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Abstract This paper addresses the problem of assessing the diagnosability of hybrid sys-

tems modeled by a hybrid automaton coupling methods from the continuous and the discrete

event model-based diagnosis fields. The discrete states of the hybrid automaton represent the

modes of operation of the system for which the continuous dynamics are specified. The diag-

nosability of the continuously-valued part of the model is first analyzed and the new concept

of mode signature is shown to characterize mode diagnosability from continuous measure-

ments. Continuous dynamics are then abstracted by defining a set of signature-events asso-

ciated to mode signature changes, preserving this way mode diagnosability. The behavior

of the abstract hybrid system is then modeled by a prefix-closed language over the original

event alphabet enriched by these additional events. Based on this language, diagnosability

analysis of the hybrid system is cast into a discrete-event framework and hybrid diagnosabil-

ity conditions are provided. A case study based on the Attitude and Orbit Control System of

a spacecraft illustrates the method 1.

Keywords Diagnosability · Hybrid systems · Mode signature · Event-based abstraction

1 Introduction

Diagnosability is the property of a system and its instrumentation guaranteeing that all an-

ticipated faulty situations can be detected and identified without ambiguity on a bounded

time window from the available measurements, which provide observations of the system
2. In other terms, a system is diagnosable if every faulty situation leads to characteristic ob-

servable manifestations. Diagnosability assessment is key to evaluate the performances that

one can expect from a diagnoser at run time and to define the appropriate set of sensors to be

included in the design of a system (Frisk et al (2009); Sarrate et al (2007); Travé-Massuyès
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CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, LAAS ; F-31400 Toulouse, France

E-mail: bayoudh@gmail.com, louise@laas.fr

1 This work was supported by Thales Alenia Space France.
2 In this paper, we indifferently use observation or measurement, and observed or measured variable,

which are terms used in the DES and the continous systems control fields, respectively.



2

et al (2006)). It may also be useful in the context of active diagnosis to guide the decision

about the relevant control actions to be applied to remove diagnosis ambiguity (Bayoudh

et al (2009a); Chanthery and Pencolé (2009); Sampath et al (1998)).

Diagnosability analysis and diagnosis are closely coupled. A diagnoser and associated

diagnosability analysis indeed share the knowledge representation formalism, which de-

termines the level of abstraction at which phenomena are modeled (Travé-Massuyès et al

(2006)). But whereas diagnosis deals with one given observation (which may be a trajectory

in time), diagnosability must envision all the possible observations and related root causes

and is a problem of increased complexity.

In the field of discrete-event systems (DES), the first diagnosability definition was pro-

posed by Sampath et al (1995) together with the necessary and sufficient conditions for

diagnosability based on the diagnoser, which is a finite state machine built from the system

model. Sampath et al (1995) provided the basis of later diagnosability analysis approaches

that aimed to reduce the algorithmic complexity (Jiang et al (2001a), Yoo and Lafortune

(2002b), Pencolé (2004) and Contant et al (2006)). Variants of the diagnosability defini-

tions were also proposed for stochastic DES (Thorsley and Teneketzis (2005); Liu and Qiu

(2008)) and for fuzzy DES (Kilic (2008)). More recently, diagnosability was studied in the

framework of decentralized and distributed architectures (Pencolé and Subias (2009); Ribot

and Pencolé (2008); Yan et al (2010); Melliti and Dague (2010)).

In the field of continuous systems, diagnosability is formulated in terms of fault de-

tectability and isolability as in (Chen and Patton (1994)) and (Basseville et al (2001)), which

provides a survey of definitions from different points of view. In Pérez et al (2007), diagnos-

ability analysis is performed using quasi-static models. Nyberg (2002) and Travé-Massuyès

et al (2006) anchor the analysis in a structural framework.

Bridging over these works, Travé-Massuyès et al (2006) proved that the existing defini-

tions of diagnosability, in particular for continuous systems and for DES, can be stated as a

property of the system fault signatures, and a unified definition of diagnosability, indepen-

dent of the model, was established.

For hybrid systems, only few works are concerned with diagnosabilty analysis although

diagnosis has received a great deal of attention in the last ten years (de Freitas (2002);

Narasimhan and Biswas (2002); Hofbaur and Williams (2004b); Verma et al (2004); Benaz-

era and Travé-Massuyès (2009)). Among the existing contributions concerned with hybrid

diagnosability, Biswas et al (2006) slightly modify the classical necessary and sufficient con-

dition for diagnosability of a DES as obtained by Sampath et al (1995), and expresses it in

terms of reachability. Fourlas et al (2002) generalize the necessary and sufficient condition

for diagnosability for a DES, requiring more restrictive hypotheses. Despite the claim that

they deal with hybrid systems, these two works do not really account for the hybrid nature of

the system as they use only a very high level discrete abstraction and ignore the continuous

dynamics. On the other hand, in (Cocquempot et al (2004)), diagnosability is expressed in

terms of mode discernability and is only based on the continuous dynamics.

In this paper, a hybrid system is modeled by a hybrid automaton whose discrete states

represent its modes of operation for which the continuous dynamics are specified. The dis-

crete event part (automaton) constrains the possible transitions among modes and is referred

to as the underlying DES. The restriction of the hybrid system to the continuously-valued

part of the model is defined as the multimode system. Considering the multimode system,

diagnosability is first analyzed as the problem of mode diagnosability based on the continu-

ous dynamics like in (Cocquempot et al (2004)), i.e. limiting the observations to continuous

measurements. This is done by extending the analytical redundancy approach and introduc-

ing the concept of mode signature, which refines the classical concept of fault signature.
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Mode diagnosability depends on mode signatures. The key idea of the paper is to abstract

the continuous dynamics by defining a set of ”diagnosis-aware” events, called signature-

events, associated to mode signature changes and to use them to enrich appropriately the

underlying DES. The behavior of the abstract system is then modeled by a prefix-closed

language over the alphabet enriched by these additional events. The finite state machine

generating this language is called the behavior automaton. Based on the abstract language,

the diagnosability analysis of the hybrid system is cast into a discrete-event framework and

standard methods of this field can be used. Based on this framework, a definition of hybrid

diagnosability is provided and we obtain diagnosability conditions.

Our approach can be compared to the approach proposed by Daigle et al (2010a,b)

which also uses fault signatures to capture the continuous dynamics. However, in (Daigle

et al (2010a,b)), fault signatures are based on fault transients, i.e. they directly express the

expected dynamic behavior of measured variables after the fault, abstracted in qualitative

terms. Our approach differs in that it uses fault/mode signatures that are specifically con-

structed for diagnosis, based on standard analytical redundancy residual methods of the FDI

control field and its originality relies in that it proposes a way to integrate it with equally

standard methods of the DES diagnosis field. In this aspect, it just falls into the so-called

Bridge framework surveyed by Biswas et al (2004).

The paper builds on the work by Bayoudh et al (2008a) and provides a proper formal-

ization of several concepts that were just introduced in this latter paper, in particular the

behavior automaton and the transition function that abstracts the continuous dynamics and

leads to the automatic construction of the behavior automaton. All the concepts are illus-

trated through a running academic example and a case study of a real aerospace system is

presented. This example nicely illustrates the fact that diagnosability of the underlying DES

or of the multimode system separately provide sufficient conditions only, and shows how

the diagnosability of the hybrid system can indeed be achieved gathering continuous and

discrete dynamics observations.

