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Abstract— It is commonly accepted that the requirements for
maintenance and diagnosis should be considered at the earliest
stages of design. For this reason, methods for analysing the
diagnosability of a system and determining which sensors are
needed to achieve the desired degree of diagnosability, are
highly valued. This paper clarifies the different diagnosability
properties of a system and proposes a model based method for:

1. Assessing the level of discriminability of a system, i.e.
given a set of sensors, the number of faults which can be
discriminated; and its  degree of diagnosability, i.e. the
discriminability level related to the total number of anticipated
faults.

2. Characterizing and determining the minimal additional
sensors that guarantee a specified degree of diagnosability.

The method takes advantage of the concept of component
supported analytical redundancy relation, which considers
recent results crossing over the FDI and DX communities. It
uses a model of the system to analyze in an exhaustive manner
the analytical redundancies associated to the availability of
sensors and performs from that a full diagnosability
assessment.

The method is applied to an industrial smart actuator that
was used as benchmark in the DAMADICS European project.

Index Terms— Diagnosability, Sensor placement, Analytical
redundancy, Model-based diagnosis, Structural analysis.

I. INTRODUCTION

T is commonly accepted that diagnosis and maintenance

requirements should be accounted for at the very early

design stages of a system.  For this purpose, methods for
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analysing properties such as diagnosability and characterising

the instrumentation system in terms of the number of sensors

and their placement are highly valuable. There is a significant

amount of work dealing with diagnosability and sensor

placement both in the AI Model Based Diagnosis (DX)

community [5], [20], [8] and in the Control Model Based

Diagnosis (FDI) community [2], [12], [10], [11].

This paper bridges DX and FDI results to propose a model-

based method for:

• Assessing the level of discriminability of a system, i.e.

given a set of sensors, which faults can be discriminated? and

its  degree of diagnosability, i.e. the discriminability level

related to the number of faults,

• Characterizing and determining the Minimal Additional

Sensor Sets (MASS) that guarantee a specified diagnosability

degree.

The main ideas behind the method are to use a model of the

behaviour of the system to analyse in an exhaustive manner

the analytical redundancies introduced by hypothesized sensors

and build an Hypothetical Fault Signature Matrix (HFS

Matrix). The starting point of the method hypothesizes that all

the variables are sensored and subsequent hypotheses proceed

to the retraction of sensors. Our working assumption is that,

for economic reasons, hardware redundancy in the

instrumentation is not permitted, i.e. only one sensor per

variable can be hypothesized. This assumption is acceptable,

and even necessary, in many application domains.

The method follows a structural analysis approach familiar

to the FDI community [3] extended to component supported

Analytical Redundancy Relations (ARR) by tracing the

ARRs’supports. ARRs’supports were introduced in [6] to

bridge to the concept of conflict of the DX community.  They

are defined as the components, including possibly sensors,

whose models are involved in the expression of the

redundancy. The method builds on the work of [14] and [15]

but handles the different operating regions (behavioral modes)

of a system and explores all the model relation causal

interpretations, hence resulting in the completeness of the

produced set of hypothetical ARRs (H-ARRs) (under the

assumption of no singularities leading to instantiated ARRs

[7]). The supports of the obtained H-ARRs constitute the HFS

matrix from which a complete diagnosability assessment can

be performed.

The paper is organised as follows. Section II introduces the
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basic concepts of analytical redundancy and presents the

structural approach. Section III introduces a set of definitions

to clarify the different diagnosability properties of a system,

provides a recursive characterization of the sets of ARRs

corresponding to successively included sensor sets, and

proposes an operational method to generate ARRs and trace

their support. Section IV approaches the diagnosability

assessment problem. Section V illustrates the method on the

well-know polybox example and applies the approach to an

industrial actuator device. Finally, Section VI discusses

related work and Section VII brings some conclusions and

perspectives.

II. A STRUCTURAL APPROACH FOR ANALYTICAL

REDUNDANCY

The (normal) behavior model of a system Σ=(E,V) can be

defined as a set of n relations E , which relate a set of m

variables V. In a component-oriented model, these relations,

called primary relations, are associated to the system’s

physical components, including the sensors. The set E is

partitioned into behavioral relations 
  
E

beh
 which correspond

to the internal components and observation relations 
  
E

obs

which correspond to the sensors.

The structure of a model can be represented by a Structural

Matrix which crosses model relations in rows and model

variables in columns, or equivalently by the bipartite graph

G=(E∪V, A) where A is a set of arcs such that a(i,j)∈A iff

variable vj∈V appears in relation ei∈E.  

The set of variables V can be partitioned as V=X∪O, where

O is the set of observed (measured) variables and X is the set

of unknown variables
1
. Then, the structural approach of [3] is

based on determining a complete matching M between E and

X in the bipartite graph G. A matching on a graph G is a set

of edges of G  such that no two of them share a vertex in

common. A complete matching between E and X in a bipartite

graph G=(E∪X∪O, A), or equivalently in G=(E∪X, A’)

where A’ is a subset of A, is one that saturates all of the

vertices in E or X. It corresponds to a selection of line-

independent entries, i.e. which are not in the same row or

column, in the structural submatrix crossing E and X . If the

relation ei is associated to the variable xj by M, then ei can be

interpreted as a mechanism for solving for xj. The Resolution

Process Graph (RPG) is defined as the oriented graph

obtained from G by orienting the edges of A from xj towards ei

if a(i,j)∉ M and from ei towards xj if a(i,j)∈ M. It provides the

orientation of calculability (or causal interpretation) associated

to M. The determination of M must account for the possibly

restricted causal interpretation of some relations, e.g. a given

relation may not be invertible and hence can only be used in a

predefined direction. In practice, this is performed by orienting

the corresponding edges a priori.

1
 If v is a physical quantity of the system, and has an associated sensor

providing a reading vobs, then v∈X and vobs∈O.

Reference [3] shows that this graph can be used to derive

the Analytical Redundant Relations (ARR). Given our

working assumption that instrumentation is not redundant,

i.e. there is only one sensor for the same variable or quantity,

ARRs exist if and only if the number of relations card(E) is

strictly greater than the number of unknown variables card(X).

In this case the complete matching is of X into E and ARRs

correspond to the relations which are not involved in the

complete matching, and consequently are not needed to

determine the values of the unknow variables. These “extra-

relations” appear as sink nodes of the RPG. ARR of the form

r = 0 where r is called the residual of the ARR, are obtained

from the extra-relations by replacing the unknown variables by

their formal expression in terms of observable variables,

tracing back the analytical paths defined by the RPG.

If card(E)=card(X), then there are no ARRs and the system

is said to be non monitorable [3]
2
. The above is illustrated in

Figure 1 with a toy example of five relations e1 to e5 and four

unknown variables x1 to x4.

Fig. 1. (a) Bipartite graph G=(E∪X, A’) and complete matching of X into E
indicated by bold arcs; (b) RPG indicating that e5 is a redundant relation.

To summarize, an ARR arises from a causal interpretation

of the underlying model primary relations. It only contains

observed variables and can hence be evaluated from the

observations. If r is evaluated to 0, then the ARR is satisfied,

and conversely. The binary evaluation (0 or non 0) of every

ARR provides a means to characterize the system at a given

time. This pattern is also referred to as the observed signature

whereas the expected binary pattern for a given fault is called

the fault signature.

The support of an ARR [7] refers to the underlying

components whose corresponding primary relations are

involved in the ARR and is noted Supp(ARR). In the general

case, Supp(ARR) is composed of a set of components and a set

of sensors and can be spited in a component-support Comp-

Supp(ARR) and a sensor-support Sens-Supp(ARR)
3
. An ARR

together with its support Supp(ARR) is called a  Supported

ARR. When not ambiguous, ARR is used for short.

2
 The behavioral system model is assumed to be just determinated. The

redundancy within the system model originates from the available
observations (sensors) only.

3
 Sensors must be distinguished from other components because the

diagnosability method stands on hypothesizing sensors, which must hence
have a different status.
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In the FDI terminology, the fault signature (FS) matrix

crosses ARRs in rows and (sets of) faults in columns [6].

Every row provides the support of an ARR and every column

the fault signature of a fault. Let us assume that Fj denotes a

fault on component Cj, then the interpretation of some entry

γ i j being 0 is that component Cj does not belong to

Supp(ARRi), i.e. the occurrence of the fault Fj does not affect

ARRi, meaning that ARRi is satisfied in the presence of that

fault. γ i j=1 means that Cj belongs to Supp(ARRi), i.e. ARRi

is expected to be affected by fault Fj, but it is not guaranteed

that it will really be (the fault might be non detectable by this

ARR) [13].

The ARR-based exoneration assumption is generally

adopted in the FDI approach, meaning that a fault Fj is

assumed to always affect the ARRs whose support include Cj.

In this case, γi j = 1 is interpreted as ARRi  is violated in the

presence of fault Fj.

Proposition 1 The ARR-based exoneration assumption

implies that F j is strongly detectable in the sense of the

definition provided by [13], i.e. the residual maintains a non

zero value after its transition time
4
.

Proof of Proposition 1. The ARR-based exoneration

assumption implies that under the occurrence of a fault Fj the

ARRs whose support include Cj are always violated, which

means that the observed signature cannot change value over

time, hence proving the proposition. 

Let us call M-ARRs the ARRs that are directly obtained

from a given complete matching M. The number of M-ARRs is

the same for any existing complete matching, as it only

depends on the redundancy degree of the observed system

[12]. Given the set of M-ARRs, also called primary ARRs,

additional ARRs can be obtained by combining M-ARRs, i.e.

by using one ARR to substitute for a common variable in

another ARR. These additional combined ARRs correspond to

those that would be obtained from the other complete

matchings existing on the system structure.

