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Abstract 

Automatic in-process data collection techniques have been widely used in complicated 

manufacturing processes in recent years.  The huge amounts of product measurement data created 

great opportunity for process monitoring and diagnosis.  Given such product quality measurements, 

this article examines the diagnosability of the process faults in a multistage manufacturing process 

using a linear mixed-effect model.  Fault diagnosability is defined in a general way that does not 

depend on specific diagnosis algorithms.  The concept of a minimal diagnosable class is proposed to 

expose the "aliasing" structure among process faults in a partially diagnosable system.  The 

algorithms and procedures necessary to obtain the minimal diagnosable class and to evaluate the 

system-level diagnosability are presented.  The methodology, which can be used for any general 

linear input-output system, is illustrated using a panel assembly process and an engine-head 

machining process. 
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1. Introduction 

Automatic in-process sensing and data collection techniques have been widely used in 

complicated manufacturing processes in recent years (Apley and Shi 2001).  For example, Optical 

Coordinate Measuring Machines (OCMM) are built into autobody assembly lines to obtain 100% 

inspection on product quality characteristics. In-process probes are also installed on machine tools 

to help assure the dimensional integrity of manufactured workpieces.  The data collected by these 

tools create great opportunity not only for quality assurance and process monitoring, but also for 

process fault diagnosis of quality-related problems in manufacturing systems. 

Statistical process control (SPC) (Montgomery and Woodall 1997 and Woodall and 

Montgomery 1999 for reviews) is the major technique used in practice for quality and process 

monitoring.  After a process change is detected through SPC techniques, it is critical to determine 

the appropriate corrective actions toward restoring the manufacturing system to its normal 

condition.  Because product quality is determined by the conditions of process tooling elements 

(such as cutting tool, fixture, and welding gun) in a manufacturing system, the appropriate 

corrective action is to fix the malfunctioning tooling elements that are responsible for the defective 

products.  However, SPC methods provide little diagnostic capability – the diagnosis of 

malfunctioning tooling elements is left to human operators.   

Consider the example of a 2-D panel assembly process (Figure 1) that is simplified from an 

autobody assembly process.  In this process, three stations are involved to assemble four parts 

(marked as 1, 2, 3, 4, respectively, in Figure 1) and inspect the assembly: part 1 and part 2 are 

assembled at Station I; subassembly “1+2” is assembled with part 3 and part 4 at Station II; and the 

final assembly with four parts is inspected at Station III for surface finish, joint quality, and 

dimensional defects.  Each part is restrained by a set of fixtures constituting of a 4-way locator, 

which controls motion in both x- and z-directions, and a 2-way locator, which controls motion only 

in the z-direction.  A subassembly with several parts also needs a 4-way locator and a 2-way locator 

to completely control its degrees of freedom.  The active locating points are marked as Pi, i = 1, ..., 

8, in Figure 1.      
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The positioning accuracy of locators is one of the critical factors in determining the dimensional 

accuracy of the final assembly.  Worn, broken, or improperly installed locators cannot provide 

desired positioning accuracy and the assembly will have excessive dimensional deviation or 

variation as a result.  The malfunction of tooling elements (locators in this example) is called 

process fault, which is the root cause of product quality-related problems.   

Directly measuring the position of locators during the production is costly, if not impossible.  A 

practical way is to take measurements from the assembly (or subassembly).  In this example, five 

coordinate sensors are installed on all three stations.  Each coordinate sensor measures the position 

of a part feature, such as a corner, in two orthogonal directions (x and z).  The measurement points 

are marked as {Mi, i=1…5} in Figure 1.    

Measurements from M1 to M5 contain information regarding the accuracy of fixture locators, 

offering the possibility to diagnose locators’ failure (i.e., process fault).  However, the diagnosis of 

failing locators is not obvious since the out-of-control condition of a product feature at a 

downstream station k may be caused by a locator failure at an upstream station i (i<k).  For example, 

if M3 triggers an alarm, it could be caused by the failure of P1 or P4 on Station II.  But it might also 

be caused by the failure of P1, P2, even that of P3, P4 on Station I. 
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Figure 1.  A Multistage 2-D Panel Assembly Process  

