boyd and Richer-

son, 1988; Pagel et al., 2007). Moreover, such

mechanisms may also be partially responsible for

the law of innovation. Highly polysemous words

tend to have more rare senses (Kilgarriff, 2004),

and rare senses may be unstable by the law of con-

formity. While our results cannot confirm such

causal links, they nonetheless highlight a new role

for frequency and polysemy in language change

and the importance of distributional models in his-

torical research.
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Quesada. 2006. Contextual diversity, not word fre-
quency, determines word-naming and lexical deci-
sion times. Psychol. Sci., 17(9):814–823.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. O’Reilly
Media, Inc.

Andreas Blank. 1999. Why do new meanings occur?
A cognitive typology of the motivations for lexical
semantic change. In Peter Koch and Andreas Blank,
editors, Historical Semantics and Cognition. Walter
de Gruyter, Berlin, Germany.

Robert Boyd and Peter J Richerson. 1988. Culture and
the Evolutionary Process. University of Chicago
Press, Chicago, IL.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proc. ACL, pages 136–145.
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A Hyperparameter and pre-processing

details

For all datasets, words were lowercased and

stripped of punctuation. For the Google datasets

we built models using the top-100000 words by

their average frequency over the entire histori-

cal time-periods, and we used the top-50000 for

COHA. During model learning we also discarded

all words within a year that occurred below a cer-

tain threshold (500 for the Google data, 100 for the

COHA data).

For all methods, we used the hyperparameters

recommended in Levy et al. (2015). For the con-

text word distributions in all methods, we used

context distribution smoothing with a smoothing

parameter of 0.75. Note that for SGNS this cor-

responds to smoothing the unigram negative sam-

pling distribution. For both, SGNS and PPMI, we

set the negative sample prior α = log(5), while we

set this value to α = 0 for SVD, as this improved

results. When using SGNS on the Google data,

we also subsampled, with words being random re-

moved with probability pr(wi) = 1 −
√

10−5

f(wi)
, as

recommended by Levy et al. (2015) and Mikolov

et al. (2013). Furthermore, to improve the com-

putational efficiency of SGNS (which works with

text streams and not co-occurrence counts), we

downsampled the larger years in the Google N-

Gram data to have at most 109 tokens. No such

subsampling was performed on the COHA data.

For all methods, we defined the context set to

simply be the same vocabulary as the target words,

as is standard in most word vector applications

(Levy et al., 2015). However, we found that the

PPMI method benefited substantially from larger

contexts (similar results were found in Bullinaria

and Levy, 2007), so we did not remove any low-

frequency words per year from the context for that

method. The other embedding approaches did not

appear to benefit from the inclusion of these low-

frequency terms, so they were dropped for compu-

tational efficiency.

For SGNS, we used the implementation pro-

vided in Levy et al. (2015). The implementations

for PPMI and SVD are released with the code

package associated with this work.

B Visualization algorithm

To visualize semantic change for a word wi in two

dimensions we employed the following procedure,

which relies on the t-SNE embedding method

(Van der Maaten and Hinton, 2008) as a subrou-

tine:

1. Find the union of the word wi’s k nearest

neighbors over all necessary time-points.

2. Compute the t-SNE embedding of these

words on the most recent (i.e., the modern)

time-point.

3. For each of the previous time-points, hold

all embeddings fixed, except for the target

word’s (i.e., the embedding for wi), and op-

timize a new t-SNE embedding only for the

target word. We found that initializing the

embedding for the target word to be the cen-

troid of its k′-nearest neighbors in a time-

point was highly effective.

Thus, in this procedure the background words are

always shown in their “modern” positions, which

makes sense given that these are the current mean-

ings of these words. This approximation is neces-

sary, since in reality all words are moving.

C Regression analysis details

In addition to the pre-processing mentioned in the

main text, we also normalized the contextual di-

versity scores d(wi) within years by subtracting

the yearly median. This was necessary because

there was substantial changes in the median con-

textual diversity scores over years due to changes

in corpus sample sizes etc. Data points corre-

sponding to words that occurred less than 500

times during a time-period were also discarded, as
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these points lack sufficient data to robustly esti-

mate change rates (this threshold only came into

effect on the COHA data, however). We removed

stop words and proper nouns by (i) removing all

stop-words from the available lists in Python’s

NLTK package (Bird et al., 2009) and (ii) re-

stricting our analysis to words with part-of-speech

(POS) tags corresponding to four main linguistic

categories (common nouns, verbs, adverbs, and

adjectives), using the POS sources in Table 1.

When analyzing the effects of frequency and

contextual diversity, the model contained fixed ef-

fects for these features and for time along with

random effects for word identity. We opted not

to control for POS tags in the presented results,

as contextual diversity is co-linear with these tags

(e.g., adverbs are more contextual diverse than

nouns), and the goal was to demonstrate the main

effect of contextual diversity across all word types.

That said, the effect of contextual diversity re-

mained strong and significantly positive in all

datasets even after controlling for POS tags.

To fit the linear mixed models, we used

the Python statsmodels package with re-

stricted maximum likelihood estimation (REML)

(Seabold and Perktold, 2010). All mentioned

significance scores were computed according to

Wald’s z-tests, though these results agreed with

Bonferroni corrected likelihood ratio tests on the

eng-all data.

The visualizations in Figure 2 were computed

on the eng-all data and correspond to boot-

strapped locally-linear kernel regressions with

bandwidths selected via the AIC Hurvitch criteria

(Li and Racine, 2007).
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