Definition 1 Given a set A of ARRs, we define Ab as a

bas is  of A  if all the ARRs of A  can be obtained by

combining
5
 two or several ARRs of Ab and this is not true for

any Ab’⊂Ab.

Proposition 2 Given a system Σ=(E,X∪O) and M  a

complete matching between E and X, then the set of M-ARRs

is a basis for the whole set of ARRs of Σ.

Proof of proposition 2. An ARR is a constraint deduced

from the system model that contains only observed variables.

Using graph theory and the search for a complete matching is

a way of implementing unknown variable structural

elimination, leading to M-ARRs after analytical calculations

are performed. Now, any combination of M-ARRs is also an

ARR, hence the proposition. 

Cordier et al. [7] showed that by construction, combined

ARRs are clearly redundant when considered just as equations

4
 As opposed to weakly detectable [13] for which there must exist one

time point t at which the residual takes a non zero value (but is not required
to hold).

5
 “combining” is understood as performing variable substitution.

but that for fault isolation purposes, one has to consider their

support Supp(ARR), i.e. one has to consider component-

supported ARRs. They proved that a combined ARR, say

ARRj, is a logical consequence of a set of ARRs, say ARRis,

iff Supp(ARR
j
)⊇ ∪i  Supp(ARR

i
). ARR

j
 is then said logically

redundant.

The methods proposed by the FDI community for

generating the ARRs do not take into account the ARR

supports, for example the M-ARRs may be simply combined

in an exhaustive manner. This is even the case for efficient

methods as [2] based on searching all the paths within AND-

OR graphs.

Conversely, our method for generating ARRs (cf. Section

III.C) takes into account that ARRs should be considered

together with their component supports and this is just what

makes it suitable as input for a diagnosability analysis.

Our method only makes use of structural properties of

primary model relations and tracks structural changes along

the combinations. In  other word, ARRs’ are characterized  by

their structure but their analytical expression is not generated.

However, the method handles the validity conditions

analytical expressions that may be associated to the model

relations, characterising specific operating modes of the

system, possibly fault modes, or singularities related to the

analytical expressions.

Note that the fault signatures of a multiple operating mode

system are dynamic, in the sense that the set of ARRs that

take place in the fault signature is not the same across time,

i.e. when the system is in different operating modes. Our

method keeps track of these changes as well.

III. A STRUCTURAL APPROACH FOR DIAGNOSABILITY

This section first explores the diagnosability properties of
a system, leading to the concepts of strong/weak
diagnosability, and full/partial diagnosability. These concepts
are bridged to the fault detectability properties proposed in the
literature [13]. It then provides a recursive characterization  of
the sets of ARRs for successively included sensor sets.

A. Diagnosability characterization

We consider a system Σ, a set of sensors S={Si}, and a set

of faults F={Fi} (single or multiple), and represent it by the

triple (Σ, S,F). Let us define by OBSj the value tuple returned

by the sensors at some time point tj corresponding to the set

of observed variables O
6
. OBS is used instead of OBSj when

the time label is not relevant. Let us also define by OBSFi
 
the

set of all possible tuples consisting of observed variable

values (regardless of time) under the fault Fi.

Then we first have the following definition:

Definition 2 (Diagnosis candidate)

Given the triple (Σ, S,F), Fi∈F is a diagnosis candidate at

time point tj if and only if O B Sj∈OBSFi. F i is a minimal

6
 In the case of a dynamic system, we consider that O B Sj is an

observation tuple that leads to a stabilized observed signature. Noise and
decision strategies in perturbated environnements are out of the scope of this
paper.
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diagnosis candidate if ∀F k⊂Fi, F k is not a diagnosis

candidate.

The diagnosability properties of a triple (Σ, S,F) arises from

the discriminability properties of each pair of individual faults

in F [20]. Different levels of discriminability can be exhibited,

hence different levels of diagnosability.

Definition 3 (Discriminability)

1. Two faults Fi and Fj are said to be strongly discriminable if

and only if for any OBS, when F i is among the diagnosis

candidates, Fj never is, and conversely. In other words,

OBSFi∩OBSFj=∅.

2. Two faults Fi and F j are said to be non discriminable  if

and only if for any OBS, when F i is among the diagnosis

candidates, then Fj also is, and conversely.  In other words,

OBSFi=OBSFj.

3. A fault Fi is said to be weakly discriminable from a fault Fj

if and only if, when Fi is among the diagnosis candidates,

there exists at least one OBS
k
, such that Fj is not and at least

one OBS
l
 with OBS

l
≠OBS

k
, such that Fj also is. In other

words, OBSFi\OBSFj≠∅. If Fi is weakly discriminable from Fj

or Fj is weakly discriminable from Fi, the pair of faults (Fi,

Fj) is said to be weakly discriminable.

Note that non discriminability and strong discriminability

are symmetric relations, whereas weak discriminability is not.

However, if Fi is weakly discriminable from Fj or Fj is weakly

discriminable from Fi, then Fi and Fj are neither strongly

discriminable nor non discriminable.

The situations of Figure 2 illustrate definition 3.

Note that detectability can be defined as discriminability

from the no fault mode.

The definitions of Strong Diagnosability and Weak

diagnosability can now be provided.

Definition 4 (Strong diagnosability). A triple (Σ, S,F) is

strongly diagnosable if and only if for any pair (Fi, Fj)∈F×F

where Fi≠Fj, OBSFi∩OBSFj=∅ , i.e. any pair of faults is

strongly discriminable
7
.

Definition 5 (Weak diagnosability). A triple (Σ, S,F)  is

weakly diagnosable if and only if for any pair (Fi, Fj)∈F×F

where Fi≠Fj, OBSF1\OBSF2≠∅  or OBSF2\OBSF1≠∅ , i.e. any

pair of faults is either strongly discriminable or weakly

discriminable.

7
 Strong diagnosability meets diagnosability as defined in [5].

On the other hand, the non-discriminability relation is an

equivalence relation which allows us to classify the faults: two

faults are in the same D-class if and only if they are non

discriminable. Note that two faults from different classes may

be strongly or weakly discriminable.

Definition 6 (Discrimination level). Given a triple (Σ, S,F),

its discrimination level DS is defined as the number of D-

classes obtained for the set of sensors S.

Then, we can provide the definition of the Diagnosability

Degree.

Definition 7 (Diagnosability Degree). Given a triple

(Σ, S,F), its diagnosability degree dS is defined as the quotient

of the number of D-classes by the number of faults in F, i.e.

dS=DS /card(F).

Full diagnosability and Partial diagnosability can now be

defined as follows.

Definition 8 (Full and partial diagnosability). A triple

(Σ, S,F) is fully diagnosable if and only if its diagnosability

degree is equal to 1; it is partially diagnosable otherwise.

Proposition 3 The number of D-classes  of a fully

diagnosable system is equal to the number of faults, card(F).

Proof of Proposition 3. Trivial. 

Proposition 4  Under the ARR-based exoneration

assumption and given a triple (Σ, S,F), two faults of F are

either strongly discriminable or non discriminable.

Proof of Proposition 4. This results follows directly from

Proposition 1.

Corollary 1 Under the ARR-based exoneration assumption

a fully diagnosable triple (Σ, S,F) is strongly diagnosable.

Proof of Corollary 1. This results follows from Definition

8 and Proposition 4.

The above definitions and results apply to a system and a

given set of existing sensors. Let us now rise the question the

way around: which sensors to achieve best diagnosability

properties? Let us recall that, in the rest of the paper, the

working assumption is that hardware redundancy in the

instrumentation is not permitted, i.e. only one sensor per

variable can be in use.  

Definition 9 (Minimal Additional Sensor Sets). Consider a

partially diagnosable triple (Σ, S,F), a set of potential

additional sensors S+, and define as F
+
= F ∪

  
S f
+
  the updated

set of faults where 
  
S f
+
 ⊆ S+ is the (sub)set of additional

sensors that may be faulty (the remaining ones being assumed

fully reliable). Then an Additional Sensor Set is defined as a

set of sensors S ⊆ S+ such that (Σ, S ∪S,F
+
)  has maximal

diagnosability degree, i.e. dS∪S≥dS∪S’ for all S’ ⊆ S+ and

S’ ≠ S. A Minimal Additional Sensor Set is an additional

sensor set S  such that ∀  S’’ ⊂  S , S’’ is not an additional

sensor set.

For a partially diagnosable triple (Σ, S,F), the number of D-

classes is a monotonically increasing function of the number

of sensors chosen in S+, i.e. DS∪S ⊆ DS∪S.for S ⊆ S’, but this

is not true for the diagnosability degree dS∪S=DS∪S /card(F
+
).

Indeed, card(F
+
) depends itself of S  if sensor faults are

considered. The information provided by the diagnosability

OBSFj

OBSFi OBSFj

     OBSFi

OBSFj

OBSFi

(a)

(b)

(c)

Fig. 2. (a) Two strongly discrimable faults; (b) Fi is weakly discriminable
from Fj, and conversely; (c) Fi is weakly discriminable from Fj, Fj is not
weakly discriminable from Fi but it is not non discriminable neither.
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degree is complementary to the information given by the

discrimination level alone. Indeed, it evaluates the number of

D-classes in relation with the number of faults. Now we have

the following result.

Proposition 5 Given a partially diagnosable triple (Σ, S,F)

and a set of potential additional sensors S+, consider a set of

sensors S ⊆ S+.

1 .  When card(S) increases, an increase of dS∪ S implies an

increase of DS∪S .