In many other manufacturing processes, we encounter a similar situation: a tremendous amount 

of product measurements are available through in-process sensing devices, but the effective 

utilization of them beyond monitoring remains an interesting yet challenging problem.  It is thus 

highly desirable to have the capability to diagnose process faults from product measurements.  
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Recent research has advanced toward this goal (Ceglarek and Shi 1996; Apley and Shi 1998; 

Chang and Gossard 1998; Rong, Ceglarek, and Shi 2000).  There are two major components of the 

reported fault diagnosis methods: (1) a linear model linking product quality measurements to 

process faults; and (2) algorithms of extracting fault information based on the model.  The linear 

model is often developed for particular processes considering the underlying physical laws.  The 

model-based diagnosis algorithms can be further classified as either multivariate transformation 

such as the Principal Components Analysis followed by pattern recognition (Ceglarek and Shi 1996; 

Rong, Ceglarek, and Shi 2000), or least squares estimation followed by a hypothesis test (Apley and 

Shi 1998; Chang and Gossard 1998).  

Limitations of the aforementioned work fall into two categories.  First, the models used are 

developed for single-stage operations, where a manufacturing stage is defined as a group of 

operations that are conducted under the same workpiece setup.  However, modern production 

systems often involve multiple stages to finish complex products.  The fault-quality relationship in a 

multistage system is not a simple summation of single-stage models.  The effect of a certain process 

fault on product quality could be altered by following operations, and different process faults could 

have the same manifestation on the final product.  As we will see in Section 2, systematic modeling 

of the fault-quality relationship for multistage manufacturing systems is currently available.  

Exploring fault diagnosis problems explicitly for multistage systems is feasible and necessary.    

Second, diagnosability analysis, which is a fundamental issue regarding fault diagnosis, has not 

been thoroughly studied.  The issue of diagnosability refers to the problem of whether the product 

measurements contain enough information for the diagnosis of critical process faults, i.e., if process 

faults are diagnosable.  In the abovementioned work, the diagnosability condition is implicitly 

specified in the pre-conditions required by specific diagnosis algorithms.  No explicit discussion on 

diagnosability under a general framework is given in those papers.     

The diagnosability issue is particularly relevant for a multistage system.  First, it is challenging 

to evaluate diagnosability in a multistage system. As in Figure 1, the quality characteristic M3 at 

Station II is affected by locators on both Station I and Station II.  It is not obvious what kind of 
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information can be obtained regarding those locators when M3 is measured.  Overall, are all process 

faults diagnosable, given five sensors measuring the current product features?  If not, what is the 

“aliasing” structure among the coupled process faults?  Second, even if it is technically feasible, it is 

not cost effective to install sensors or probes on every intermediate manufacturing stage. Therefore, 

the quantitative performance evaluation of a gauging system is very important.  The proposed 

diagnosability analysis can provide the underlying analytical tools for this purpose. 

Currently there is little reported research on diagnosability.  Ding, Shi, and Ceglarek (2002) 

conducted a preliminary study.  The diagnosability condition given in their paper is a special case of 

the diagnosability analysis presented in this paper. This relationship is clarified in Section 3.  

Furthermore, their paper does not expose the “aliasing” fault structure for coupled faults in a 

partially diagnosable system, which is another focus of this paper.  

This paper focuses on developing a general framework of diagnosability analysis for the purpose 

of fault diagnosis in multistage manufacturing systems.  We start with a linear state space model 

that links product quality measurements to process faults in a multistage system.  The model can be 

reformulated into a mixed linear model used in statistical inference. The diagnosis problem is shown 

to be equivalent to the problem of variance components analysis (VCA). Following the concept of 

identifiability in VCA, we define diagnosability in a general sense, independent of specific 

diagnosis algorithms. Diagnosability, and especially partial diagnosability, is studied through the 

concept of minimal diagnosable class, which is developed to reveal the "aliasing" structure among 

coupled process faults.  Three criteria for performance evaluation of gauging systems are proposed.  

The criteria benchmark the amount and the "quality" of information obtained through a gauging 

system, as well as the flexibility of the gauging system.   

This paper is structured as follows.  In Section 2, the fault-quality diagnostic model is 

formulated as a mixed linear model.  Diagnosability analysis is presented in Section 3, including 

diagnosability criteria used to evaluate and compare gauging systems.  The earlier example is re-

visited in Section 4, together with another industrial case study, to illustrate the methodology.  