The paper is organized as follows. Section 2 provides the hybrid modeling framework

that supports our approach. In section 3, diagnosability is defined and characterized restrict-

ing the observations to continuous measurements. The abstraction of the continuous dynam-

ics in terms of signature-events is presented in section 4. The diagnoser construction is then

provided in section 5. The hybrid system diagnosability definition and conditions are given

is section 6 and discussed in section 7. The case study based on the Attitude and Orbit Con-

trol System of a spacecraft is presented is section 8. Finally, section 9 concludes the paper

and discusses future work.

2 Hybrid System Modeling

This paper considers hybrid systems, represented by a hybrid automaton, whose continuous

dynamics switch as the system transitions from one operating mode to another. An operating

mode corresponds to a discrete state of the hybrid automaton and mode changes are modeled

by discrete transitions labeled by appropriate discrete events that may be observable or not.

Operating modes model both nominal and anticipated faulty behaviors. An unknown mode

can be added to model all the non anticipated faulty situations like in (Hofbaur and Williams

(2004a)).

Formally, a hybrid automaton (Henzinger (1996), Lunze and Lamnabhi (2009)) is defined

as a tuple :

S = (ζ,Q,Σ, T, C, (q0, ζ0)) (1)
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where:

– ζ is the set of continuous variables including state variables, input/output variables, and

possibly noise, which are functions of time t. Input/output variables form the set of

observable, i.e. measured, variables denoted by ζOBS
3.

– Q is the set of discrete system states. Each state qi ∈ Q, i = 1, . . . ,m, represents a mode

of operation of the system.

– Σ is the set of events that correspond to discrete control inputs, autonomous mode

changes and fault occurrences. Σ = Σuo ∪ Σo, where Σo ⊆ Σ is the set of observable

events and Σuo = Σ \ Σo is the set of unobservable events. Events corresponding to

autonomous mode changes are issued upon guards that depend on continuous variables.

– T ⊆ Q × Σ → Q is the partial transition function. The transition from mode qi to

mode qj with associated event σij is noted t(qi, σij , qj) and we have T (qi, σij) = qj
4. A transition t(qi, σij , qj) may be guarded by a condition given as a set of equations

G(t(qi, σij , qj)) = gij(x, θg) = 0, θg being a constant parameter vector. Then σij results

from the state x(t) hitting the guard gij at some time instant t∗ and is not observable. A

reset map Rij , possibly equal to the identity, is specified. T denotes the set of transitions.

– C =
⋃

i Ci is the set of system constraints linking continuous variables. Ci denotes the

set of constraints associated to the mode qi, which are given in the state-space by the

following continuous time state-evolution and output equations:
{

ẋ(t) = fi(x(t), u(t), ǫ(t))

y(t) = gi(x(t), u(t), ǫ(t))
(2)

where u ∈ R
nu , x ∈ R

nx , y ∈ R
ny are the input, output, state vectors, respectively, and

ǫ ∈ R
nǫ denotes some noise vector. The variables gathered in these vectors belong to ζ.

– (ζ0, q0) ∈ ζ ×Q is the initial condition of the hybrid system.

Transitions from one mode to another result in changing the continuous dynamics driv-

ing the behavior of the system. The continuous state may or may not undergo a jump at

transition time, depending on the reset map of the transition, but this information is not used

by the proposed diagnosability approach, which is based on analytical redundancy relations

(cf. section 3).

The set of faults is noted F . The occurrence of a fault Fi ∈ F is modeled by a discrete

event fi ∈ ΣF , where ΣF is the set of fault events associated to the faults of F . Without loss

of generality it is assumed that ΣF ⊆ Σuo, since an observable fault event obviously makes

the corresponding fault diagnosable. Occurence of faults lead to faulty modes, i.e. modes in

which one or more faults are present.

In this paper, we do assume that a model of the form (2) is available for some faulty

modes but not for all, typically not for those corresponding to continuous range faults for

which the magnitude is unknown. We say that these modes have no behavioral model. In

these cases, however, the impact of the fault can be represented and is generally known

with respect to modeled behavior. It is represented by introducing a fault vector ξ(t) of

appropriate dimension and unknown value in (2) as follows:

{

ẋ(t) = fi(x(t), u(t), ǫ(t), ξ(t))

y(t) = gi(x(t), u(t), ǫ(t), ξ(t))
(3)

3 We assume that the set of system observable continuous variables is the same in all system modes. This

assumption is generally verified when the set of system’s sensors is permanent.
4 Without loss of generality, we assume that there is only one transition from a given mode qi to a given

mode qj . If more than one event would drive the system from qi to qj , we use the or logical operator to define

a combined event associated to a unique transition.
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For analyzing the hybrid system from the discrete-event point of view on one hand, and

from the continuous points of view on the other hand, let us define :

– M = (Q,Σ, T, q0) as the underlying DES, which captures the system’s inter-mode

behavior through the discrete dynamics and the events Σo;

– Ξ = (ζ,Q,C, ζ0) as the multimode system, which captures the system’s intra-mode

behavior through the continuous dynamics and the continuous variables.

Example 1 The following example illustrates the hybrid modeling formalism and is used

as a running example throughout the paper. The underlying DES is provided in figure 1.

N models the nominal mode of the system, qF1 (qF2) and q′F1 (q′F2) model two faulty

Fig. 1 The underlying discrete-event system

modes in which the fault F1 (F2) is present. o1 and o2 are observable events.

The continuous dynamics of each mode are given by the state-space model (4).
{

ẋ(t) = Aix(t) + Biu(t) + Exiǫ(t)

y(t) = Cix(t) +Diu(t) + Eyiǫ(t)
(4)

To keep the example simple, we assume linear continuous dynamics and a noise-free envi-

ronment, i.e. ǫ(t) = 0. The dynamic, input, output and direct-transmission matrices for the

different modes N, qF1, qF2, q′F1 and q′F2 are indexed by 1, 2, 3, 4 and 5, respectively,

and are given below:

A1 =

[
−1 1
0 −1

]

, A2 =

[
−2 1
0 −2

]

, A3 =

[
− 8

3
4
3

− 1
3
− 4

3

]

, A4 =

[
−3 1
0 −3

]

, A5 =

[
−4 1
0 −4

]

B1 =

[
1
1

]

, B2 =

[
1
0

]

, B3 =

[
2
1

]

, B4 =

[
0
1

]

, B5 =

[
2
2

]

C1 =
[
1 1

]
, C2 =

[
0 1

]
, C3 =

[
− 1

3
2
3

]
, C4 =

[
1 0

]
, C5 =

[
2 2

]

D1 = D2 = D3 = D4 = D5 = 1

3 Diagnosability of the multimode system

In this section, diagnosability is analyzed based on the continuous measurements, with the

new concept of mode signature, which refines the classical concept of fault signature. This
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analysis is later used to establish the conditions for hybrid system diagnosability.

For this analysis, we consider the multimode system Ξ = (ζ,Q,C, ζ0) and the constraints

Ci ∈ C of each mode qi ∈ Q with model of the form (2), and for which ζ gathers the

time-dependent continuous state, input, output and noise variables constituting the vectors

x, u, y, and ǫ, respectively. The only available observations of the system are through the

continuous measured variables ζOBS .

The principle of model-based diagnosis is to check the consistency between the system

model and observations to derive the information relevant to fault detection and diagnosis.

To do so, it is standard in the continuous systems community to calculate consistency in-

dicators. For the multimode system, a set of consistency indicators is calculated for each

mode qi. Starting with Ci, we first compute a set of dynamic constraints in which the state

variables have been eliminated. These constraints link only input and output variables u and

y, their derivatives and the noise. This set is denoted Cobsi . Through an appropriate statis-

tical test accounting for the noise model, each constraint Ck
obsi

∈ Cobsi is hence testable

against measured variables, and called a testable constraint in (Ploix et al (2008)) or more

commonly an Analytical Redundancy Relation (ARR) in (Frank (1990); Chow and Willsky

(1984)). Each ARR Ck
obsi

gives rise to a consistency indicator, so-called residual denoted rki .