2. If the set of faults F
+
 is limited to single faults and if the

diagnosability degree dS∪S is maximal, then the discrimination

level DS∪S is also maximal.

Proof of Proposition 5. Consider a  set of additional

sensors S ⊆ S+ and assume that S is increased by one sensor

resulting in Snew. Then we have four possible cases:

Case1: card(F
+

new)=card(F
+
) and DS∪Snew=DS∪S , which implies

that dS∪Snew=dS∪S .

Case2: card(F
+

new)=card(F
+
) and DS∪Snew>DS∪S , which implies

that dS∪Snew>dS∪S .

Case3: card(F
+

new)>card(F
+
) and D S∪Snew>DS∪S , and we get

dS∪Snew=  [DS∪S+a]/[card(F
+
)+b] where a and b are positive

integers, which can be  put  in  the  form:

dS∪Snew=[DS∪S/card(F
+
)]+Δ,

where Δ=[a – b×DS∪S/card(F
+
)]/[card(F

+
)+b)],

which leaves the sign of [dS∪Snew–dS∪S]=Δ undetermined, this

latter being the same as the sign of [a/b]– [DS∪S/card(F
+
)].

Case4: card(F
+

new)>card(F
+
) and DS∪Snew=DS∪S, which implies

that dS∪Snew<dS∪S .

Hence, dS∪Snew>dS∪S (which is only true in cases 2 and

possibly case 3) implies DS∪Snew>DS∪S , proving 1.

 Under the single fault assumption, Case 1, 2 and 4 remain

the same but Case 3 must be instanciated by a=1 and b=1.

Since DS∪Snew>DS∪S, (Σ, S,F
+
) is partially diagnosable and we

have DS∪S/card(F
+
)≤1. This implies that the sign of [a/b]–

[DS∪S/card(F
+
) ] is always positive, hence d S∪Snew>dS∪S.

Therefore, from Case 2 and Case 3, DS∪Snew>DS∪S implies

dS∪Snew>dS∪S (which was not true in the general case). We

hence have DS∪S increases iff dS∪S increases, proving 2. 

Remark: Note that if S is such that dS∪S is maximal, S is

not necessarily minimal in the sense that it may exist S’ ⊂ S

such that dS∪S’ = dS∪S .

Proposition 6 Given a partially diagnosable triple (Σ, S,F)

and a set of potential additional sensors S+, consider a set of

sensors S⊆ S+ and the corresponding updated set of faults F +

partitioned as F +
= F

S

+
∪F

M

+ , where F
S

+ is the set of single

faults and F
M

+  the set of multiple faults. Then, under the

ARR-based exoneration assumption, if S is such that

(Σ, S∪S, F
S

+) has maximal discrimination level, then (Σ, S∪S,

F
+) has also maximal discrimination level.

Proof of Proposition 6. Consider that S is such that

(Σ, S∪S, F
S

+) has maximal discrimination level D S∪S and

denote by AS∪S the set of ARRs when the sensors of S∪S are

in use, then there exists no S’ ⊆ S+\ S such that

DS∪S∪S’ >DS∪S. Therefore, for any new ARR arising from the

addition of sensors of S’, there exists at least one ARR of

AS∪S having the same support with respect to F
S

+. Let’s call

ARRnew one of such new ARRs and ARRold one “old” ARR
having the same support.

Under the ARR-based assumption, the fault signature γ K of
any multiple fault F K,  where K  is a proper subset of
{1,2,…,n}, is obtained from the single fault signatures γ α,
α ∈ {1, 2, …, n}, of single faults F1, F2, …, Fn as follows:
the entry γiK is non zero if at least one entry  γ iα, α ∈ {1, 2,
…, n} is non zero. Hence, ARRnew has the same support with

respect to F
M

+  as ARRold, and therefore it has the same support

with respect to the whole set F +.
 

In consequence the fault
signatures arising from the new ARRs are not different from

existing ones, meaning that (Σ, S∪S, F +) has maximal

discrimination level. 

The above proposition is important from a practical point

of view since it means that for maximizing the discrimination

level of a system, it is enough to consider single faults when

the ARR-based exoneration holds.

B. Recursive  characterization of ARRs corresponding to
successively  included sensor sets

Our method is based on hypothesizing sensors and

producing the corresponding hypothetical component

supported ARRs (H-ARR). The starting point assumption is

that all the unknown variables have an hypothetical sensor,

i.e. the system is assumed to be fully sensored, and we define

the full set of hypothetical sensors as S X. Subsequent

hypotheses proceed to the retraction of sensors, providing at

the same time the changes on the analytical redundancies by

redefining the set of ARRs. This section shows that if the

ARR supports are traced for, full diagnosability analysis can

be achieved from ARR generation for the fully sensored

system only.

Proposition 7 Let us consider the system model

Σ=(E, X∪O), where E is partitioned into behavioral relations

  
E

beh
 and observation relations 

  
E

obs
. Assume that Σ is fully

sensored, i.e. every variable in X  is  sensored

(card(X)=card(O)) and there is one observation relation e
obs

i

in 
  
E

obs
 of the form oi=fi(xi) for every couple (xi,oi), then the

set of primary behavioral relations 
  
E

beh
 instanciated by

xi=fi
—1

(oi)
8
 constitutes a basis Ab of the whole set A of ARRs

of Σ.

Proof of Proposition 7. Since there is one observation

relation e
obs

i  
in 

  
E

obs
 of the form oi=fi(xi) for every couple (xi,

oi), a complete matching ME↔X  between E and X  is obtained

by associating the unknown variable xi to its corresponding

observation relation e
obs

i . Therefore, the relations in 
  
E

beh
 are

all redundant relations and the corresponding ARRs, obtained

by replacing the unknown variables by their observation

8 We consider that all sensor models of the form oi=f(xi) are invertible,
i.e. f

—1
 exists (which seems reasonable for sensors).
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expression xi=fi
—1

(oi) form a basis of the whole set of ARRs

of Σ. 

Consider a set of relations Γ linking a set of variables {υi},

then we note Γ(υ i) the subset of relations that contain the

variable υi.

Proposition 8 Consider the system Σ’=(E’, X∪O’) for

which 
    
E'= E

beh
∪E'

obs
 and X is the same as in Proposition 7

and assume that one sensor S(xi) has been retracted, resulting

in 
    
E'

obs
= E

obs
\ e

obs

i{ }  and O’=O\{oi}. Then a basis Ab’ of the

whole set A  ’ of ARRs of Σ ’  is given by {Ab\Ab(oi) ∪
Comb(Ab(oi))}, in which Comb(Ab(oi)) is the set of combined

ARRs obtained from Ab(oi) by eliminating variable oi, i.e.

extracting oi  from one of the relations in Ab(oi) and

substituting it in the other relations, assuming that the
substitution is possible from an analytical point of view.

Fig. 3. Retracting one sensor

Proof of Proposition 8. Let us construct a complete

matching ME’↔X between E’ and X  from ME↔X. All the

matches are still possible except the one for xi since e
obs

i  is

not in E’ anymore. xi must hence be matched to a relation

e
beh

*  of     Ebeh
(x

i
)  (relations in 

  
E

beh
 that contain xi). These

relations are just the ones that correspond to Ab(oi). The ARRs

in Ab(oi) are not ARRs of Σ’ and new ARRs must be added,

namely Comb(Ab(oi)) which is obtained by using e
beh

*  to

provide x i, then substituted in     Ebeh
(x

i
) \ {e

beh

* } , also

substituted for the other oj, j≠ i. Equivalently, considering

Ab(oi), oi is extracted from the ARR that corresponded to  e
beh

*

and substituted in the other ARRs of Ab(oi). Ab(oi) is hence

replaced by Comb(Ab(oi) ) and there is a one to one

correspondance between the operation of retracting a sensor

and the operation of combining ARRs, as illustrated on

Figure 3. 

Note that when sensors must be considered as fault

candidates and taken into account in the ARRs supports, the

support of a combined ARRk, obtained by combining ARRi

and ARRj through the measured variable oi as output of S(xi),

is always such that:

Supp(ARRi)∪ Supp(ARRj)⊄ Supp(ARRk) (1)

implying that ARRk is not logically redundant w.r.t. ARRi and

ARRj. This comes from the fact that:

Sens-Supp(ARRk)=

(Sens-Supp(ARRi) ∪ Sens-Supp(ARRj))\S(xi)        (2)

Consider Σ=(E,X∪O) as in Proposition 7. Given the full

set of sensors SX={S(x1), ..., S(xn)} and a set I∈P(X) where

P(X) is the power set of X , define S
I
=SX\{S(xi)/i∈I} and the

resulting observed variable set O I
=O \ {o

i
/i ∈ I}  and

observation relation set E
obs

I
= E

obs
\ {e

obs

i
/i ∈ I} . Define now

the systems ΣI 
= (E

I 
,X∪O

I 
), where E I

= E
beh

∪E
obs

I . Let us

denote by 
  
A
b

I  an ARR base corresponding to

ΣI 
= (E

I 
,X∪O

I 
).

Corollary 2 Consider Σ=(E,X∪O)  and the systems

ΣI 
= (E

I 
,X∪O

I 
) as defined above, then the whole set of ARRs

of the fully sensored system Σ is given by:  

    

A = A
b

I

I ∈P(X )

U  (3)

Proof of Corollary 2. By Proposition 8, there is a one to

one correspondance between the operation of retracting a

sensor and the operation of combining ARRs. To obtain A, all

the possible combinations of sensors, generated from the

power set of X, to be retracted must be considered. This result

is illustrated on Figure 4 where 
  
A
b

(i) = A
b

I
/card (I ) = i{ } . 