Conclusions are presented in Section 5.   



         

- 6 -  

2. Formulation of Fault-Quality Diagnostic Model  

As mentioned in the previous section, the first step in diagnosability analysis is to develop a 

fault-quality diagnostic model that links process faults and product quality measurements.  There are 

several linear fault-quality models available to describe the propagation of quality information in a 

multistage system.  Mantripragada and Whitney (1999), Jin and Shi (1999), and Ding, Ceglarek, and 

Shi (2000) developed multistage fault-quality models for rigid-part assembly processes.  Camelio, 

Hu, and Ceglarek (2001) modeled the variation propagation in multistage compliant-part assembly 

processes.  Zhou, Huang, and Shi (2002) and Djurdjanovic and Ni (2001) provided linear fault-

quality diagnostic models for multistage machining processes.  All the above models are mechanism 

models, developed based on the physical laws of the processes.  Lawless, Mackay, and Robinson 

(1999) and Agrawal, Lawless, and Mackay (1999) employed a data-driven AR(1) model to describe 

the variation transmission in both multistage assembly and machining processes.  The parameters of 

their AR(1) model are estimated based on product measurements.  All the aforementioned models 

adopt the same model structure, which is a linear state space representation.  This linear state space 

model is used in this article to link product quality to individual process faults.   

Figure 2 shows a manufacturing process with N stages.  Variable k is the stage index. The 

product quality information (e.g., part dimensional deviations) at each stage is represented by the 

state vector xk.  The process faults (e.g., the fixturing error, the machining error, and the thermal 

error) are included as the input uk.  The process faults manifest themselves as the mean deviation 

and variance of uk.  Natural variation and unmodeled errors in the process are represented by a noise 

input to the system, wk.  We assume wk is a zero mean and uncorrelated random vector.  The 

product quality measurement is denoted by yk, where yk is not necessarily available at every stage.  

The measurement noise is denoted by a zero mean and uncorrelated random vector vk.   

 

Stage 1 Stage k-1 … Stage k … Stage N 
x0 x1 xk-2 xk-1 xk xN-1 xN 

u1 w1 uk-1 wk-1 uk wk uN wN 

vk 

yk 

vN 
yN 

 

Figure 2.  Diagram of a Multistage Manufacturing Process 
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Under the small error assumption, the linear state space model can be expressed as   

,and11 kkkkkkkkkk vxCywuBxAx +=++= −−  (1) 

where Nk ...2,1= , 11 −− kk xA  represents the transformation of quality information from stage k-1 to 

stage k, kk uB  represents how the product quality is affected by the process faults at stage k,  and Ck 

is the observation matrix that maps process states to measurements.  System matrices Ak, Bk, and Ck 

are constant matrices.  They are determined by the process/product design information.  

The state space model can be transformed into a general mixed linear model as follows.  First, it 

can be written in an input-output format as  

kiikk
k
ikkiiikk

k
ik vwΦCxΦCuBΦCy +Σ++Σ= == ,100 ,,1  , (2) 

where ikkik AAAΦ L21, −−=   for k > i  and IΦ =kk , .  The quality characteristics 0x  correspond to 

the initial condition of the product before it goes into the manufacturing line.  If the measurement of 

x0 is available, 00 xΦC ,kk  can be moved to the left side of Equation (2), and the difference 

00 , xΦCy kkk −  can then be treated as a new measurement. If the measurement of x0 is not available, 

we can treat it as an additional process fault input.  Without loss of generality, we set x0 to 0.   

Define iµ  as the expectation of ui and iii µuu −=~ .  Combining all available measurements 

from station 1 to station N, we have 
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iµ  is an unknown constant vector, and kii vwu ,,~  are uncorrelated random vectors with zero means.  

If no measurement is available at station k, the corresponding rows can be eliminated.  

Let P denote the total number of potential faults ( 1[ ... ... ]T T T T
k Nµ µ µ ) and Q denote the 

number of system noises ( 1[ ... ... ]T T T T
k Nw w w ) considered on all the stages.  Let Piui ...1

2 }{ =σ , 
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Qiwi ...1
2 }{ =σ , and 2

vσ  be the variances of process faults, the variances of system noises, and the 

variance of observation noise, respectively.  We assume that the variances of observation noise at 

different stages are the same.  This assumption is reasonable if we use the same measurement 

devices on all measurement stages.   