Definition 1 A dynamic constraint of the form Ck
obsi

(ū(t), ȳ(t), ǭ(t)) = 0, where ν̄(t)

stands for the vector ν(t) and its derivatives up to some unspecified order, is an ARR for

(2), if for all (u(t), y(t)) consistent with (2), the dynamic constraint is statistically satisfied.

The residual rki is time-dependent and it is given a Boolean value by the following

application:

rki (t) =

{

0 if Ck
obsi

is satisfied by (u(s), y(s)), s ≤ t

1 otherwise

For linear systems, the parity space approach (Chow and Willsky (1984); Gertler (1998);

Cocquempot et al (2004)) allows one to eliminate state variables from a model of the form

(4) and to obtain ARRs by projection on a particular space called the parity space. In prac-

tice, the numerical computation of residuals is achieved in a discretized time framework

t = k.∆t, where k ∈ N and ∆t is the sampling period. One may use sophisticated algo-

rithms that exist to estimate the time derivatives of measured signals (Brenan et al (1989))

or derive a discrete-time system from the original system (4). Proper evaluation of the resid-

uals of a mode qi requires to gather the measurements over a time window of length at least

equal to pi.∆t, where pi is known as the parity order. For more details, the reader is referred

to the appendix which provides the steps of residual generation for a mode qi from a discrete

time linear model obtained from (4).

Extensions of the parity space approach to non linear systems have been proposed (Kin-

naert (2003); Staroswiecki and Comtet-Varga (2001)). Structural approaches can be useful

to derive the structure of residuals (Staroswiecki (2002); Armengol et al (2009); Travé-

Massuyès et al (2006); Krysander et al (2008)), and lead to sequential residual generators

(Svard and Nyberg (2010)).

The faulty modes that have no behavioral model have not their own set of residuals

but the knowledge of (3) allows us to determine whether the fault vector ξ(t) impacts the

residual values of the modeled modes and which Boolean value should be expected. In the

work by Vento et al (2010, 2012), only this type of faulty modes is considered.
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The theoretical signature of a fault is classically defined for a continuous system as the

expected Boolean values of the system residuals generated from one single system nominal

behavior model (Gertler (1998)). In this section, the concept of fault signature is revised for

multimode systems.

In (Cocquempot et al (2004)), hybrid diagnosability analysis is achieved by considering

the residual set of the different modes pairwise. The idea proposed in this paper is different

and consists in defining a mode signature that takes into account the residuals of all the

modes that have a behavioral model of the system at once. The theoretical mode signature of

a mode captures the expected Boolean values of the residuals of the whole multimode system

when the system is in this mode. It characterizes the expected behavior of this particular

mode w.r.t all other modes. This concept, already introduced in Bayoudh et al (2008a), is

defined from the concepts of mirror signature and reflexive signature.

The qj-mirror signature of mode qi is the vector of Boolean residuals of mode qj eval-

uated when the system is in mode qi. We use the term mirror because it represents the

signature of ”qi seen in mode qj”.

Definition 2 Mirror Signature

Given the vector Rqj = [r1j , r
2
j , ..., r

nj

j ]T of Boolean residuals associated to mode qj , where

nj is the number of residuals, the qj-mirror signature of mode qi is given by the vector

Si/j = Rqj (ζOBSqi
), where ζOBSqi

denotes the incoming measured variable values of

mode qi i.e. output values that are consistent with the model of mode qi.

The reflexive signature is the particular case of mirror signature for which i = j.

Definition 3 Reflexive Signature

The reflexive signature of mode qi, Si/i = Rqi(ζOBSqi
) is the vector of Boolean residuals of

mode qi evaluated with incoming measured variable values of the same mode qi. Obviously,

from definition 1, Si/i = Rqi(ζOBSqi
) = [0, 0, ..., 0]Tni

.

Definition 4 Mode Signature

The signature of a mode qi is the vector obtained by the concatenation of all the mirror sig-

natures of qi, Sig(qi) = [ST
i/1, S

T
i/2, ..., S

T
i/i, ..., S

T
i/nr

]T , where nr is the number of system

modes with behavioral model 5.

It is now interesting to relate the concept of mode signature to the more standard concept

of fault signature, which is defined as the set of all possible observations under a given

fault (Travé-Massuyès et al (2006)). To do so, consider a string s = s1.s2. . . . .sn.σ of

events and let us define T (q, s) as the recursive application of T along the string s, i.e.

T (q, s) = T (. . . T (T (q, s1), s2), . . . , sn), σ).

Definition 5 Fault signature

The signature of a fault Fi is given by the set of signatures of the system modes in which

the fault is present. Assuming that the model (1) does not account for actions that repair

the faults, the signature of a fault Fi is equal to the set of signatures of the modes that are

reachable from a transition labeled with the fault event fi. Formally:

Sig(Fi) = ∪
k∈1..m
u∈Σ∗

{Sig(T (qk, fiu))}.

5 Note that in practice, shared residuals, i.e. residuals that are involved in more than one mode’s residual

vector, are only considered once in order to reduce the mode signature size.
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Example 2 Let us consider the running example of figure 1. The continuous dynamics in

each mode are linear so that the extension of the parity space approach to multimode sys-

tems is applicable (Chow and Willsky (1984); Bayoudh et al (2008b)). ARRs are obtained

by eliminating the state variables. They involve the input/output variables and their succes-

sive derivatives until order 2. The residual vector of mode qi is calculated as follows:

Rqi = Ωi[y, ẏ, ÿ]
T − Li[u, u̇, ü]

T
(5)

where Li =





Di 0 0

CiBi Di 0

CiAiBi CiBi Di



 and Ωi chosen such that Ωi ×





Ci
CiAi

CiA
2
i



 = 0.

Boolean residual vectors associated to modes N, qF1, qF2, q′F1 and q′F2 are denoted:

RN ∈ R
1, RqF1 ∈ R

2, RqF2 ∈ R
2, RqF ′1 ∈ R

1 and Rq′F2 ∈ R
1.

Although modes qF1and qF2 have two distinct state-space representations, they have the

same input/output behavior and RqF1 = RqF2, i.e. residuals of modes qF1 and qF2 are

identical. In consequence, they are taken only once in the mode signatures. Finally, the

theoretical mode signatures for each mode qi ∈ {N, qF1, qF2, q′F1, q′F2} is obtained as

Sig(qi) = [ST
i/N , ST

i/qF1 = ST
i/qF2, S

T
i/q′F1, S

T
i/q′F2]

T ∈ R
5 valuated for every mode as

follows :

Sig(N)=








0
1
1
1
1








, Sig(qF1)=








1
0
0
1
1








, Sig(qF2)=








1
0
0
1
1








, Sig(q′F1)=








1
1
1
0
1








, Sig(q′F2)=








1
1
1
1
0








Note that the fault signatures of faults F1 and F2 are given by the sets Sig(F1) =

{Sig(qF1), Sig(q′F1)} and Sig(F2) = {Sig(qF2), Sig(q′F2)}.

