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Abstract— We investigate diagnosability of stochastic
discrete-event systems where the observation of certain events
is unreliable, that is, there are non-zero probabilities of the
misdetection and misclassification of events based on faulty
sensor readings. Such sensor unreliability is unavoidable in
applications such as nuclear energy generation. We propose the
notions of uA- and uAA-diagnosability for stochastic automata
and demonstrate their relationship with the concepts of A- and
AA-diagnosabilty defined in [1]. We extend the concept of the
stochastic diagnoser to the unreliable observation paradigm
and find conditions for uA- and uAA-diagnosability.

I. INTRODUCTION

In this paper, we consider the property of diagnosability of

stochastic discrete-event systems (DES) in situations where

sensor readings are not always reliable. Our research is mo-

tivated by applications in nuclear power generation. Public

confidence in the safety of nuclear energy generation can

be improved through the use of realtime safety assessment

and on-line detection of facility misuse. DES models have

been demonstrated to be an effective tool for modeling

the flow of entities in nuclear systems for the purposes of

fault monitoring and anomaly detection [2]; furthermore,

the ability to track flows of entities within a system has

many other applications, including network security, mission

planning, and operations safety [3].

The problem of failure diagnosis has been considered ex-

tensively in the literature for DES (see [4] and the references

therein for an overview) and many techniques for both on-

line state estimation and diagnosis and off-line verification of

the property of diagnosability ([5], [6]) have been developed.

In contrast to the “logical” automaton models and diagnos-

ability results found in the above references, recent work has

investigated diagnosability properties in stochastic DES ([1],

[7]).

Most of the established literature on fault diagnosis makes

a seemingly innocuous assumption as to the capabilities of

sensors. The DES is observed through the events, or abrupt

transitions between states, that occur along its trajectory.

Events are classified as either observable, in which case a

sensor outputs a reading when the event occurs, or unob-

servable, in which case no sensor outputs a reading. Failures

are often modeled as instances of unobservable events.

The implicit assumption in this sensor model is that all the

sensors reading observable events are perfectly reliable, that
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is, whenever an observable event occurs, the sensor charged

with detecting an instance of that event will transmit its

occurrence. In practice in nuclear systems, we cannot make

this assumption; the difficulty in placing sensors and ana-

lyzing sensor data makes sensors inherently unreliable. Fur-

thermore, the placement of additional equipment to improve

the sensor reliability may degrade the overall performance of

the system. Recently, the problem of unreliable sensors has

been considered in [8]; the approach we take in this paper is

complimentary to [8] and is based on the formal verification

of diagnosability properties.

In this paper, we consider two main categories of sensor

unreliability: misclassification, where a sensor reports an

incorrect reading as a result of the occurrence of a particular

event, or misdetection, where a sensor does not make a

reading as a result of an event’s occurrence. We consider

an observation paradigm in which both of these types of

incorrect reading can occur and develop a methodology

for performing diagnosis in the presence of this sensor

unreliability. Our paper builds upon the stochastic diagnoser

methodology proposed in [1], which in turn builds upon the

“logical” diagnoser approach first proposed in [9].

Our paper is organized as follows. In Section II, we

define the system model, the observation model, and the

failure model under consideration. In Section III, we present

new definitions of stochastic diagnosability for systems with

unreliable sensors. In Section IV, we discuss the construction

of the stochastic diagnoser under unreliable observations. In

Section V, we state conditions for stochastic diagnosability

in terms of the stochastic diagnoser. A short discussion ends

the paper in Section VI.

II. FORMALISM

A. System Model

Following [1], the system model used is a stochastic

automaton. A stochastic automaton is defined as a quadruple

SA = (XSA,ΣSA, pSA, xSA
0 ) where XSA, ΣSA, and xSA

0

are the finite state space, the set of events, and the initial

state, respectively. These three elements are identical to those

in a logical automaton.