Fig. 4. The whole set of ARRs  A of the fully sensored system as union of

ARR bases of successive partially sensored systems.

C. Generating ARRs and tracing their supports

The results presented in section III.B provide the basis of a

method to derive the H-ARRs associated to the different

situations of sensors.

…

A

Ab
(1)

Ab
(i)

Ab
(n)

Ab

… …

…

M

o1=f1(x1)

oi=fi(xi)

on=fn(xn)

x1

xi

xn

…

…

…

…

…

e
obs

i

e
beh

*

  
e

obs

n

  
E

obs

  
E

beh
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Proposition 7 states that for the fully sensored system (all

the unknown variables have an hypothetical sensor) the basis
9

of ARRs Ab is just given by the model primary relations.

Then, Proposition 8 shows that considering the successive

retraction of sensors is equivalent to successively combining

the ARRs by substituting for the variables that correspond to

retracted sensors. This results in generating the set of bases

  
A
b

I ,   for I∈P(X).

ARR generation of course includes tracing the sensor-

supports, i.e. generating the new ARRs sensor-supports from

their parents’ sensor supports. This is key to the further

diagnosability analysis.

In addition to sensor-supports, other important attributes

also need to be traced to avoid irrelevant combinations. In

particular, we have to avoid combining a combined ARR with

one of its own ascendant ARRs. This is possible tracing the

ARRs relation-support, i.e. the support in terms of the

underlying primary relations.

Another issue concerns the conditions under which a

variable substitution can be actually performed. A given

relation (primary or not) can be interpreted in a causal way,

hence determining one or the other of the involved variables.

Substitution can be performed when the two considered ARRs

have consistent causalities, as explained below. This requires

to trace the causal-relation-supports as well. The possible

causal interpretations may be submitted to validity conditions

depending on the corresponding mathematic analytical form.

For example, the relation x = y × z  has three causal

interpretations, i.e. three associated causal relations: x=y×z

itself in which x is considered as causally dependent on y and

z; y=x/z in which y is considered as causally dependent on x

and z, under validity condition z≠0; and z=x/y in which z is

considered as causally dependent on x and y, under validity

condition y≠0.

If invertible, every algebraic relation hence gives rise to a

set of causal-relations with their associated validity

conditions. A differential relation in canonical form, i.e. with

one single derivative appearing on the left hand side of the

relation, has one single causal interpretation, in which the

derivative depends on the other variables (differential

causality). The variable under the derivative depends on its

derivative (integral causality) [16].

In a given relation, the variable that is causally dependent

on the others is defined as the causally downstream variable.

Two causal relations are said to have consistent causalities

with respect to a common variable v iff v  is the causally

downstream variable in one of the relations but not in the

other.

Note that primary relations may have validity conditions

that are not related to their causal interpretation; this is the

case when the modelled system has multiple operational

modes (nominal or faulty). In the general case, the validity

condition of an ARR is hence given by a logical formula

whose truth value depends on algebraic  propositions over the

set of variables involved in the ARR.

9
 In this case, the basis is unique.

The validity condition of a combined ARR is given by the

conjunction of the ascendant ARRs validity conditions.

In consequence, the following concepts are associated to an

H-ARR:

•  the relation-support, noted Rel-Supp(.), which indicates

the primary relations which underlie the H-ARR;

•  the causal-relation-support, noted CRel-support(.),

which indicates the primary causal relations which underlie

the H-ARR;

•  the validity condition, noted VC(.), arising from the

conjunction of the validity conditions of its ascendant H-

ARRs;

•  the structure, noted Struct(.), which indicates by a non

zero entry the observed variables which appear in the H-

ARR or one of its ascendants: the observed variables which

have been substituted for are marked  “#”; the H-ARR

causal interpretation  is indicated as follows:

-  the variable that is causally downstream is marked

“⊗”;

- the remaining variables are marked “×”;  

•  the component-support, noted Comp-Supp(.), which

indicates the components whose models underlie the H-

ARR;

•  the sensor-support, noted Sens-Supp(.), that indicates

the sensors whose models underlie the H-ARR.

The above attributes can be summarized in an H-ARR table

composed of as many fields.

In summary, the procedure principle is as follows. The

generation of H-ARR starts from hypothesizing all the

possible sensors, i.e. for any variable i, i=1,..., n, we have

S(xi): oi=fi(xi) .  In this situation, every primary relation ri

provides a set of primary H-ARRs r i
j
, j=1,..., pi,  whose

cardinality is the number of causal interpretations. The total

number of primary H-ARRs is hence given by Θ
0
= pi
i=1

n

∑ .

The sensors are then retracted in sequence and the new H-

ARRs that result from the retraction are generated. The new H-

ARRs arise from substituting the variable whose sensor has

been retracted from one H-ARR into another, under consistent

causality conditions. In doing so, all the H-ARR attributes are

traced for.

Unfortunately, different combinations may lead to the same

H-ARR. Hence before adding a new H-ARR, it is checked for

equality against the existing ones.  Note that two H-ARRs are

said to be equal (noted =f) when they correspond to the same

algebraic variety. Equivalently, H-ARRi =f H-ARRj if and

only if all their attributes but the causal-relation-support are

equal.

Let us call Θ  the  total number of resulting H-ARRs,

composing the final H-ARR table.

Let us mention that the set of resulting H-ARRs is not

sensitive to the order of the retraction because the children

ARRs remain in the list even when combined ones are

generated.  

The ideas behind the H-ARR generation algorithm are first

explained with an example, then the algorithm is given.
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Example 1:
Consider the simple example of an adder (A) connected to

an inverter (I) given in figure 5.

y
z+

x

Fig 5. An adder connected to an inverter

The model Σ=(E,X∪O) of such system is given by:

Set 
  
E

beh
: Set 

  
E

obs
:

A: e1: z=x+y    (4) S(x): x*=x         (5)

I: e2: y=–z S(y): y*=y

S(z): z*=z

where X={x, y, z} is the set of unknown variables and O={x*,

y*, z*} is the set of observations given by the hypothetical

sensors. When all three sensors are available, then from

Proposition 7, an ARRs basis is simply given by the primary

relations in which every variable is replaced according to its

observation model.

ARR1
0
: z*=x*+y* Supp(ARR1

0
)={A,S(x),S(y),S(z)}

ARR2
0
: y*=–z* Supp(ARR2

0
)={I, S(y), S(z)} (6)

and A b={ARR1
0
, ARR2

0
}.

ARR1
0
 and ARR2

0
 can be interpreted causally, resulting in:

ARR1: z*=x*+y* Supp(ARR1)={A,S(x),S(y),S(z)}

ARR2: x*=z*-y* Supp(ARR2)={A,S(x),S(y),S(z)}

ARR3: y*=-x*+z* Supp(ARR3)={A,S(x),S(y),S(z)} (7)

ARR4: y*=–z* Supp(ARR4)={I,S(y),S(z)}          

ARR5: z*=–y* Supp(ARR5)={I,S(y),S(z)}         

Formulas in (7) constitute the primary H-ARRs. Note that

in this example Θ0=5 and no validity conditions are needed.

TABLE I.  PRIMARY H-ARR TABLE

Let us now consider the system Σ’=(E’,X∪O’)

corresponding to the situation in which only S(x) and S(z) are

available but not S(y), i.e. retraction of S(y) (marked # in the

6
th
 line of Table II). ARR1

0
 and ARR2

0
 are not ARRs anymore

and one new ARR comes from combining one ARR from

{ARR1, ARR2, ARR3} with one ARR from {ARR4, ARR5},

since they share variable y*. Any combination causally

consistent with respect to y* leads to the same ARR. This is

illustrated below for two particular combinations:

Causal-relation-support H-ARR Support

ARR1 , ARR4 z*=x*-z* A, I, S(x), S(z)

ARR3, ARR4 –z*=–x*+z* A, I, S(x), S(z)

The fact that the two obtained H-ARRs above are equal

illustrates that two H-ARRs are equal when all their attributes

are equal but their causal-relation-support. The only resulting

ARR is hence:

ARR3
0
: x*=2z*    Supp(ARR3

0
)={A, I, S(x), S(z)}   (8)

This results in 
  
A b

y{ }={ARR3
0
}. ARR3

0
 has two causal

interpretations leading to ARR6 and ARR7 in Table II. Note

that S(y) is not in the support of ARR3
0
 (nor in that of ARR6

and ARR7).

Let us now consider the situation in which we retract S(z).

Combining one ARR from {ARR1, ARR2, ARR3} with one

ARR from {ARR4, ARR5} with respect to z* provides ARR4
0
:

ARR4
0
: x*=-2y*   Supp(ARR4

0
)={A, I, S(x), S(y)}       (9)

which corresponds to the situation in which only S(z) has been

retracted, hence 
  
A
b

z{ }={ARR4
0
}. A R R4

0
 has two causal

interpretations leading to ARR8 and ARR9 in Table II. The

situation in which both S(y) and S(z) have been retracted

corresponds to a non monitorable system (no ARRs), i.e.

  
A b

y,z{ } =∅. Indeed, although ARR3
0
 shares variable z*  with

ARR1
0
 and ARR2

0
, ARR3

0
 cannot be combined with ARR1

0
 and

ARR2
0
, which are the own ascendants of ARR3

0
.

Finally, considering the retraction of S(x) does not give rise

to any combination, and hence  does not provide any new

ARR.

TABLE II.  FINAL H-ARR TABLE

The main steps to generate the H-ARR are provided in the

algorithm below. The elements of the “Structure” field sub-

table are noted s(α,β), where α corresponds to the α th
 H-ARR

and β corresponds to the βth
 observed variable column, β=1,

..., n.