3.1 Diagnosability from continuous observations

By analogy with fault diagnosability for single mode continuous systems (Gertler (1998)),

mode diagnosability and fault diagnosability are defined in the context of multimode sys-

tems. In this context, diagnosability means that modes/faults are distinguishable from con-

tinuous observations ζOBS . Hence the results below are quite straightful:

Definition 6 Mode diagnosability from continuous observations

Two modes qi and qj are diagnosable if Sig(qi) 6= Sig(qj). A multimode system Ξ is mode

diagnosable if and only if all pairs of modes qi and qj , i 6= j, are diagnosable.

Definition 7 Fault diagnosability from continuous observations

Two faults Fi and Fj , i 6= j are diagnosable if Sig(Fi)∩Sig(Fj) = ∅ 6. A multimode system

Ξ is fault diagnosable if and only if all pairs of faults Fi and Fj , i 6= j, are diagnosable.

It is important to remark that, from the definitions of mode and fault signatures, mode

diagnosability is a stronger concept than fault diagnosability.

Proposition 1 If a multimode system Ξ is mode diagnosable, then it is fault diagnosable

but the inverse is not true.

6 This is the well-known definition of fault diagnosability (Travé-Massuyès et al (2006)).
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Example 3 Given the running example of figure 1, and considering continuous observations

only, modes qF1 and qF2 are not diagnosable because they have the same mode signature:

Sig(qF1) = Sig(qF2), therefore the multimode system is not diagnosable (c.f. definition

6). Furthermore, the faults F1 and F2 are not diagnosable because Sig(F1) ∩ Sig(F2) =

{Sig(qF1), Sig(q′F1)}∩ {Sig(qF2) , Sig(q′F2)} 6= ∅ (c.f. definition 7).

We will see later that the hybrid system may be overall diagnosable eventhough it is not

diagnosable from the continuous observations.

4 Diagnosis-driven event abstraction of the continuous dynamics

For analysis purposes, it is often useful to abstract a system in a way that preserves the prop-

erties of interest (Alur et al (2000)). A key idea of this paper is to abstract the evolution of

a set of continuous quantities relevant for diagnosis, namely mode signatures, in terms of

events so that diagnosis and diagnosability analysis of the hybrid system can be cast into

the discrete event framework. To do so, our hybrid framework assumes that the discrete dy-

namics are an order of magnitude slower than the dynamics of residual generators so that

mode signatures can be properly determined once the hybrid system enters a new mode.This

requirement is stated in the following assumption, which guarantees that the duration that

the hybrid automaton remains in a single mode before switching to the next mode allows for

proper evaluation of the residuals.

Assumption – The minimum dwell time τ of the hybrid automaton S given by (1) is

greater or equal to the lengh of the time window required to calculate the highest order

derivative signals involved in the determination of the residuals, i.e. τ ≥ p∗i .∆t, where p∗i is

the maximal parity order of the modes of the hybrid system.

A set of discrete events ΣSig is defined through an abstraction function fSig . fSig as-

sociates a discrete event, called a signature-event, to the mode signature change occurring

when the hybrid system transitions from one mode to another as follows:

fSig : Q× T (Q,Σ) −→ ΣSig

(qi, qj) 7−→ δij
(6)

The event δij is observable and noted Roij if the mode signature of the source mode

qi is different from the mode signature of the destination mode qj (Sig(qi) 6= Sig(qj), i.e.

when qi and qj are diagnosticable from continuous observations. δij is unobservable and

noted Ruoij otherwise 7. Hence ΣSig is partitionned in a set of observable signature-events

ΣSig
o and a set of unobservable signature-events ΣSig

uo .

In generating signature-events, two practical problems must be handled. The first refers

to deciding whether two mode signatures are different or not. This is a tedious task that must

account for the sensitivity of the residuals and for the signal-to-noise ratio. The second is

that the presence of the noise term ǫ(t) in (2) may result in chattering and that the temporal

window over which measurements are recorded to evaluate the residuals overlaps over two

modes just after a mode change. This is controlled by a residual filter that holds-on to the

current Boolean value as long as the residual is not computed to a different value during a

specified number of time steps (Bayoudh et al (2008b)).

7 Notice that, by construction, mode signatures cannot change while being in the same mode.
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4.1 Abstract language and abstract trajectories

The abstraction of the continuous dynamics evolution in terms of signature-events allows

one to define an abstract language based on Σ̄ = Σ ∪ ΣSig , the extended alphabet that

includes signature-events. Σ̄ can be partitioned into Σ̄ = Σ̄o ∪ Σ̄uo with Σ̄o = Σo ∪ΣSig
o

and Σ̄uo = Σuo ∪ΣSig
uo .

The behavior of the hybrid system is then abstracted by the prefix-closed language L(S) ⊆

Σ̄∗ over the event alphabet Σ̄, where Σ̄∗ is the Kleene-Closure of Σ̄ (Ramadge and Wonham

(1989)) that contains all finite strings of elements of the set Σ̄ including the empty string.

A trajectory of the abstract hybrid system corresponds to a string of events of the extended

alphabet Σ̄.

4.2 The behavior automaton

The finite state generator (Ramadge and Wonham (1989)) of the language L(S) is called the

behavior automaton and denoted BA(S) = (Q̄, Σ̄, T̄ , q̄0).

The behavior automaton is obtained by defining a set of transient modes Qt that model

the continuous dynamics reaction to the occurrence of a mode change, and hence lead to

the generation of a discrete event of ΣSig . We first define the bijective function ft that

associates a transient mode to each transition t(qi, σij , qj) ∈ T of the underlying DES M =

(Q,Σ, T, q0). The set of transient modes is obtained as follows :

ft : T −→ Qt

t(qi, σij , qj) 7−→ qij

The set of modes of the behavior automaton is then given by Q̄ = Q ∪ Qt. The partial

transition function T̄ ⊆ (Q̄ × Σ̄ −→ Q̄) decomposes in two partial transition functions as

follows:

T̄ = T̄1 ∪ T̄2, with T̄1 ⊆ (Q×Σ −→ Qt) and T̄2 ⊆ (Qt ×ΣSig −→ Q)

The behavior automaton BA(S) = (Q̄, Σ̄, T̄ , q̄0) is obtained by replacing every transi-

tion t(qi, σij , qj) of M = (Q,Σ, T, q0) by two transitions in sequence t1(qi, σij , qij) ∈ T̄1
and t2(qij , Rij , qj) ∈ T̄2, the transient mode qij ∈ Qt hence taking place in between qi
and qj . This means that, on the occurence of an event σij ∈ Σ, that triggers a transition

from mode qi to mode qj , the system goes through a transient mode qij , and is necessar-

ily followed by the occurrence of a signature-event δij ∈ ΣSig . The transient mode is a

way to account for the hybrid automaton S dwell time τ requirement expressed in section

4. This requirement guarantees that residuals, and hence mode signatures, can be properly

computed and that signature-events can be properly issued.

Example 4 Let us consider the example of figure 1, then the behavior automaton of the

hybrid system is provided in figure 2. Six transient modes have been introduced : NqF1,

NqF2, qq′F1, q′qF1, qq′F2, and q′qF2. Five signature-events have been obtained from the

abstraction function fSig (6): Ro12, Ro23, Ro32, Ro24, and Ro42.

5 The diagnoser

Having constructed the behavior automaton BA(S) = (Q̄, Σ̄, T̄ , q̄0), which represents an

appropriate discrete-event abstraction of the hybrid system, diagnosis and diagnosability
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Fig. 2 The behavior automaton of the running example

analysis can be achieved with the diagnoser approach of Sampath et al (1995). The behavior

automaton permits an extension of this approach to hybrid systems (Bayoudh et al (2008b)).

The diagnoser is a finite state machine built from BA(S) as explained below.