Where the stochastic automaton model differs from a log-

ical automaton is that instead of defining a partial transition

function δSA, we instead define a state transition probability

function pSA : XSA × ΣSA × XSA → [0, 1]. For a pair of

states x1, x2 and an event σ, pSA(x2, σ | x1) denotes the

probability that, given the current state of the system is x1,

the event σ occurs and transitions the system to the state x2.
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To ensure that the system is live, we assume that

∀x ∈ XSA,
∑

σ∈ΣSA

∑

x′∈XSA

pSA(x′, σ | x) = 1,

that is, the occurrence of a new transition is certain from

every state. The state transition probability function can be

extended to strings according to the equation

pSA(x′, es | x) =
∑

x′′∈XSA

pSA(x′′, e | x)pSA(x′, s | x′′).

(1)

The probability of a given string occurring when the SA is

in state x is defined as

Pr(s | x) ,
∑

x′∈XSA

pSA(x′, s | x). (2)

The language generated by the state x is

L(SA, x) , {s ∈ Σ∗ : Pr(s | x) > 0} .

The language generated by the stochastic automaton is

LSA , L(SA, xSA
0 ). We denote by τ the string consisting

of no events. By convention, we set pSA(x, τ | x) = 1 for

all x ∈ XSA. Thus for all x ∈ XSA, Pr(τ | x) = 1 and

τ ∈ L(SA, x). Where the context is clear, we will suppress

the superscript SA in the notation.

B. Observation Model

In this paper, we consider deterministic and non-

deterministic mask functions, generalized versions of the

projection function used in [1]. We define a set of output

symbols ∆ and define a deterministic mask function M :
Σ → (∆ ∪ {ε}). The symbol ε denotes the null output and

corresponds to no signal being observed when an event takes

place and is not an element of ∆. If M(σ) = ε, then σ is

unobservable and we define Σuo , {σ ∈ Σ : M(σ) = ε}.

All other events are observable and we define Σo , Σ\Σuo.

It is possible for two distinct observable events σ1, σ2 to

have the same observed output, i.e. it may be that M(σ1) =
M(σ2).

The mask function can be extended to strings of events re-

cursively by defining M(τ) = ε and M(sσ) = M(s)M(σ).
M−1

L , the inverse mask function with respect to a language

L, is defined as:

M−1
L (t) = {s ∈ L : M(s) = t}

The language consisting of all strings generated from state

x whose only observable event is the final event is denoted

by

Lo(SA, x) , {s ∈ L(SA, x) : s = uσ, u ∈ Σ∗
uo, σ ∈ Σo} .

If σ ∈ Σo, than the set of all strings generated from state x
whose only observable event is the final event σ is

Lσ(SA, x) , {s ∈ L(SA, x) : s = uσ, u ∈ Σ∗
uo} .

We also consider non-deterministic mask functions Mp :
Σ → 2∆∪{ε}×(0,1]\∅. A non-deterministic mask function ran-

domly selects an output symbol in ∆∪{ε} as the observation

0

1

(u,.5)

2

(f,.5)

(a,.1) (a,.9)

3

(b,.1)

(b,1)

Fig. 1. A stochastic automaton to be used as a running example. The state
transition probabilities are denoted by pairs (σ, q), where the labeling of an
arrow x1 → x2 indicates that p(x2, σ | x1) = q.

made when an event σ occurs. Randomness in observation is

independent of randomness in the system behavior; that is,

the probability that a particular output symbol occurs when

an event σ occurs is independent of the probability of the

occurrence of σ.

In the context of non-deterministic mask functions, an

event σ is unobservable if Mp(σ) = {(ε, 1)}. σ is reliably

observed if Mp(σ) = {(y, 1)} for some y ∈ ∆. If (ε, q) ∈
Mp(σ) for some 0 < q < 1, that σ is called misdetectable

as there is a possibility that an occurrence of σ will not

result in an output. If {(y1, q1), (y2, q2)} ⊆ Mp(σ) for

some y1, y2 ∈ ∆ and 0 < q1, q2 < 1, then σ is called

misclassifiable.