/*H-ARR generation algorithm*/
SX={S(x1),..., S(xn)}

h=Θ0

For i=1, ..., n do

(a) Select S(xi) ∈ SX 
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(b) Define the set J={j/oi ∈ Struct(H-ARRj)}

If card J≤1, then go to (a)

Else ∀(p,q) ∈ J2, p≠q

If Rel-Supp(H-ARRp) ∩ Rel-Supp(H-ARRq) = ∅
/*the above condition avoids substitutions of H-ARRs  with the same relation
support*/

and ¬∃β such that

(s(p,β)∈{×,⊗} ∧ s(q,β)=#) ∨ (s(p,β)=# ∧ s(q,β)∈{×,⊗})
/*the above condition avoids irrelevant substitutions due to structure inconsistency*/

and (s(p,i)=⊗ ∨ s(q,i)=⊗)

and ¬(s(p,i)=⊗ ∧ s(q,i)=⊗)
/*these conditions guarantee consistent causal interpretations*/

and (VC(H-ARRp) ∧ VC(H-ARRq)) is satisfiable.
/*the above condition guarantees consistent validity conditions*/

then build H-ARRh+1 such that

Rel-Supp(H-ARRh+1) = 

Rel-Supp(H-ARRp) ∪ Rel-Supp(H-ARRq)

CRel-Supp(H-ARRh+1) = 

CRel-Supp(H-ARRp) ∪ CRel-Supp(H-ARRq)

VC(H-ARRh+1) = VC(H-ARRp) ∧ VC(H-ARRq)

Comp-Supp(H-ARRh+1) = 

Comp-Supp(H-ARRp) ∪ Comp-Supp(H-ARRq)

Sens-Supp(H-ARRh+1) = 

Sens-Supp(H-ARRp) ∪ Sens-Supp(H-ARRq)\S(xi)

Struct(H-ARRh+1) is given by : 

s(h+1,i)= #
/* # marks the variable oi as substituted */

For β≠i

If s(p, β)=× or s(q, β)=×, then s(h+1, β)=×

If s(p, β)=# or s(q, β)=#, then s(h+1, β)=#

If s(p, β)=⊗ or s(q, β)=⊗, then s(h+1, β)=⊗

End for
/*the above conditions update the status of the variables appearing in
the H-ARR structure*/

If H-ARRh+1 ≠f H-ARRi ∀i<h+1 then add H-ARRh+1

/*the above condition avoids adding an H-ARR which is equal to an existing one*/

h=h+1

End if

End if

End else

End for

The H-ARR algorithm removes sensors one by one and

combines H-ARRs consequently. First a sensor S(xi) : oi=fi(xi)

is selected and a set J of H-ARR’s indexes is defined as the

set of H-ARR in which oi is involved. Then the pairs of H-

ARRs to be combined are taken in J. Obviously, another

sensor is chosen if the cardinality of J is ≤ 1.

Two H-ARR selected in the set J can be combined under

several conditions :

• Their relation-supports are disjoined (Rel-Supp(H-

ARRp) ∩ Rel-Supp(H-ARRq) = ∅) else you combine two H-
ARR issued from the same relation.
• An already substituted variable from one of the selected
H-ARRs cannot be reintroduced to generate a new H-ARR
(¬∃β such that (s(p, β) ∈ {×,⊗} ∧ s(q, β) = #) ∨ (s(p, β)=# ∧ s(q, β)

∈ {×,⊗})).
• One of the selected H-ARRs has the variable oi marked
as causally downstream variable but not both
((s(p,i)=⊗ ∨ s(q,i)=⊗) and ¬(s(p,i)=⊗ ∧ s(q,i)=⊗)), otherwise
underlying causalities are not consistent.
• The combination of validity conditions must be
consistent ((VC(H-ARRp) ∧ VC(H-ARRq)) is satisfiable).

If all the conditions are fulfilled, then a new H-ARR can be

generated. Note that the chosen sensor S(xi)  is not in the

sensor-support and the associated variable oi is marked as

substituted (#) in the generated H-ARR structure. The

generated H-ARR is added to the table if it is not equal to any

existing one.

D. Hypothetical Fault Signature Matrix.

In the following, let us denote by S*  the set of potential

sensors, specified at the system’s design stage. The choice of

S* may be guided by the set of faults F  to be considered

(sensoring variables which only appear in the model relations

of the components that cannot be faulty is of no use) and by

technological constraints. If a given set of sensors is available

anyway these are necessarily included in S*.

Definition 10 (Hypothetical Fault Signature (HFS)

Matrix).  The Hypothetical Fault Signature Matrix is defined

as the set of fault signatures that would result from the

availability of any combination of sensors in P(S*), where

S*⊆SX and P(S*) denotes the power set of S*.

The HFS matrix can easily be obtained from the H-ARRs

table. Indeed, it corresponds, after simple manipulations, to

the sub-table given by the component-support together with

the sensor-support fields, complemented by the corresponding

validity condition field. The manipulations to be performed

on the H-ARR table are given in the following algorithm:

/*HFS generation algorithm*/

Step 1- Compact all the H-ARRs which do not differ in the

component-support, sensor-support or validity-condition field in

the same equivalence class;

Step 2- Discard the columns corresponding to those components

which are not included in the set of faults to be considered;

sensors have a different status and all sensor-support columns

must remain as they provide information to be used for

diagnosibility assessment.

Step 3- Discard those H-ARRs whose sensor-supports include a

sensor which is not in S*.

Step 4- Remove all the table sub-fields but the component-support,

sensor-support and validity condition sub-fields.

The HFS matrix makes the correspondence between the

sensors, the resulting H-ARRs and the components that

support these ARRs while taking into account the different

validity conditions of the H-ARRs, i.e. operating regions of

the system and analytical singularity conditions. Note that

HFS is actually the FS matrix of (Σ, S*,F).

IV. DIAGNOSABILITY ASSESSMENT

The HFS matrix summarises all the required information to

perform a complete diagnosability assessment, i.e. to provide

all the Minimal Additional Sensor Sets (MASSs) that

guarantee a desired discrimination level.

A. Alternative Fault Signature Matrices

Given the HFS matrix, every possible combination of

sensors gives rise to a corresponding FS matrix. Considering

the set of all possible combinations of sensors hence leads to a

set of Alternative Fault Signature Matrices, as defined in

Definition 11.
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Definition 11 (Alternative Fault Signature Matrices) The

Alternative Fault Signature (AFS) Matrices are given by all

the FS matrices corresponding to all the possible sensor sets

S ∈ P(S*).

Note that if we start with a non empty set of already

available sensors Sa, then the AFS matrices are obtained for all

the possible sensor sets S=Sa∪S’, where S’∈ P(S*\Sa).

B. Analysing an FS matrix

Given a system (Σ, S, F) with S ⊆ S*, its FS matrix is

obtained from the HFS matrix by removing all the columns

corresponding to hypothetical sensors not included in S  and

all the H-ARRs such that sens-Supp(H-ARRi)⊄ S.

The FS matrix can be analyzed from the rows (H-ARR

supports) or from the columns (fault signatures) point of view.

The two following results correspond to the former and the

latter, respectively.

Proposition 9  Under the ARR-based exoneration

assumption, two H-ARRs that have the same support have the

same fault sensitivity, i.e. they have a non zero value for the

same fault situations.

Proof of Proposition 9. Trivial. 

According to Proposition 9, the H-ARRs can be grouped

into equivalence classes corresponding to the same support,

i.e. the same rows in the HFS matrix, under equal validity

conditions. In the following and when not ambiguous, the

term “H-ARR” is used to denote such equivalence classes.

Proposition 10 Under the ARR-based exoneration assumption

and given a partially diagnosable triple (Σ, S, F):

1. The number of D-classes DS of (Σ, S, F) is given by the

number of different fault signatures (column vectors) of its FS

matrix.

2. Consider a structured matrix M  like the FS matrix and

assume that the non zero values are given the value 1, then the

number of different column vectors is given by its analytical

column rank, noted rank(M).  

Proof of Proposition 10. Under the ARR-based exoneration

assumption, and by proposition 4,  if two faults Fi and Fj are

discriminable, they are strongly discriminable, i.e

OBSFi∩OBSFj=∅ , which is equivalent to having different

fault signatures. Hence, the number of different fault

signatures in FS(Σ, S, F) provides the number of D-classes of

(Σ, S, F), proving 1.

The proof of the second part of the proposition comes

trivialy from the fact that two column vectors whose values

are 0 or 1 are linearly independent if and only if they are not

equal. 

From the above result and definition 7, one can also derive

the diagnosability degree of a system (Σ, S, F).

C. Minimal additional sensor sets

This section characterizes the minimal additional sensor

sets (MASS), which guarantee maximal discrimination level.

Corollary 3 Under the ARR-based exoneration assumption

and given a system (Σ, S, F) and a set of possible sensors S*,

i.e. S ⊆ S*, the maximal achievable discrimination level DMAX

is equal to the number of D-classes DS* of (Σ, S*, F), which is

by Proposition 10 equal to the number of different fault

signatures of the HFS matrix, rank(HFS).

As seen in section III.A, in the general case, the number of

D-classes is a monotone function of the number of sensors in

S , i.e. D S  ⊆ DS ’  for S ⊆  S’, but this is not true for the

diagnosability degree dS=DS /card(F). Indeed, card(F) depends

itself on the considered set of sensors. Neverthless, the

diagnosability degree is obviously a monotone function of the

number of sensors in S in the two particular cases:

1. Only sensors in Sa can undergo faults.

2 .  All sensors are reliable and cannot undergo faults

(which is a particular case of 1 for Sa=∅
10

).