First, we define a set of fault labels ∆f = {F1, F2, ..., Fl}, where l is the number of

different fault types in the system 8. The set of possible fault labels is defined as ∆ = 2∆f .

Notice that the empty-set label ∅ ∈ ∆ should be interpreted as representing the normal

behavior of the system. A label of the form {Fi, Fj} means that at least one fault of type i

and at least one fault of type j have occurred. Given s ∈ Σ̄∗ a string of events, ”fi ∈ s”

means that at least one fault event corresponding to fault Fi belongs to s. Let sf denote the

final event of a string s and L(S, q) the set of all strings that originate from state q ∈ Q̄.

We define:

Lo(S, q) = {s ∈ L(S, q) | s = uσ, u ∈ Σ̄∗

uo, σ ∈ Σ̄o}

and

Lσ(S, q) = {s ∈ Lo(S, q) | sf = σ}.

Lo(S, q) denotes the set of all strings that originate from the state q and end at the first

observable event. Lσ(S, q) denotes those strings in Lo(S, q) that end at the particular ob-

servable event σ.

Q̄o = {q0}∪{q ∈ Q̄, ∃(q′, σ) ∈ Q̄× Σ̄o | T̄ (q′, σ) = q} denotes the set of observable states.

We define the label propagation function LP : Q̄o×∆×Σ̄∗ → ∆. Given q ∈ Q̄o, l ∈ ∆ and

s ∈ Lo(S, q), LP propagates the label l over s, starting from q and following the dynamics

of S, i.e. according to L(S, q):

LP (q, l, s) =

{

∅ if l = ∅ and ∀i, fi /∈ s

{Fi|Fi ∈ l} ∪ {Fi|fi ∈ s} otherwise

The diagnoser of the abstract system is a deterministic finite state machine Diag(BA(S)) =

(QD, ΣD, TD, qD0
) built from the behavior automaton where:

– qD0
= {(q0, ∅)} is the initial state of the diagnoser (we assume that the system S starts

in a normal mode),

– ΣD = Σ̄o is the set of all observable events of the system,

– QD ⊆ 2Q̄o×∆ is the set of states of the diagnoser (states reachable from qD0
under TD).

The states of the diagnoser provide the set of diagnosis candidates as a set of couples

whose first element refers to the state of the behavior automaton BA(S) and the second

8 The same symbol is used for faults and their corresponding labels.
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is a label providing the set of faults on the path leading to this state. In other words,

an element qD ∈ QD is a set of the form qD = {(q1, l1), (q2, l2), ..., (qn, ln)}, where

qi ∈ Q̄o and li ∈ ∆.

– TD ⊆ QD × Σ̄o → QD is the partial transition function of the diagnoser defined as

follows:

TD(qD, σ) =
⋃

(q,l)∈qD
s∈Lσ(S,q)

{(T̄ (q, s), LP (q, l, s))}

where T̄ (q, s) is the recursive application of T̄ along the string s as defined in section 3.

It is well-known that the construction of the diagnoser is of exponential complexity

in the number of states and number of fault labels of the initial automaton. However, in

contrast to standard DES models, our hybrid formalism limits the number of discrete states

to the operating modes of the system. The combinatorial problem introduced by discretizing

variables is hence avoided and the number of discrete states is hence drastically reduced,

which makes the problem much more tractable.

Example 5 Let us consider the behavior automaton of figure 2. The diagnoser of the ab-

stract system is built as explained above and provided in figure 3. The events associated to

transitions of the diagnoser are all the observable events of the original system. The states of

the diagnoser provide the diagnosis information in terms of possible states of the behavior

automaton and its associated faults.

Starting with the normal state ”N”, assume that we observe the string of observable

events Ro12.o1.Ro23, then the diagnosis is given by the pair (q′F1, {F1}), which means

that the system is in state q′F1 and that the fault F1 has occured. If Ro24 is observed in-

stead of Ro23, then the diagnosis is different and equal to (q′F2, {F2}). Without signature-

events, the observed string would be reduced to the event o1 and the diagnosis could not

disambiguate the two diagnoser states (q′F1, {F1}) and (q′F2, {F2}), as it can be seen on

the diagnoser of the underlying DES M = (Q,Σ, T, q0) given in figure 4. This illustrates

clearly how signature-events coming from the continuous dynamics can refine the diagnosis.

6 Diagnosability of the hybrid system

The diagnosability of a system depends on the observable manifestations of the different

faulty situations. In other words, the occurrence of any fault event must be detectable on

a bounded time window. In the case of hybrid systems, observable manifestations consist

in the continuous evolutions reported by the sensors and in the observable discrete events.

In our case, continuous dynamics are abstracted in term of a set of signature-events, some

of which are observable. Diagnosability can hence be analyzed from the abstract language

L(S) defined in the previous sections.

6.1 Properties of the hybrid language

Let us consider the abstract language L(S) ⊆ Σ̄∗. As presented before, this language inter-

links in a specific way discrete events from Σ and events issued from the abstraction of the

continuous dynamics ΣSig . L(S) has the property below illustrated in figure 5.
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Fig. 3 The diagnoser Diag(BA(S)) for the running

example

Fig. 4 The diagnoser of

M = (Q,Σ, T, q0)

Fig. 5 Property of the abstract language

Property 1 ∀w ∈ L(S), w = e′.R′.w′, where e′ ∈ Σ,R′ ∈ ΣSig, w′ ∈ L(S).

This property is true by construction (cf. section 4.2). It is useful later to prove the conditions

for diagnosability of the hybrid system.

6.2 Hybrid system diagnosability definition

Definition 8 A fault F is diagnosable if the occurrence of the associated fault event f can

always be detected from the system observations with a finite delay i.e. thanks to a finite

sequence of observable discrete events and the continuous variable measurements gathered

on a bounded time window. The hybrid system is said to be diagnosable if and only if all the

anticipated faults are diagnosable.

According to Sampath et al (1995), this definition can be interpreted formally as follows.

Definition 9 The hybrid system is diagnosable if ∀f , ∃n ∈ N such that ∀sF t ∈ L(S), such

that sF ends with the occurrence of f , and t ∈ L(S) is a continuation of sF :
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||t|| ≥ n ⇒ (∀w ∈ L(S) : PΣ̄o
(w) = PΣ̄o

(sF t) ⇒ f ∈ w)

where PΣ̄o
is the projection operator on the set of observable events of Σ̄ i.e. Σ̄o = Σo ∪

ΣSig
o .

Let us notice that definition 9 characterizes mode diagnosability. Travé-Massuyès et al

(2006) indeed showed that it naturally extends to multiple faults, hence to modes. From now

on, diagnosability is understood as mode diagnosability.

6.3 Sufficient conditions for hybrid diagnosability

Two sufficient conditions for the diagnosability of the hybrid system S = (ζ,Q,Σ, T, C, (ζ0,

q0)) based on the diagnosability of the underlying DES M = (Q,Σ, T, q0) on one hand,

and on the diagnosability of the multimode system Ξ = (ζ,Q,C, ζ0) on the other hand, are

stated and proved. Given that diagnosability is improved by the addition of observations,

these results are quite obvious and easily proved.

6.3.1 The sufficient condition based on discrete event observations

Theorem 1 The hybrid system S = (ζ,Q,Σ, T, C, (ζ0, q0)) is diagnosable if its underlying

DES M = (Q,Σ, T, q0) is diagnosable.