We will write that

Pr(Mp(σ) = y) =

{

q if (y, q) ∈ Mp(σ)

0 otherwise.
(3)

C. Failure Model

We define a set of failure events Σf ⊆ Σ. The objective of

the failure diagnosis problem is to determine the probability

that an event in Σf has occurred given a sequence of

observations y ∈ ∆∗. The objective of the diagnosability

problem is to determine conditions under which we can

ensure that any occurrence of a failure will be detected. For

simplicity, we will only consider failures of one type; the

results of this paper can be extended to the situation where

failures events are divided into multiple types.

Denote by Ψ(Σf ) , {s ∈ L : s = s′f, f ∈ Σf}. If an

event f ∈ Σf is an element of a string s, we write that

Σf ∈ s.

D. Example

We illustrate the extensions of the stochastic diagnoser

framework using the example given in Figure 1. We denote

this automaton by SA = (X,Σ, p, x0) where

• X = {0, 1, 2, 3}
• Σ = {a, b, u, f}
• p, the state transition probability, as shown in Figure 1
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• x0 = 0

We associate with SA the set of observable symbols ∆ =
{α, β}.

The set of events whose occurrence we wish to diagnose

is Σf = {f}. The probabilistic sensor map Mp is:

Mp(a) = {(α, 1)}

Mp(b) = {(α, .1), (β, .8), (ε, .1)}

Mp(u) = {(ε, 1)}

Mp(f) = {(ε, 1)}

The event a is reliably observed: an occurrence of a will

always result in an output of α. The events u and f are

unobservable and any occurrences of these events will result

in the null output ε. The event b is both misclassifiable

and misdetectable. An observation of β is the most likely

outcome; however, there is probability .1 that an incorrect

sensor reading of α will be observed, and there is probability

.1 that no sensor reading at all will be made when β occurs.

III. DEFINITIONS OF STOCHASTIC DIAGNOSABILITY

A. Prior Work on Diagnosability of DES

The starting point for this work on stochastic diagnosabil-

ity is the definition of “logical” diagnosability proposed in

[9].

Definition 3.1: (Logical Diagnosability) A live, prefix-

closed language L is diagnosable with respect to a set of

failures Σf and an observation mask M if

(∃n ∈ N)[∀s ∈ Ψ(Σf )](∀t ∈ L/s)[‖t‖ ≥ n ⇒ D(st) = 1]
(4)

where the diagnosability condition function D : Σ∗ → {0, 1}
is given by

D(st) =

{

1 if ω ∈ M−1
L [M(st)] ⇒ Σf ∈ ω

0 otherwise
(5)

This definition makes two assertions. The first of these is that

for any occurrence of a fault, any continuation following a

fault of sufficient length will surely detect the occurrence of

a fault. The second of these it that, in order to detect the

occurrence of a fault, we must be completely sure that at

least one occurrence of the fault has occurred.

Two definitions of stochastic diagnosability were pro-

posed in [1]. We restate the first of these definitions, A-

diagnosability, using a general deterministic mask function

M instead of the projection operation.

Definition 3.2: A live, prefix-closed language L is A-

diagnosable with respect to a set of failures Σf , a determin-

istic observation mask M , and a state transition probability

p if

(∀ǫ > 0)(∃N ∈ N)(∀s ∈ Ψ(Σf ) ∧ n ≥ N)

{Pr(t : D(st) = 0 | t ∈ L/s ∧ ‖t‖ = n) < ǫ} (6)

where the diagnosability condition function D : Σ∗ → {0, 1}
is:

D(st) =

{

1 if ω ∈ M−1[M(st)] ⇒ Σf ∈ ω

0 otherwise
(7)

A-diagnosability is a weaker definition than logical diagnos-

ability because the first of the assertions in the definition

of logical diagnosability is weakened. Instead of it being

necessary that we be sure that a continuation of sufficient

length will diagnose a fault, we need only be almost sure (in

a probabilistic sense) that we will make a diagnosis. Thus a

system can be A-diagnosable, but not logically diagnosable,

while still allowing for the possibility of a false negative;

however, in the long run, the probability of a false negative

must become zero.

The second definition of stochastic diagnosability we

proposed, AA-diagnosability, is again weaker than A-

diagnosability as the second of the assertions in the definition

of logical diagnosability is also weakened.