Corollary 4 Under the ARR-based exoneration assumption

and assuming that only the sensors in Sa can be faulty,

consider a system (Σ, S, F) and a set of possible sensors S*,

i.e. S ⊆ S*, then the number of faults remains constant (since

the sensors that can be added are assumed fully reliable) and

the maximal achievable diagnosability degree dMAX is equal to

dS* which is in turn equal to rank(HFS)/card(F).

Corollary 5 Under the same assumptions as Corollary 4, an

AFS matrix with the same rank as HFS corresponds to a

MASS. The MASS is obtained as the union of the sensor-

supports associated to the H-ARRs of this AFS matrix,

excluding the already available sensors Sa.

An operational method for deriving the MASSs is directly

obtained from Corollary 5: derive all the AFS matrices and

retain the ones with maximal rank. However, this method can

be significantly improved because lower bounds for the

number of H-ARRs and for the number of sensors can be

determined a priori and this cuts down the combinatorial

issue.

Given that a binary number of x bits allows for 2
x
-1 non

null different combination binary vectors, we have the

following result:

Proposition 11 (Minimum number of ARRs) Under the

ARR-based exoneration assumption, the minimum number of

ARRs needed to discriminate a set of faults F of cardinal nF,

i.e. to obtain a FS matrix of full rank, is x=Ceil[log(nF+1)],

where log is the base 2 logarithm and Ceil[y] is the minimal

integer value greater than or equal to  y.

Proof of Proposition 11. Since x  ARRs allow for a

maximum of 2
x
-1 different fault signatures, the upper bound

for the number of faults that can be discriminated with x

ARRs is given by nF ≤ 2
x
-1, and hence the result. 

Proposition 12 (Minimum number of sensors) The number

of sensors can be bounded by sMIN, where sMIN equals the

minimal cardinal of any of the H-ARRs sensor-supports.

Proof of Proposition 12. Consider a system (Σ, S, F) and a

set of possible sensors S*, i.e. S⊆S* such that card(S) is lower

than the cardinal of any of the H-ARRs sensor-supports, then

(Σ, S, F) is non monitorable, i.e. has no ARR, hence proving

the proposition. 

For a given system (Σ, S*, F), the combinatorial procedure

to obtain the set of MASSs, denoted as MASS, can hence start

with the AFS matrices having a minimum number x of H-
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ARRs (rows) and a minimum number of supporting sensors

sMIN.

The above procedure determines all the MASSs. If one is

interested in the MASS with maximal cardinality sMAX, the

procedure stops when the AFS matrices for sets of sensors of

cardinality sMAX have been derived and tested.

Note that the different MASS achieve a maximal

discrimination level but their corresponding D-classes may be

different. This choice is left to the user.

Instead of exploring all the combinations, the problem of

determining the MASS that achieve a given discrimination

level (MASS problem) can be formulated as an optimisation

problem, according to a given cost criterion.

Let us notice that in its general form the MASS problem is

not easy, in particular because the set of faults which are asked

to be discriminated may vary with the proposed set of sensors

when some sensors can themselves be  faulty. Also, because

there may be several minima.

Finally, let us notice that the ultimate general formulation

of the MASS problem would be in a multiple operational

modes context. The solution to this problem means not only

to find the optimal set of sensors but to determine the optimal

set of operating modes in which the system must be operated.

V. APPLICATION

This section illustrates our method first with the well-
known polybox example and  second  with an industrial
actuator device.

A. Polybox example

Let us consider the system taken from [7] known as the
polybox and given in Figure 6. This example is interesting to
illustrate the H-ARR generation procedure  more than for the
subsequent diagnosability analysis.

The set of unknown variables is X = {a, b, c, d, e, f, g, x,
y, z}, and the set of observations is O = {aobs, bobs,

 
cobs, dobs,

eobs, fobs, gobs}. Table III provides the system model.

Fig. 6. The POLYBOX example

To build the H-ARR table, we start with 15 primary H-
ARRs, as given by Table IV. Indeed, every primary relations
has three causal interpretations, some of which has restricted

                                                                                    
10

 Let’s recall that Sa is the set of available sensors.

validity. Successive combination of these H-ARRs  provides a
final H-ARR table with 113 H-ARRs.

TABLE III. POLYBOX MODEL

Set 
  
E

beh
Set 

  
E

obs

M1 e1 : x=a*c S(a) aobs =a

M2 e2 : y=b*d S(b) bobs =b

M3 e3 : z=c*e S(c) cobs =c

A1 e4 : f=x+y S(d) dobs =d
A2 e5 : g=y+z S(e) eobs =e

S(f) fobs =f

S(g) gobs =g

Let us suppose the standard situation for the polybox: x, y,
and z cannot be sensored and the sensors for the other
variables are available, i.e. Sa={a, b, c, d, e, f, g}. The HFS
matrix, which is actually the FS matrix for the given
situation, is obtained from the H-ARR table by applying the
algorithm of section III.D. It contains 24 ARRs.

Finally, the FS matrix is compacted according to the H-
ARRs which are equivalent in terms of component-supports
and sensor-supports. Only one ARR is retained for each class.
When the ARRs in a class differ in their validity condition,
the least constrained relation is selected. The final FS matrix
is given in Table V. It contains 5 ARRs.

The three first ARRs are the standard ones [7]:

ARR1 : fobs – aobs.cobs – bobs.dobs = 0
Comp-Supp(ARR1) : {A1, M1, M2}

ARR2 : gobs – bobs.dobs – cobs.eobs = 0
Comp-Supp(ARR2) : {A2, M2, M3}

ARR3 : fobs – gobs – cobs.(aobs – eobs) = 0
Comp-Supp(ARR3) : {A1, A2, M1, M3}

The two other ARRs have a validity condition related to a
singular point (division by eobs and aobs respectively).

ARR4: [aobs(gobs-bobsdobs)]/eobs+bobsdobs=fobs

ARR5: bobsdobs+[(fobs-bobsdobs)eobs]/aobs=gobs  

These are not classical and as a matter of fact, they are not
useful when sensor faults are not considered. Indeed, their
support includes the five components of the polybox.

B. Damadics-Actuator Device

1) The DAMADICS benchmark actuator
The application example deals with an industrial smart
actuator consisting of a flow servo valve driven by a smart
positioner; it is used as benchmark in the context of the
European DAMADICS project. Faults in these actuators or
more generally in final control elements appear relatively often
in the industrial practice. The faults cause long-term process
disturbances and may even trigger the installation shut down,
which may influence the final product quality.
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TABLE IV.  INITIAL H-ARR TABLE

TABLE V.  FINAL HFS MATRIX

The benchmark actuator, simply named actuator in the

following, interacts with the controlled process. It is used in

the evaporation station of a sugar factory in Poland [1][19].

The position set-point of the actuator is the output of the

process controller (flow or level controller) and the actuator

modifies the position of the valve permitting a direct effect on

the primary variable (flow or level) in order to follow the flow

or level set point. In this example, the actuator is used to

control the flow on the valve outlet F (cf. Fig. 7).

Fig. 7. The actuator  scheme

As shown on Figure 7, the components of the actuator

system are the following
11

:

1- A Control valve or hydraulics (H) which prevents, allows

and/or limits the flow of fluids through the control system.

Changing the state of the control valve is performed by a

pneumatic servomotor.

2- A pneumatic servomotor or mechanics (M) can be defined

as a compressible (air) fluid powered device in which the fluid

acts upon the flexible diaphragm, to provide linear motion of

the servomotor stem.

11
 Valves V1 and V2 are ignored in this example.

3- A Positioner device which eliminates the control-valve-

stem miss-positions produced by external or internal causes

such as friction, pressure unbalance, hydrodynamic forces etc.

It consists in an inner loop with a proportional controller

within a cascade control structure (ZC), including the output

signal of the outer loop of the flow controller and the inner

loop of the position controller. It also contains the pressure

supplier system (PSP) that generates a constant supply

pressure Pz. An electro-pneumatic transducer (E/P) adds to Pz

the pressure obtained from converting the control current

provided by the position controller. Thus, the output Ps of E/P

is injected in the servomotor’s chamber, controlling the rod

displacement X which is fed back to the position controller ZC

through a displacement transducer (ZT).

4- Connection components including a Bypass Valve (V3)

and Pipes (PF).

The available sensors are given by Sa={S(CV), S(X), S(F),

S(P1), S(P2), S(Pz), S(T), S(KV3)}
12

.

The mathematical equations describing the components

behaviour come from [17]. The following table summarises

the equations for each component in normal conditions. The

sensor are assumed to be ideal, i.e. the sensor output variable

is equal to the sensored variable.