Proof Consider a hybrid system S = (ζ,Q,Σ, T, C, (ζ0, q0)) such that the underlying DES

M = (Q,Σ, T, q0) is diagnosable. Let us consider a fault f ∈ ΣF and sF t ∈ L(S) such

that sF ∈ L(S) ends with the occurrence of f and t ∈ Σ̄∗ is a continuation of sF as shown

in figure 6.

Let us define s′F = PΣ(sF ) and t′ = PΣ(t), where PΣ is the projection on the set of

discrete events Σ. We have s′F ∈ L(M) that ends with f ∈ Σuo ⊆ Σ and t′ ∈ Σ∗ is a

continuation of s′F . Since M = (Q,Σ, T, q0) is diagnosable then there exists an integer n′

such that: ||t′|| ≥ n′ ⇒ ∀w′ ∈ L(M), (PΣo
(w′) = PΣo

(s′F t′) ⇒ f ∈ w′) (stated by the

diagnosability definition of DES (Sampath et al (1995)).

Let us consider the integer n = 2n′+1, then from Property 1 we have ||t|| ≥ n ⇒ ||t′|| ≥ n′

∀w ∈ L(S) such that PΣ̄o
(w) = PΣ̄o

(sF t), and w′ = PΣ(w), then :

PΣ̄o
(w) = PΣ̄o

(sF t) ⇒ PΣo
(w′) = PΣo

(s′F t′) ⇒ f ∈ w′ thus f ∈ w and consequently

the hybrid system S is diagnosable.

�

The above result provides a sufficient condition for hybrid diagnosability that is based on the

observation of the discrete events only, i.e. the underlying DES M = (Q,Σ, T, q0) must be

diagnosable. Let’s outline that in practice this condition is rarely satisfied because the states

of M = (Q,Σ, T, q0) do not have the same semantics as the states of a standard discrete-

event model. Whereas a standard discrete-event model would include explicitly the events

that occur after the occurrence of a fault, M = (Q,Σ, T, q0) does not generally include

this information which is rather captured by the contiuous models associated to the system

modes.
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e1 → R1 → ... → en → Rn → f
︸ ︷︷ ︸

sF

→ Rn+1 → en+1 → ...
︸ ︷︷ ︸

t

e1 → ... → en → f
︸ ︷︷ ︸

s′
F

→ en+1 → ...
︸ ︷︷ ︸

t′

Fig. 6 A fault trajectory of the abstract system, where ei ∈ Σ and Ri ∈ ΣSig , i = 1, . . . , n + 1, and its

projection into the discrete-event set Σ

6.3.2 The sufficient condition based on continuous variable observations

Theorem 2 The hybrid system S = (ζ,Q,Σ, T, C, (ζ0, q0)) is diagnosable if the underlying

multimode system Ξ = (ζ,Q,C, ζ0) is diagnosable.

Proof Consider a hybrid system S = (ζ,Q,Σ, T, C, (ζ0, q0)), such that the underlying mul-

timode system Ξ = (ζ,Q,C, ζ0) is diagnosable. Given a fault f ∈ ΣF and sF t ∈ L(S)

such that sF ∈ L(S) ends with the occurrence of f as shown in figure 7, let qc(qf ) be the

mode of the system before (after) the occurrence of the fault event f .

Since the underlying multimode system is diagnosable then ∀qi 6= qj , Sig(qi) 6= Sig(qj),

therefore ΣSig
uo = ∅ and in addition, all the observable events Roij are different. Let t ∈ Σ̄∗

be a continuation of sF such that ||t|| ≥ 1. ∀w ∈ L(S) such that PΣ̄o
(w) = PΣ̄o

(sF t),

Property 1 guarantees that PΣ̄o
(sF t) = PΣ̄o

(sF )Rocfw
′ (where w′ ∈ Σ̄∗

o ). The observa-

tion of the event Rocf means that the system has transited from the current mode qc to the

faulty mode qf , thus f ∈ w. Hence, the hybrid system S is diagnosable.

�

e1 → R1 → ... → en → Rn → f
︸ ︷︷ ︸

sF

→ Rocf → en+1 → ...
︸ ︷︷ ︸

t

Fig. 7 A fault trajectory of the abstract system

Corollary 1 If all pairs of modes (qi, qj), i 6= j, of the hybrid system are diagnosable then

the hybrid system is diagnosable.

Proof The proof follows directly from definition 6 and theorem 2.

�

Theorem 2 provides a sufficient condition based on the diagnosability of the different

modes of the hybrid system from the observation of their continuous dynamics.
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6.4 Necessary and sufficient condition

This section shows that both continuous and discrete-event observations are required to

achieve a necessary and sufficient condition for hybrid diagnosability. This condition is ob-

tained on the diagnoser of the abstract system as an extension of the diagnosability condition

for DES of (Sampath et al (1995)).

Consider Diag(BA(S)) = (QD, ΣD, TD, qD0
), the diagnoser of the abstract system

and ∆f = {F1, F2, ..., Fn}, the set of fault labels.

Definition 10 Uncertain state

Given a diagnoser state qD ∈ QD , qD is Fi-uncertain if Fi belongs to at least one label of

qD but not all. Formally, a state qD ∈ QD is Fi-uncertain if ∃(q, l), (q′, l′) ∈ qD , such that

Fi ∈ l and Fi /∈ l′.

Definition 11 Indeterminate cycle

An Fi-indeterminate cycle CFi
in Diag(BA(S)) is a cycle composed of Fi-uncertain states

for which there exist:

1. a corresponding cycle (of observable events) in BA(S) involving only states that carry

Fi in their labels in CFi

2. a corresponding cycle in BA(S) involving only states that do not carry Fi in their labels

in CFi
.

Proposition 2 The hybrid system S = (ζ,Q,Σ, T, C, (ζ0, q0)) is diagnosable, i.e. the ab-

stract language L(S) is diagnosable, if and only if there is no Fi-indeterminate cycle in the

diagnoser Diag(BA(S)) for all Fi.

Proof This result is a direct extension of the diagnosability condition of Sampath et al

(1995). Sampath et al (1995) proved that a language L is diagnosable if and only if there is

no Fi-indeterminate cycle in its diagnoser, for all Fi. This condition, applied to the abstract

language L(S), provides proposition 2 and guarantees that the hybrid system is diagnosable

because the abstraction in terms of signature-events preserves mode diagnosability.

�

Example 6 Let us come back to the running example of figure 1 and analyse the diagnoser

that was given in figure 3. This diagnoser does not contain any indeterminate cycles. Then,

according to the sufficient and necessary condition of Proposition 2, we conclude that the

hybrid system is diagnosable.

It is interesting to notice that none of the two sufficient conditions for diagnosability

given by theorem 1 and theorem 2 hold, i.e.:

– the underlying multimode system is not diagnosable, which was shown in section 3.1.

In particular faults F1 and F2 are not diagnosable from the continuous observations.

– the underlying DES is not diagnosable due to the presence of the indeterminate cycle

(o1, o2), involving the uncertain states {(qF1, {F1}), (qF2, {F2})} and {(q′F1, {F1}),

(q′F2, {F2})}, in its diagnoser (cf. figure 4). Again, faults F1 and F2 are not diagnos-

able.