Definition 3.3: A live, prefix-closed language L is AA-

diagnosable with respect to a set of failures Σf , a determin-

istic observation mask M , and a state transition probability

p if

(∀ǫ > 0 ∧ ∀α < 1)(∃N ∈ N)(∀s ∈ Ψ(Σf ) ∧ n ≥ N)

{Pr(t : Dα(st) = 0 | t ∈ L/s ∧ ‖t‖ = n) < ǫ} (8)

where the diagnosability condition function Dα : Σ∗ →
{0, 1} is:

Dα(st) =

{

1 if Pr(ω : Σf ∈ ω | ω ∈ M−1[M(st)]) > α

0 otherwise

(9)

In AA-diagnosability, the diagnosability condition function

D used in logical diagnosability and A-diagnosability is

replaced by Dα; using Dα, we no longer need to be exactly

sure that a fault has occurred in order to consider it diagnosed

- it is sufficient that the probability of failure be above

the threshold α. Thus an AA-diagnosable system will allow

false positives with a probability 1 − α. The definition of

AA-diagnosability states that if we take a continuation of

sufficient length, we can almost surely reduce the probability

of false positives until it is eventually reaches zero.

B. Diagnosability Under Unreliable Observations

For the case of a non-deterministic observation mask, there

are two sources of randomness affecting the probability of

a particular output symbol being observed. The first is the

randomness in the underlying system behavior; the second

is the randomness introduced by the observation mask. We

propose two new definitions of stochastic diagnosability, uA-

and uAA-diagnosability, that are the analogs to A- and AA-

diagnosability under non-deterministic observation masks.

Definition 3.4: A live, prefix-closed language L is uA-

diagnosable with respect to a set of failures Σf , a non-

deterministic observation mask Mp, and a state transition

probability p if

(∀ǫ > 0)(∃N ∈ N)(∀s ∈ Ψ(Σf ) ∧ n ≥ N)

{Pr(t ∧ y : Mp(st) = y ∧ Du(y) = 0

| t ∈ L/s ∧ ‖t‖ = n) < ǫ} (10)
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where the diagnosability condition function Du : ∆∗ →
{0, 1} is:

Du(y) =

{

1 if Pr(Mp(ω) = y) > 0 ⇒ Σf ∈ ω

0 otherwise
(11)

Similarly, AA-diagnosability is extended to the case of non-

deterministic observation masks by the following definition.

Definition 3.5: A live, prefix-closed language L is uAA-

diagnosable with respect to a set of failures Σf , a non-

deterministic observation mask Mp, and a state transition

probability p if

(∀ǫ > 0 ∧ ∀α < 1)(∃N ∈ N)(∀s ∈ Ψ(Σf ) ∧ n ≥ N)

{Pr(t ∧ y : Mp(st) = y ∧ Du
α(y) = 0

| t ∈ L/s ∧ ‖t‖ = n) < ǫ} (12)

where the diagnosability condition function Du
α : ∆∗ →

{0, 1} is:

Du
α(y) =

{

1 if Pr(ω ∈ L : Σf ∈ ω | Mp(ω) = y) > α

0 otherwise

(13)

In these definitions, the diagnosability condition function’s

domain is the set of output symbols, not the underlying string

as in A- and AA-diagnosability. As one string of events

in the stochastic automaton may produce many different

strings of observable symbols, we define a diagnosis as being

made with respect to what is observed and not with respect

to the underlying system behavior. However, if the non-

deterministic observation mask Mp is such that all events

in Σ are either reliably observable or unobservable, then the

conditions for uA- and uAA-diagnosability are identical to

those for A- and AA-diagnosability.

IV. DIAGNOSERS FOR SYSTEMS WITH UNRELIABLE

OBSERVATIONS MASKS

A. Sensor Output Automata

The stochastic diagnoser approach developed in [1] can be

used for stochastic automata with deterministic observation

masks. In order to apply this approach to non-deterministic

observation masks, we construct a sensor output automa-

ton SOA that has a deterministic observation mask and

possesses the same diagnosability properties as the original

stochastic automaton with a non-deterministic mask.