The variables are defined as:

X´ – hypothetical servomotor’s rod displacement

X - servomotor’s rod displacement

Ps - pressure in the servomotor’s chamber

P1 - pressure before valve

P2 - pressure after valve

Pz - supply pressure (≈600 MPa)

Pv – water vapor pressure

ΔP - pressure difference across the valve (P1 – P2)

12
 These are the only available sensors on the real actuator although the

DAMADICS benchmark did assume a few more sensors.  

e1 e2 e3 e4 e5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vc1 vc2 vc3 vc4 vc5 a b c d e f g x y z M1 M2 M3 A1 A2 S(a) S(b) S(c) S(d) S(e) S(f) S(g) S(x) S(y) S(z)

1 x x x x ⊗ x x x x

2 x x x ⊗ x x x x x x

3 x x x x ⊗ x x x x x

4 x x x x ⊗ x x x x

5 x x x ⊗ x x x x x x

6 x x x x ⊗ x x x x x

7 x x x x ⊗ x x x x

8 x x x ⊗ x x x x x x

9 x x x x ⊗ x x x x x

10 x x ⊗ x x x x x x

11 x x x ⊗ x x x x x

12 x x x x ⊗ x x x x

13 x x ⊗ x x x x x x

14 x x x ⊗ x x x x x

15 x x x x ⊗ x x x x

Relation

Support

Causal relation

Support

Sensor

Support

Validity

Condition Structure

Component

Support

e1 e2 e3 e4 e5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vc1 vc2 vc3 vc4 vc5 a b c d e f g x y z M1 M2 M3 A1 A2 S(a) S(b) S(c) S(d) S(e) S(f) S(g) S(x) S(y) S(z)

1 x x x x x x x x x x ⊗ # # x x x x x x x x

2 x x x x x x x x x x ⊗ # # x x x x x x x x

3 x x x x x x x x x x x ⊗ x # # # x x x x x x x x x

4 x x x x x x x x x x x x x # x x ⊗ x # # # x x x x x x x x x x x

5 x x x x x x x x x x x x x # x x x ⊗ # # # x x x x x x x x x x x

Support Support Condition Structure

Relation Causal relation Validity Component

Support Support

Sensor
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ΔPallow – maximum allowable fluid pressure drop across the

valve

F - volumetric flow on outlet actuator pipe

FV - volumetric flow on the valve outlet

FV3 - volumetric flow on the manual valve (V3) outlet

Dma/dt – air mass flow

T – fluid temperature

Fvc – reaction force of valve plug

PV- process variable

CVI - control current (controller’s output)

CV- process control value

KV3 – manual valve position

The notation gNL-i is used to denote non linear functions, k

and ki are constants.

TABLE VI.  MATHEMATICAL EQUATION MODEL OF THE SYSTEM

Support Equation Val. Cond.

Pneumatic
Servomotor

M
),'(

)'(
''

1

12

2

bNL

sevcxv

DXgX

mgPAFXkk
dt

dX
k

dt

Xd
m

−=

++−+−−=

 KPPkF
mvcvc

)( 21 −=

mvvcvc
KPPkF )( 2−= ,  )(2 XgK NLm −=

)( 13 TgP NLv −=

b
HX ≤≤0

v
PP >

1

v
PP ≤

1

Control
valve

H

FV = kKV ΔP ρ ,  KV = gNL−4 (X)

( )
vcmallow
PrPKP −=Δ

1

ΔP = (P1 − P2)

 PrPP
vc
)( 1 −=Δ

0≠ΔP

(P1 − P2) ≤ ΔPallow

allow
PPP Δ>− )( 21

Electro-
Pneumatic
transducer

E/P










+
−+=

dt

dX

XAV

A

dt

dm

m
PP

dt

dP

eo

ea

a

as

s
1

)(

  

dma

dt
= k1gNL−5 (CVI) Pz − Ps 

  

dma

dt
= k1gNL−5 (CVI) Pz 

CVI > 0

0≤CVI

Positioner
feedback

ZT

)
2

1
sin(

3
5.0 −+=

b
H

X
aPV

π

Controller
ZC

CVI = kp (CV − PV )

Bypass
valve
V3

PKF
VV

Δ=
33

0≠ΔP

Pipes Flow
PF

3VV
FFF +=

2) Diagnosability degree
The results of sections III and IV are now applied to the

actuator considering the operating mode defined by P
1
> P

v
,

(P1 − P2) ≤ ΔPallow  and C V I > 0 . Then, the model for the

pneumatic servomotor, the control valve and the electro-

pneumatic transducer are brought back to one single

behavioral relation. The complexity of the problem is given

by 7 primary relations, 15 causal relations, 11 variables, and 7

components. Applying the H-ARR generation algorithm of

section 3.C we obtain 220  H-ARR.

Let us consider the following set of components: {M,

E/P,H, ZT, ZC, V3, FP} and the set of potential sensors

S={S(CV), S(X), S(F), S(P1), S(P2), S(Ps), S(Pz), S(T), S(CVI),

S(KV3)}. All the components can be faulty but ZC and S(CV).

Discrimination level with the available set of sensors.

Let us consider that S* is the set of actual sensors Sa, i.e. S*={

S(CV), S(X), S(F), S(P1), S(P2), S(Pz), S(T), S(KV3)}. Applying

the H-ARR algorithm (cf. Section III.C) and generating the

corresponding FS matrix (cf. III.D), the number of D-classes

DS* is find to be equal to 4, as shown by the FS matrix in

Table VII.

Hence the available sensors on the actuator allow one to

discriminate between the following sets of components:

{M,  E/P, ZT, S(Pz), S(T)}, {H, V3, PF, S(F), S(KV3)},

S(X),{S(P1), S(P2)}; and the diagnosability degree is d=4/13.

TABLE VII. THE DAMADICS-ACTUATOR  FS MATRIX

Maximal discrimination level. Let us consider the

possible sensors S*={S(CV), S(X), S(F), S(P1), S(P2), S(T),

S(Pz), S(KV3), S(Ps), S(CVI), S(PV)} among which the added

sensors S(Ps), S (CVI ) and S (PV ) are considered as fully

reliable. In this case, the number of H-ARR is 51, and the

number of D-classes DS* is 6: {M, S(T)}, {E/P, S(Pz)},  {H,

V3, PF, S(F), S(KV3)}, {ZT}, {S(X)},  and {S(P1), S(P2)}. In

the maximal discriminability situation, the system is hence

partially diagnosable with d=6/13.

Notice that there is a lot of ambiguity with respect to

components in the hydraulic subsystem: this is the result of

little instrumentation in this subsystem.

MASS for achieving maximal discrimination level. We

follow section IV.C and iterating on the set of n  sensors S’

such that {Sa∪S’}⊆S*, it is easy to determine that the MASS

that provide the maximal discrimination level and

diagnosability degree are {S(Ps), S(CVI)} or {S(Ps), S(PV)}.

VI. RELATED WORK

 The method proposed in this paper builds on previous

work [14][15]. Our work started with the method in [14]

which was in the same spirit as [2]. It required to search for

the different causal paths within the AND-OR graph obtained

from the RPG graph augmented by the hypothetical sensors.

Only one possible causal interpretation of the model was

considered meaning no guarantee to produce all the relevant

ARRs, and hence to assess the actual diagnosability capacity

of the potential instrumentation.

It then appeared that hypothesizing sensor retractions could

be a better alternative than sensor additions, since sensor

retractions are simply implemented by combining previously

derived ARRs when they share the sensored variable. Our

method hence starts with the fully sensored system and relies
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on the fact that the ARR set for this system includes the ARR

sets for the successive partially sensored systems. Generating

the whole set of ARRs of the fully sensored system can be

achieved by simple table operations. The algorithm

complexity remains however exponential in the number of

variables.

The problem of generating ARRs from a system’s

equational model corresponds to the one of finding just over

determinated subsystems of equations (constraints). These

subsystems indeed correspond to ARRs, and equivalently to

potential conflicts. Pulido and Alonso (2002) use a hyper-

graph approach.  They first look for Minimal Evaluation

Chains  which actually correspond to strictly over-

determinated  subsystems of equations that can be interpreted

in at least one causal way. Each causal interpretation of a

Minimal Evaluation Chain is called a Minimal Evaluation

Mode l . This method suffers from the same intrinsic

combinatorial problem as ours.

From the other hand, Krysander and Nyberg [11]  propose a

structural method for finding just over-determinated

subsystems, called Minimal Structurally Singular systems

(MSS). It differs from ours in the fact that  a variable x and its

derivative dx/dt are considered as different variables. This

leads them to differenciate equations  before being able to find

a complete matching. The MSS subsystems are then found in

a combinatorial way. The diagnosability problem is also

approached. However, it is formulated as the problem of

finding the best set of MSSs (equivalent to ARRs) which

achieves a given discrimination level. The proposed criterion

is the number of equations involved in the MSSs, as the

authors claim that the lowest the number of equations, the

more robust. This criterion is questionable and as a matter of

fact the real MASS optimisation problem, which is in terms

of sensors, is not formulated.

As mentioned in section IV, in its general form the MASS

optimization problem is tricky. Some solutions exist in the

litterature for simplified versions of this problem. [4]

simplifies the problem in the three following aspects:

-  It is assumed that only available sensors (sensors in

Sa) can undergo faults, which means that the number of

faults is considered constant.

-  It is assumed that the system model includes

differential relations only, resulting in a unique causal

interpretation.

- It is not only required to discriminate the set of faults,

i.e. to have different fault signatures, but to discriminate

the faults along a specific pattern, i.e to have a diagonal

fault signature matrix.

With the above restrictions, [4] brings back the solution to

the search of a minimal cost matching in a weighted bipartite

graph.

[18] goes one step further and proposes to use genetic

algorithms to perform the optimization task but still it makes

the assumption that only available sensors can undergo faults.

Finally, let us mention the work by Frisk et al. [9] which

propose an alternative way to achieve diagnosability. Instead

of hypothesizing sensors, they propose to add analytical

information about the faults. For example, they illustrate their

idea with the case in which they can explicitely state that a

fault derivative is constant.  The idea is interesting but it is

restricted to very specific types of faults and this approach has

not the general scope of hypothesizing sensors.

VII. CONCLUSIONS

In this paper, we have presented a method for showing what

gains in diagnosis can be made with which additional sensors.

This is accomplished by analysing the system from the model

based diagnosis viewpoint, given a set of faults that it is

desirable to diagnose. The approach has been illustrated

through an industrial actuator, taken as benchmark in the

Damadics European project.