Hence, the necessary and sufficient condition is required to decide about the diagnos-

ability of the hybrid system. Faults F1 and F2 are diagnosable for the hybrid system.
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7 Discussion

The diagnosability definition that we use is inspired by the discrete-event system definition,

hence it is event-based in the sense that it is stated in terms of fault events and guarantees

that a fault event is detected after a time delay represented by an integer n as expressed in

definition 9. The time delay is given as the number of observable events (from Σ̄o) required

to detect the fault occurrence. It is a consequence of the discrete-event dynamics, and cap-

tures the number of mode changes in the behavior automaton BA(S) needed before fault

detection. Because of the transitory modes of Qt, the number of mode changes in the orig-

inal hybrid system S is less than n. If the system modes are diagnosable from continuous

observations, i.e. from their signatures, 1 ≤ n ≤ 2 for all fault types Fi. Indeed, consider-

ing a transition between a normal mode qc and a faulty mode qf , the signature-event Rocf

induced by the signature change allows us to detect the fault as explained in the proof of

theorem 2.

The proposed hybrid diagnosability condition does not account for fair transitions, as re-

cently suggested by Biswas et al (2010). Fair transitions are transitions that are inevitably

fired when the system is in their source mode, due to the continuous dynamics of the hybrid

system. Obviously, these transitions may allow the system to exit an indeterminate cycle, re-

laxing the hybrid diagnosability condition. We believe that our approach could be adapted to

account for fair transitions, however it should be noticed that the knowledge required to be

able to assess fairness may be quite difficult to acquire, particularly in the case of nonlinear

continuous dynamics.

8 Case study: the AOCS (Attitude and Orbit Control System)

The Attitude and Orbit Control System (AOCS) of a spacecraft aims to stabilize the satel-

lite attitude in the presence of disturbances by pointing the axes of the spacecraft in the

directions required for its mission (cf. figure 9). The satellite attitude is determined using

measurements incoming from sensors and appropriate control torques that are exerted by

actuators (thrusters, reaction wheels, ...).

In this case study, we tackle the diagnosability of the propulsion system (c.f. figure

8), the satellite attitude being measured by means of gyroscopic sensors and the attitude

maneuver performed by firing the thruster T 9. The thruster propellant supply is achieved by

activating valve V1. A redundant valve V2 is used in case of failure of valve V1. Commands

ONV2
and OFFV2

open and close valve V2, respectively.

The nominal modes considered in this study are denoted PH , CA and FA, and repre-

sent the thruster PreHeating, the Coarse Acquisition and the Fine Acquisition modes, respec-

tively. In the CA mode, the attitude maneuver calls for the whole thruster power whereas in

mode FA only 10% is required. Transitions between modes CA and FA are controlled by

remote commands TC1 and TC2. Commands are observable by definition.

Our focus is on actuator faults concerning the equipments that are represented by a

continuous model and on faults manifesting on the discrete dynamics like a fault on the

discrete controller. Faults are represented by specific faulty modes and by means of fault

events that lead to these faulty modes.

For this case study, two faults on the thruster T and one on the valve V1 are considered

by means of fault events f1 (thruster 50% stuck), f2 ((thruster 100% stuck) and f3 (valve

9 Redundant thrusters are not considered here, for sake of simplicity.
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Fig. 8 The propulsion system

Fig. 9 Orbiting spacecraft

Fig. 10 Underlying DES and modes of the Attitude and Orbit Control System (AOCS)

V1 blocked) that lead to faulty modes F1CA, F1FA, F2CA, F2FA, and F3CA, F3FA,

respectively. Notice that each fault can occur both in modes CA and FA. F3′CA and F3′FA

are reachable from F3CA and F3FA respectively, by opening valve V2. Table 1 presents the

nominal and faulty system modes of the AOCS. The mode transitions are described by the

mode automaton provided in figure 10.

The continuous behaviors in both nominal and faulty modes are given in the state-space

representation form (7), where the tuples (Ã, B̃, C̃, D̃) are specified in the last column of
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table 1 for each mode 10.

{

ẋ(t) = Ãx(t) + B̃u(t)

y(t) = C̃x(t) + D̃
(7)

Modes Valve V 1 Valve V 2 Thruster State-space model (Ã, B̃, C̃, D̃)

PH on off ok (A,B0%, C,D)
CA on off ok (A,B100%, C,D)
FA on off ok (A,B10%, C,D)

F1CA on off 50% stuck (A,B50%, C,D)
F2CA on off 100% stuck (A,B0%, C,D)
F3CA blocked off ok (A,B0%, C,D)
F ′3CA blocked on ok (A,B100%, C,D)

F1FA off off 50% stuck (A,B10%, C,D)
F2FA off off 100% stuck (A,B0%, C,D)
F3FA blocked off ok (A,B0%, C,D)
F ′3FA blocked on ok (A,B10%, C,D)

Table 1 The considered modes of the AOCS

We have:

A =

















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 ω0(
IY −IX

IZ
− 1)

0 0 0 0 0 0

0 0 0 ω0(
IZ−IY

IX
+ 1) 0 0

















, C =





−ω0 0 0 0 0 1

0 0 0 0 1 0

0 0 ω0 1 0 0



, D =





0

−ω0

0





B100% =

















0 0 0

0 0 0

0 0 0
−IW
IZ

0 0

0 −IW
IY

0

0 0 −IW
IX

















, B50% =

















0 0 0

0 0 0

0 0 0
−IW
2IZ

0 0

0 −IW
2IY

0

0 0 −IW
2IX

















,

B10% =

















0 0 0

0 0 0

0 0 0
−IW
10IZ

0 0

0 −IW
10IY

0

0 0 −IW
10IX

















, B0% =

















0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

















10 Faults affecting satellite inertia and gyroscopic sensors could also be represented by means of suitable

dynamics and observation matrices A and C, respectively.
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8.1 Diagnosability analysis

In this section we focus on the diagnosablity analysis of the hybrid system. At the continuous

level, the ARRs are obtained from the continuous model of each mode by means of the parity

space approach and lead to the theoretical mode signatures provided in table 2.

{PH,F2CA, F2FA, F3FA, F3CA} {CA,F ′3CA} {FA,F1FA, F ′3FA} {F1CA}

Sig1 =




















0
0
0
0
0
1
1
1
1
1
1




















Sig2 =




















1
1
1
1
1
0
0
1
1
1
1




















Sig3 =




















1
1
1
1
1
1
1
0
0
0
1




















Sig4 =




















1
1
1
1
1
1
1
1
1
1
0




















Table 2 The mode signatures of the AOCS

The mode sets {PH,F2CA, F2FA, F3FA, F3CA}, {CA,F ′3CA} and {FA,F1FA,

F ′3FA} are not diagnosable from the continuous observations because they share the same

mode signature as shown by table 2.

The underlying DES is not diagnosable either: in particular, faults F1 and F3 are not di-

agnosable because of the presence of an uncertain cycle (TC1TC2)
∗ in the corresponding

diagnoser.

Consequently, the diagnosability of the hybrid system cannot be decided by means of one

of the two sufficient criteria. However, the hybrid system is diagnosable, which can be ex-

plained as follows.

In mode CA, the whole thruster power is required, so blockages with different levels are

distinguishable. Hence fault F1 is diagnosable from faults F2, and F3. However, faults F2

(thruster 100% stuck) and F3 (valve V1 blocked) are not diagnosable, but by activating the

redundant valve V2 (command ONV2
), these two faults (modes F2CA and F ′3CA) can be

discriminated. Similarly, in mode FA, F2 and F3 are not diagnosable but the same action

as above (command ONV2
) makes these two faults distinguishable. In addition, F1 is indis-

tinguishable from normal, but switching to mode CA with command TC2 brings back the

system to the CA mode in which F1 can be distinguished from normal.

The diagnoser of the abstract system which accounts for the hybrid model is given in figure

11. The transient state between two states X and Y is noted X→Y . None of the cycles of

the diagnoser are indeterminate cycles, which confirms the diagnosability of the propulsion

system explained above.