The sensor output automaton is a stochastic automaton

constructed from SA, ∆SA, and Mp. It is defined by

SOA , (XSA,∆SA ∪ ∆SA
f ∪ {ε, εf}, p

SOA, xSA
0 ),

where the constituent elements are explained below.

The state space of SOA is identical to that of SA and

the initial state is identical as well. The event set of SOA,

ΣSOA = ∆SA ∪ ∆SA
f ∪ {ε, εf}, consists of two versions

of the set of output symbols ∆SA ∪ {ε}: one corresponding

to “normal” events and another corresponding to “faulty”

events.

The sensor output automaton’s deterministic observation

mask, MSOA, is:

MSOA(y) = y if y ∈ ∆ ∪ {ε}

MSOA(yf ) = y if yf ∈ ∆f ∪ {εf} (14)

Thus “normal” events in ∆ ∪ {ε} are observed directly,

and “faulty” events in ∆f ∪ {εf} appear identical to their

corresponding normal events. We set ΣSOA
uo = {ε, εf}. The

set of faulty events to be diagnosed is ΣSOA
f = ∆SA

f ∪{εf}.

We construct the state transition probabilities pSOA ac-

cording to the following equations:

pSOA(x1, y, x2) =
∑

σ∈Σ\Σf

(pSA(x1, σ | x2)

× Pr[MSA
p (σ) = y]) if y ∈ ∆ ∪ {ε}, (15)

pSOA(x1, yf , x2) =
∑

σ∈Σf

(pSA(x1, σ | x2)

× Pr[MSA
p (σ) = y]) if yf ∈ ∆f ∪ {εf}. (16)

Following the procedure to construct the sensor output

automaton associated with Figure 1 results in the stochastic

automaton is shown in Figure 2. The equivalence between

the diagnosability properties of a stochastic automaton and

its corresponding sensor output automaton is demonstrated

in the following theorem.

Theorem 1: A stochastic automaton SA subject to an

unreliable sensor mask Mp is A-diagnosable (or AA-

diagnosable) with respect to Mp and Σf if and only if its cor-

responding sensor output automaton SOA is A-diagnosable

(or AA-diagnosable) with respect to MSOA and Σf .

Proof: See Appendix A.

B. Stochastic Diagnoser Construction

Because the diagnosability properties of a stochastic

automaton with a non-deterministic observation mask are

equivalent to those of its sensor output automaton, we

can test whether a stochastic automaton is uA- or uAA-

diagnosable by constructing the stochastic diagnoser of its

SOA.

The procedure for constructing a stochastic diagnoser

described in [1] makes two assumptions that are untenable in

the setting of sensor output automata. Firstly, it is assumed

that there are no cycles of unobservable events in the

stochastic automaton whose diagnoser is being constructed.

Secondly, it is assumed that for each x ∈ XSOA, σ ∈ ΣSOA,

there is only one unique x′ ∈ XSOA such that p(x′, σ | x) >
0.

When modeling a system such as a nuclear flow network,

it is likely that the resulting non-deterministic observation

mask on the event set will have few reliably observable

events. Most events will have at least a small non-zero

probability of being misdetected or misclassified; as a result,

the assumptions used in [1] will not hold. For example,

the system in Figure 1 is simple and has only one event,

b, that can be misclassified or misdetected. However, its
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0

2

(ε
f
,.5)

1

(ε,.5)

(α,.9)

3

(α,.01) (β,.08) (ε,.01)

(α,1) (β,.8) (α,.1) (ε,.1)

Fig. 2. Sensor output automaton for the system in Figure 1.

sensor output automata, shown in Figure 2, contains an

unobservable cycle between states 0, 2, and 3. It also contains

a state x = 2 and an event α such that there are two states,

x′ = 2 and x′ = 3, such that p(x′, α, x) > 0. In more

complex systems, these conditions are even more likely to

be present in the SOA. In this paper, we present the technique

for constructing the stochastic diagnoser that does not require

these assumptions.