This work opens numerous perspectives in several

directions. First of all, it calls for sophisticated optimisation

methods to solve the MASS optimization problem in its

general form. In its ultimate general form, when the choice

spans over different operating modes, it bridges to the area of

active diagnosis, i.e. the choice not only concerns the measure

to be done but also the configuration in which the system

must be put to perform the measure.

In the formulation adopted in this paper, the analysis has

been performed with the ARR-exoneration  assumption. It has

been shown in [7] that this assumption can be removed within

a fault signature matrix framework by considering that the non

zero entries of the theoretical fault signatures can be matched

to any observed truth value of the corresponding ARR.

However, in this case, fault signatures cannot be analysed from

the only syntaxic point of view. Indeed, two syntaxically

equal signatures may permit a different instantiation and two

syntaxically different signatures may permit an instantiation

which makes them equal. The non exoneration case hence calls

for further analysis.

The method is based on normal behaviour models in the

general framework of systems with multiple operating modes,

which are captured through the validity conditions associated

to the ARRs. This feature should hence make the method

easily extendable to the case when fault models are taken into

account. This would extend the method not only to

discriminate between components but to discriminate between

different faults affecting the same component. More work is

needed in this direction.

Finally, the working assumption through all the paper is

that for economic reasons, hardware redundancy in the

instrumentation is not permitted, i.e. only one sensor per

variable can be considered. This assumption is acceptable, and

even necessary, in many application domains like automobile,

process industry, etc. However, for highly critical applications,

hardware redundancy may be recommended to achieve a fault-

tolerant architecture. We believe that our method can be useful

to decide about the necessity of sensor redundancy. The first

case is obviously when a given component fault and sensor

fault fall into the same D-class; the only way to discriminate

between these faults is by sensor redundancy. Another

situation in which sensor redundancy may be recommended is
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when a given sensor happens to be involved in a high number

of ARR sensor-supports. The issue of considering

diagnosability analysis in the context of both analytical and

hardware  redundancy seems promising and calls for further

investigations.

REFERENCES

[1] Bartyœ, M., de las Heras, S.  (2003). “Actuator simulation of the
DAMADICS benchmark actuator system”. In Proc. of IFAC
Workshop SAFEPROCESS 2003. Washington, D.C., USA, pp. 963-968.

[2] Carpentier, T., (1999). Placement de capteurs pour la surveillance des
processus complexes. Ph. D. Thesis in Université des Sciences et
Technologies de Lille.

[3] Cassar, J.P. and Staroswiecki M. (1997). A structural approach for the
design of failure detection and identification systems. In Proc IFAC,
IFIP, IMACS Conference on Control of Industrial Systems, 329-334.
Belfort, France.

[4] Commault C. and Dion J.M. (2003). Optimal sensor location for fault
detection and isolation in linear structured systems, In Proc. of the
European Control Conference ECC’03, Cambridge (UK).

[5 ]  Console, L., Picardi, C. and Ribando, M. (2000). Diagnosis and
Diagnosability Analysis using process algebra. In Proc. DX'2000.
Morelia, Mexico.

[ 6 ]  Cordier M-O., Dague P., Lévy F., Dumas M., Montmain J.,
Staroswiecki M. and Travé-Massuyès L. (2000). AI and automatic
control approaches of model-based diagnosis: links and underlying. In
Proc. of the IFAC Workshop SAFEPROCESS 2000. Budapest,
Hungary.

[ 7 ]  Cordier M-O., Dague P., Lévy F., Dumas M., Montmain J.,
Staroswiecki M. and Travé-Massuyès L. (2002). Conflicts versus
analytical redundancy relations – A comparative analysis of the model
based diagnosis approach from the AI and Automatic Control
perspective. IEEE Trans. on SMC Part B, Vol. 34, n.5, pp.2163-2177.

[8 ]  Dressler O., Struss P. (2003). A toolbox integrating model-based
diagnosability analysis and automated generation of diagnostics. In
Proc. of the 14

th
 Int. Workshop on Principles of Diagnosis DX’03, June

11-14, Washington, D.C., USA, pp. 99-104.
[9] Frisk E. and Düstegör D. and Krysander M. and Cocquempot V.

(2003). Improving fault isolability properties by structural analysis of
faulty behavior models: application to the DAMADICS benchmark
problem. In Proc. of IFAC Safeprocess'03. Washington, USA.

[10]  Gissinger, G.L., Loung, M. and Reynaund, H.-F. (2000). Failure
Detection and Isolation - Optimal design of instrumentation system. In
Proc.  IFAC Workshop SAFEPROCESS 2000. Budapest, Hungary.

[11] Krysander M., Nyberg M. (2002). Structural analysis utilizing MSS sets
with application to a paper plant. In Proc. of the 13

th
 Int. Workshop on

Principles of Diagnosis DX’02, May 2-4, Semmering, Austria, pp. 51-
57.

[12] Luong M., Maquin D., Ragot J. (1997). Sensor network design for
failure detection and isolation. 3rd IFAC Symposium SICICA'97,
Annecy, France.

[13] Nybert, M. (2002). Criterions for detectability and strong detectability
of faults in linear systems”, Int. J. Control, 2002, VOL. 75, 490-501.

[14] Travé-Massuyès, L., Escobet, T. and Milne, R. (2001). Model Based
Diagnosability and Sensor Placement – Application to a Frame 6 Gas
Turbine Subsystem. In Proc. of IJCAI’01, Seattle (US), August 2001.

[ 1 5 ]  Travé-Massuyès, L., Escobet, T. and Spanache S. (2003).
Diagnosability analysis based on component supported analytical
redundancy relations. In Proc. of SAFEPROCESS’03, Washington,
D.C. (US), June 2003.

[16] Travé-Massuyès, L. and P. Dague (2003). Raisonnement Causal en
Physique Qualitative, Chap. 4 in “Modèles et Raisonnements
Qualitatifs”, Hermès, Traité IC2 Information, Commande,
Communications, N°ISBN 2-7462-0744-3, 361p.   

[17] Spanache, S., Escobet, T., de las Heras, S., (2002). Structural Analysis
of the Damadics Benchmark.  4th DAMADICS Workshop in Bochum,
Germany.

[18]  Spanache, S., Escobet, T., Travé-Massuyès, L., (2004). Sensor
optimization  using genetic algorithms.  Proc. Of the 15

th
 Int. Workshop

on Diagnosis Principles DX’04, Carcassonne, France.
[19] Syfert, M., Patton, R.J., Bartyœ, M., Quevedo, J (2003). “Development

and application of methods for actuator diagnosis in industrial control

systems (DAMADICS): A benchmark study”, In Proc. of IFAC
Workshop SAFEPROCESS 2003. Washington, D.C., USA, pp. 939-950.

[20] Struss P., Rehfus B., Brignolo R., Cascio F., Console L., Dague P.,
Dubois P., Dressler O., Millet D. (2002). Model-based tools for the
integration of design and diagnosis into a common process – A project
report, Proc. of DX’02, Semmering, Austria.

 
Louise Travé-Massuyès received a Ph.D. degree in control in 1984 and an
Engineering Degree specialized in control, electronics and computer science
in 1982, both from the Institut National des Sciences Appliquées (INSA) in
Toulouse, France; Award from the Union des Groupements d'Ingenieurs de
la Region Midi-Pyrénées. She received an « Habilitation à Diriger des
Recherches » from Paul Sabatier University in 1998.
She is currently Research Director of Centre National de Recherche
Scientifique (CNRS), working at LAAS, Toulouse, France, in which she is the
scientific leader of the “Qualitative Diagnosis, Supervision and Control”
Group for several years. Her main research interests are in Qualitative and
Model-Based Reasoning and applications to dynamic systems Supervision
and Diagnosis. She has been particularly active in bridging the AI and
Control Engineering Model-Based Diagnosis communities, as leader of the
BRIDGE Task Group of the MONET European Network. She has been
responsible for several industrial and european projects and published more
than 100 papers in scientific journals and international conference
proceedings.
Dr. Travé-Massuyès current responsibilities include; member of the IFAC
Safeprocess Technical Committee; co-leader of the Join Industry-Academic
Laboratory AutoDiag, co-leader of the French CNRS Imalaia Group;
member of the French Universities Council for the area "Computing, Control,
and Signal Processing”. She is a Senior Member of the IEEE Computer
Society. Her e-mail address is    louise@laas.fr   .

Teresa Escobet received a Ph.D. in Industrial Engineering in 1997 and the
Industrial Engineering Degree in 1989, both from the Universitat Politècnica
de Catalunya in Barcelona, Spain.
She is currently Assistant Professor at Universitat Politècnica de Catalunya,
lecturer in Automatic Control at Escola Universitaria Politècnica d e
Manresa, Spain. She is research member of the Advanced Control Systems
research group of the Automatic Control Department in Universitat
Politècnica de Catalunya. Her main research interests are in Dynamic
System Modeling and Identification applied to Fault Detection, Isolation and
Fault Tolerant Control. She has been involved in several European projects
and networks and has published several papers in international conference
proceedings and scientific journals.
Dr. Escobet current responsibilities include Assistant Director of the
Automatic Control Department of Universitat Politècnica de Catalunya. Her
e-mail address is    teresa.escobet@upc.es   .



16

Xavier Olive received a Ph.D. degree in control in 2003 from Paul Sabatier
University in Toulouse, France, a D.E.A. in Control from the University of
Montpellier and an Engineering Degree in Control from Ecole des Mines
d'Alès, Alès, France, both in 2000.
He is currently working as an engineer at Alcatel Space Industries. His main
research interests are in Model based Diagnosis, data handling systems and
particularly Fault Detection, Isolation and Reconfiguration, planning and
scheduling, applied to satellites' platform.