9 Conclusion

This paper contributes with a theoretical framework to analyze the diagnosability of hybrid

systems. First it is assumed that they are observed through continuous variables only and

reduce to what we call a multimode system. Second discrete event observations are also
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Fig. 11 The propulsion system hybrid diagnoser

assumed to be available. The new concepts of mirror, reflexive and mode signatures are in-

troduced. Based on these concepts, a characterization of the diagnosability for multimode

systems is proposed. Then, hybrid diagnosability is defined based on an abstract language

over the alphabet of discrete events and additional events that capture the continuous dy-

namics.

By proposing an abstraction of the continuous dynamics in terms of discrete events

that preserves mode diagnosability, a general framework for analyzing hybrid systems di-

agnosability is proposed, that builds upon existing work on DES and continuous systems

diagnosability. Two sufficient conditions for diagnosability based on continuous variable

measurements on one hand and on the event observations on the other hand are given, as

well as a necessary and sufficient condition.

From a technical point of view, our proposal may suffer from the complexity of the di-

agnoser approach, which is exponential in the number of states of the behavior automaton

and number of fault labels. However, the formalism that we use to represent hybrid systems

is not a standard DES model as it proceeds of an aggregation in terms of modes. This results

in behavior automata with a tractable number of states. An alternative to the diagnoser ap-

proach would be the twin plants approach (Jiang et al (2001b); Yoo and Lafortune (2002a))

which has polynomial time complexity. This does not solve however the problem of model-

ing multiple faults which results in an explosion of the state space to cover all combinations

of faulty modes. This is a problem common to DES approaches. From a pragmatic point

of view, it seems reasonable to adopt the single fault assumption or to model only the most

probable and critical combinations of faults. Note that the modeling can be made easier by
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synchronizing the automata of the different components to obtain the underlying DES of the

whole system as illustrated by Maiga et al (2012).

A related scalability issue is the number of ARRs, i.e. residuals, that must be generated.

Although the generation is off-line, this can be avoided by generating the ARRs on the fly

at run time, for modes that are successors of the current mode Bayoudh et al (2009b).

The diagnosability analysis framework and the on-line hybrid state tracking approach

proposed by Bayoudh et al (2008b) lead to an approach for active diagnosis of hybrid sys-

tems guided by diagnosability properties (Bayoudh et al (2009a)). Future works will be

based on these results and consider the problem of coupling the diagnosis and planning

modules involved in an architecture for autonomy. The problem of deciding whether to ini-

tiate an active diagnosis session or to keep the execution of the current plan is of particular

interest. Another problem is to decide how to interlink the actions required by active di-

agnosis and those of the on-going plan. Another direction of work is to cast the proposed

approach into a distributed framework. Some progress along this line has been reported in

Indra et al (2011).
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Biswas G, Cordier M, Lunze J, Travé-Massuyès L, (Eds) MS (2004) Special Issue on Diag-

nosis of Complex Systems : Bridging the methodologies of the FDI and DX Communities.

IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(5)

Biswas S, Sarkar D, Mukhopadhyay S, Patra A (2006) Diagnosability analysis of real time

hybrid systems. In: Proceedings of the IEEE International Conference on Industrial Tech-

nology ICIT’06, Mumbai, India, pp 104–109

Biswas S, Sarkar D, Mukhopadhyay S, Patra A (2010) Fairness of transitions in diagnos-

ability of discrete event systems. Discrete Event Dynamic Systems 20:349–376

Brenan KE, Campbell SL, Petzold LR (1989) Numerical Solution of Initial-Value Problems

in Differential-Algebric Equations. SIAM, Philadelphia
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Pencolé Y, Subias A (2009) A chronicle-based diagnosability approach for discrete timed-

event systems: Application to web-services. Journal of Universal Computer Science

15(17):3246–3272
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Appendix

This appendix develops the parity space residual generation method for a mode qi with a

discrete time 11 linear state-space model obtained from (4) of the form :

{

xi(n+ 1) = Aixi(n) +Biu(n) + Exiǫ(n)

y(n) = Cixi(n) +Diu(n) + Eyiǫ(n)
(8)

xi(n), u(n), y(n) and ǫ(n) are the state, the input, the output and the noise vectors of di-

mensions nxi , nu , ny and nǫ respectively, considered at the sampling time n. Ai, Bi, Ci

and Di are constant dynamic, input, output and direct transmission matrices of appropriate

dimensions. Exi and Eyi are constant matrices of appropriate dimensions that capture the

influence of the noise on state and output evolution, respectively.

Following the parity space approach, ARRs can be obtained by relating the inputs with

the outputs over a time-window of pi + 1 samples. Selecting pi appropriately (typically

pi ≤ nxi ) allows us to eliminate any dependency upon the system state xi. This procedure

can be summarized as follows.

Given a vector V , let us denote by V p the vector obtained by the concatenation of the

vector values at every sampling instant (n − p + k), 0 ≤ k ≤ p, for a given p. Then

V p(n) = [V T (n − p), ..., V T (n − p + k), ..., V T (n)]T . By iterating state-evolution and

observation equations (8), we obtain:

ypi(n) = Opi

i xi(n− pi) + Lpi

i (Ai, Bi, Ci, Di)u
pi + Lpi

i (Ai, Exi , Ci, Eyi)ǫ
pi(n) (9)

with: Lpi

i (Ai, N,Ci, Q) =









Q 0 ... 0

CiN Q ... ...

... ... ... 0

CiA
(pi−1)
i N ... CiN Q









and N ∈ {Bi, Exi}, Q ∈ {Di, Eyi}

Opi

i =









Ci

CiAi

...

CiA
pi

i









The state xi(n−pi) in equation (9) can be eliminated through left-hand multiplication by an

operator Ωpi

i . We obtain ARRs that can be decomposed into a computational and an evalu-

ation form denoted ρpi
ci and ρpi

ei , respectively:

ρpi
ci (n) = Ωpi

i ypi(n)−Ωpi

i Lpi

i (Ai, Bi, Ci, Di)u
pi(n) (10)

ρpi
ei (n) = Ωpi

i Lpi(Ai, Exi , Ci, Eyi)ǫ
pi(n) (11)

The Boolean-residual vector of mode qi is denoted Rqi = [r1i , r
2
i , ..., r

ni

i ]T and is obtained

by checking whether ρpi
ci (n) = ρpi

ei (n). Two cases are hence distinguished.

– noise-free hypothesis: ρpi
ei = 0, ∀n ∈ N

A threshold vector is defined as αi = [α1
i , ..., α

ni

i ]T . The threshold values take into

account the computation precision and the relative order of magnitude of the different

variables.

rji =

{

0 if ρpi
ci (n) ≤ αj

i
1 otherwise

(12)

11 Time is considered sampled to be closer to implementation.
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– white-Gaussian-Noise hypothesis

We have ǫ(n) ∼ N(0, σ2), hence ǫ(n, n− pi) ∼ N(0, diagpi+1(σ
2)), where σ2 denotes

the variance and diagpi+1(σ
2) denotes the diagonal matrix of dimension pi+1 in which

the diagonal values are equal to σ2. Consequently the probability density function of the

evaluation form has a normal distribution:

ρpi
ei (n) ∼ N(0, Ωpi

i Lpi(Ai, Exi , Ci, Eyi)diag(σ
2)(Lpi(Ai, Exi , Ci, Eyi))

T (Ωpi

i )T )

rji =

{

0 if ρpi
ci (n) ∼ ρpi

eij

1 otherwise
(13)

where ρpi
eij denotes the jth element of ρpi

ei .