We first define a pair of failure labels N and F . The label

N denotes that no failure event in Σf had occurred; the

label F denotes that there has been at least one occurrence

of an event in Σf . The change in the labels as the system

evolves is described by the label propagation function LP :
{N,F} × ΣSOA∗

LP(ℓ, s) =

{

N if ℓ = N and Σf 6∈ s

F otherwise.

A stochastic diagnoser SD =
(QSD,ΣSD, δSD, qSD

0 ,ΦSD, φSD
0 ) associated with a

sensor output automaton SOA consists of six elements:

• QSD ⊆ 2X×{N,F} is the set of diagnoser logical

elements

• ΣSD = ∆SOA is the event set

• δSD : QSD × ΣSD → QSD is the state transition

function

• qSD
0 = {(x0, N)} is the initial logical element

• ΦSD is the set of probability transition matrices

• φSD
0 = [1] is the initial probability vector

The first four elements (QSD,ΣSD, δSD, qSD
0 ) are still ex-

actly the “logical” diagnoser described in [9]. Each logical

element q ∈ QSD is a list of components, where each compo-

nent is of the form (x, ℓ), where x ∈ XSOA and ℓ ∈ {N,F}.

A set of components {(x1, ℓ1), (x2, ℓ2), . . . , (xn, ℓn)} is cer-

tain if ℓ1 = ℓ2 = · · · = ℓn. The components in each logical

element need to be placed into a particular order; this order

can be chosen arbitrarily.

The construction of δSD is modified to take into account

the relaxed assumptions. The state transition function is

defined as

δSD(q, s) ,
⋃

(x,ℓ)∈q

⋃

s∈Lσ(SOA,x)

⋃

x′:p(x′,s|x>0)

(x′,LP(ℓ, s)).

From this definition, it may not be possible to compute

δSD as for some x ∈ XSOA, there may be strings in

Lσ(SOA, x) of arbitrarily large length. However, any string

in Lσ(SOA, x) containing more than ‖XSOA‖ events will

contain cycles, and there will exists a string with no more

than ‖XSOA‖ events that transitions the diagnoser to the

same component (x, ℓ).
To define δSD in the presence of unobservable cycles, we

thus first define

Lr
σ(SOA, x) , {s ∈ Lσ(SOA, x) : |u| ≤ ‖XSOA‖},

and use the following equivalent expression for δSD:

δSD(q, s) =
⋃

(x,ℓ)∈q

⋃

s∈Lr
σ(SOA,x)

⋃

x′:p(x′,s|x>0)

(x′,LP(ℓ, s)).

The major change between the procedure used to construct

the stochastic diagnoser in [1] and the procedure necessary

here is in the construction of ΦSD.

Each matrix in ΦSD is defined as Φ : QSD × ΣSD →
M[0,1]

Φij(q, σ) =
∑

s∈Lσ(SOA,xi):LP(ℓi,s)=ℓj

p(xj , s | xi) (17)

where the range M[0,1] represents the set of finite-

dimensional matrices whose values are contained in the

interval [0, 1]. The size of the matrix outputted by Φ(q, σ)
is ‖q‖ × ‖δSD(q, σ)‖. If an event transitions SD from a

logical element with m components to a logical element

with n components, the size of the matrix associated with

that event will be m × n. Each element Φij(q, σ) denotes

the probability of the system transitioning from the ith
component of diagnoser state q to the jth component of

diagnoser state δSD(q, σ) along the transition σ.

Determining Φij(q, σ) involves calculating the sum of the

probabilities of strings in the language Lσ(SOA, xi), which

may contain an arbitrarily large number of strings due to the

presence of unobservable cycles. This sum can be determined
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by finding the absorption probabilities of an appropriately

constructed Markov chain.

C. Construction of Probability Transition Matrices

In this subsection, we construct a Markov chain whose

absorption probabilities are equal to the values for Φij(q, σ)
defined in Equation 17. Let f : XSOA → {1, 2, . . . , Ns} be

a bijective function that assigns a unique index in the set

{1 . . . Ns} to each state in XSOA, where Ns = ‖XSOA‖.

For each δ ∈ ∆ ∪ {ε}, define a matrix Q(δ) according to

Qij(δ) , p(f−1(j), δ | f−1(i)).

Similarly define for each δ ∈ ∆f ∪ {εf}

Qij(δf ) , p(f−1(j), δf | f−1(i)).

For each δ, We combine Qij(δ) and Qij(δf ) to yield

Q̂(δ) =

[

Q(δ) Q(δf )
0Ns×Ns

Q(δ) + Q(δf )

]

(18)

Using the matrices Q̂(δ), we define the one-step observa-

tion matrix as follows.

Definition 4.1: Let g : ∆SOA ∪ {ε} → {0 . . . Nd} be any

bijective function where g(0) = ε that assigns a unique index

to each symbol in ∆SOA, when Nd = ‖∆SOA‖.The one-step

observation matrix associated with SOA is

PSOA ,

[

Q̂(ǫ) Q̂(g−1(1)) · · · Q̂(g−1(Nd))
02NdNs×2Ns

I2NdNs

]

(19)

Each state in PSOA corresponds to a component (x, ℓ) and

an event σ. This correspondence is captured by the function

h : X × {N,F} × ΣSOA → {1, 2 . . . , (Nd + 1)Ns}

h(x, ℓ, δ) = 2Nsg(δ) + f(x) + Ns1F (ℓ),

where 1F (ℓ) = 1 if ℓ = F and 0 if ℓ = N . PSOA

contains 2Ns transient states and 2NdNs recurrent states.

The transient states are given by h(x, ℓ, ε) for all (x, ℓ); for

any δ ∈ ∆, h(x, ℓ, δ) is a recurrent state regardless of the

values of x and ℓ.

By construction, each recurrent state is also an absorbing

state as the Markov chain remains in any recurrent state it

enters with probability one. To find the absorption probability

of a state zR in PSOA, given that the chain is currently

instate zT , we must solve the equation

ρzR
(zT ) = PzT ,zR

+
∑

z∈T

PzT ,zρzR
(z), (20)

where Pz1,z2
denotes the one step transition probability from

state z1 to state z2 in PSOA and T denotes the set of transient

states in the Markov chain [10].

The absorption probabilities of recurrent states in PSOA

are the values of the elements of the probability transition

matrices Φ that are necessary to complete the construction of

the stochastic diagnoser, as shown in the following theorem.

Theorem 2: Let (xi, ℓi) be the ith component of q ∈ QSD

and let (xj , ℓj) be the jth component of δSD(q, δ). The

corresponding element of the probability transition matrix

Φij(q, δ) is

Φij(q, δ) = ρh(xi,ℓi,ε)(h(xj , ℓj , σ)). (21)

Proof: See Appendix B.

To find every possible element of every matrix in ΦSD, we

need to find the absorption probability of any recurrent state

h(x, ℓ, δ) given that PSOA is in any transient state h(x, ℓ, ε).
We accomplish this by rewriting Equation 20 in matrix form,

R(g−1(m)) = Q̂(g−1(m)) + Q̂(ǫ)R(g−1(m)), (22)

and solving this system of linear equations. The elements of

the probability transition matrices are then Φij(q, g
−1(m)) =

R(g−1(m))h(xi,ℓi,ε),h(xj ,ℓj ,ε).

D. Example

For the example in Figure 2, ∆SA ∪ {ε} = {ε, α, β} and

let f(x) = x + 1 for all x ∈ XSOA = {0, 1, 2, 3}. The six

Q matrices associated with SOA are:

Q(ε) =









0 0 .5 0
0 0 0 0
0 0 0 .01
.1 0 0 0









,Q(εf ) =









0 0 .5 0
0 0 0 0
0 0 0 0
0 0 0 0









,

Q(α) =









0 0 0 0
0 1 0 0
0 0 .9 .01
.1 0 0 0









,Q(αf ) = 04×4,

Q(β) =









0 0 0 0
0 0 0 0
0 0 0 0.08
.8 0 0 0









,Q(βf ) = 04×4.

Set g(α) = 1 and g(β) = 2. The one-step transition

matrix PSOA is constructed according to Equations 18 and
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Fig. 3. Stochastic diagnoser under unreliable sensor configuration for the system in Figure 1. Recurrent components are indicated by boldface.

19, yielding

PSOA =





Q̂(ε) Q̂(α) Q̂(β)

016×8 I16×16



 .

The absorption probabilities for PSOA can be found be

solving the systems of linear equations defined in Equation

22, yielding R(α) and R(β) shown at the top of this page.

The first four rows in R(α) are the absorption probabilities

corresponding to the case when the label of the component

in δ(q, α) is N , and the last four rows correspond to the case

when that label is F . If the ith component of q ∈ QSD is

(x1, ℓ) and the jth component of δ(q, α) is (x2, ℓ), then the

corresponding value of the probability transition matrix is

Φij(q, α) = Rf(x1)+Ns1F (ℓ1),f(x2)+Ns1F (ℓ2)(α).

Using the probabilities in R(α) and R(β), we can now

construct the set of probability transition matrices Φ and

complete the construction of the stochastic diagnoser follow-

ing the procedure described in Section IV-B. The completed

stochastic diagnoser under unreliable observations is shown

in Figure 3.

V. CONDITIONS FOR uA- AND uAA-DIAGNOSABILITY

Necessary and sufficient conditions for A-diagnosability

and sufficient conditions for AA-diagnosability in terms of

the stochastic diagnoser were derived in [1]. These conditions

depend on the concept of the recurrent component. A compo-

nent (x, ℓ) in a logical element q ∈ QSD is called recurrent

if, in a Markov chain constructed using the set of probability

transition matrices Φ, the pair (q, (x, ℓ)) corresponds to

a recurrent state of that Markov chain. These conditions

are immediately applicable to this paper because the final

result of our construction is also a stochastic diagnoser. The

theorems are stated below without proof.

Theorem 3: A language L generated by an SOA is A-

diagnosable with respect to a set of failures Σf and an

observation mask M if, and only if, every logical element of

its associated stochastic diagnoser SD containing a recurrent

component bearing the label F is certain.

Theorem 4: A language L generated by an SOA is AA-

diagnosable with respect to a set of failures Σf and an obser-

vation mask M if, in every logical element in its associated

stochastic diagnoser SD, the set of recurrent components is

certain.

Combining these results with Theorem 1 yields the fol-

lowing results.

Theorem 5: A language L generated by an SA is uA-

diagnosable with respect to a set of failures Σf and an

observation mask Mp if, and only if, in every logical element

of SD, the stochastic diagnoser constructed from the sensor

output automaton of SA, that contains a recurrent component

bearing the label F is certain.

Theorem 6: A language L generated by an SA is uAA-

diagnosable with respect to a set of failures Σf and an

observation mask Mp if, and only if, in every logical element

of SD, the stochastic diagnoser constructed from the sensor

output automaton of SA, the set of recurrent components is

certain.

The stochastic diagnoser in Figure 3 has a logical element

{0F, 1N, 1F, 2F, 3F} that contains a pair of recurrent com-

ponents {1N, 1F} with inconsistent labels. Thus this logical
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element is not certain, and thus the stochastic automaton

shown in Figure 1 is not uA-diagnosable. Furthermore, since

the pair of recurrent components is not certain, the stochastic

automaton is also not uAA-diagnosable.

VI. DISCUSSION

In this paper, we extend the notion of stochastic diag-

nosability to DES with unreliable observation masks. We

demonstrate that a system with an unreliable observation

mask can be transformed into a system with equivalent

diagnosability properties that has a deterministic observation

mask. We then extend the stochastic diagnoser approach to

find conditions for diagnosability of stochastic automata with

unreliable observations.

The conditions for stochastic diagnosability discussed in

this paper require near certainty of a correct diagnosis being

made in the long term. However, in certain applications, it is

possible to tolerate a small probability of making an incorrect

diagnosis in the long term. Our future work involves weak-

ening the notions of uA- and uAA-diagnosability proposed

in this paper so as to determine if systems have the desired

property of making correct diagnoses in the long run with a

sufficiently high degree of confidence that need not be near

certainty.
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