During production, multiple samples of the product are available at each stage.  Assume we 

have M samples, and the samples can be stacked up as  

( ) ( ) ( )M M M= ⊗ + ⊗ + ⊗ +Y 1 Γ U I Γ U I Ψ W V% , (4) 

where ]......[ 1
T
N

T
k

TT µµµU = , 1[ ]T T T T
i M=Y Y Y YL L , 1 ... ...T T T T

i i ki Ni =  Y y y y  

is the ith sample measurement, and yki is the ith sample measurement at the kth stage. U% , W , and V  

are defined in the similar way as Y,  ⊗  is the Kronecker matrix product (Scott 1997), M1  is the 

summing vector whose M elements equal unity, and IM is an M by M identity matrix.  Letting ":j" 

represent the jth column of a matrix, Equation (4) can be re-organized as  

1 : 1 :( ) ( ) ( ) ( ) ( )P Q
M j M j j M jj j= == ⊗ + Σ ⊗ + Σ ⊗ +Y 1 Γ U Ι Γ U Ι Ψ W V%  . (5)  

where 1( ) [ ]T
j ji jMj u u u=U% % % %L L  and 1( ) [ ]T

j ji jMj w w w=W # #  are the collections of 

all samples of the jth fault and the jth system noise, respectively.   

The diagnosability problem can then be restated: from M samples, can we identify the value of 

Pii ...1}{ =µ  and Piui K1
2 }{ =σ ?  In the following section, this problem is studied using the framework of 

variance components analysis.   

3. Diagnosability Analysis for Multistage Manufacturing Processes  

3.1 Definition of Fault Diagnosability 

The model in Equation (5) fits a general mixed linear model given by Rao and Kleffe (1988) as 

1

c

i i
i=

= + +∑y Xα ξ b e , (6) 

where y is an yn ×1 observation vector; X is an yn × xl  known constant matrix, xl ≤ yn ; α  is an xl ×1 

vector of unknown constants; ξ i is an yn ×mi known constant matrix, mi≤ yn ; bi is an mi×1 vector of 

independent variables with zero mean and unknown variance 2
iσ ; e is an yn ×1 vector of 

independent variables with zero mean and unknown variance 2
eσ .  The 2

iσ ’s and 2
eσ  are called 
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"variance components."  

A mixed model is used to describe both fixed and random effects.  This model is often applied 

to biological and agricultural data.  In designed experiments, the matrices X and 1...{ } =ξi i c  are 

determined by designers.  They often contain only 0s or 1s, depending upon whether the relevant 

effect contributes to the measurement.  Given a mixed model, researchers are primarily interested in 

estimating the fixed effects and variance components.  A large body of literature about VCA is 

available.  Excellent overviews can be found in Rao and Kleffe (1988) and Searle, Casella, and 

McCulloch (1992). 

We can establish a one-to-one corresponding relationship between terms in our fault-quality 

model (Equation (5)) and those in the mixed model (Equation (6)).  In our fault diagnosis problem, 

however, the matrices X, 1...{ } =ξi i c  are computed from system matrices Ak, Bk, and Ck, k=1,…,N, 

which are determined by the process design information and measurement deployment information.  

The fixed effects are the mean values ( iµ ) of process faults, and the random effects are the process 

faults and the process noise, kii vwu ,,~ .  Fault diagnosis is thus equivalent to the problem of 

variance components estimation.  The definition of diagnosability in this article follows the same 

concept of identifiability in VCA (Rao and Kleffe, 1988).  The term "diagnosability" is used because 

it is more relevant in the context of our engineering applications. 

Based on Equation (5), we have 

( ) [ ... ... ]T T T TE =Y Γ Γ Γ U  (7) 

1 1

2 2 2 2 2
1 1 1( ) ... ...

P Qu P u P w P Q w P Q vCov σ σ σ σ σ+ + + += + + + + + +Y F F F F F  (8) 

where E(⋅) represents the expectation, Cov(⋅) represents the covariance matrix of a random vector,  





+≤<⊗
≤≤⊗

=
−− QPiP

Pi
T

PiPiM

T
iiM

i  when)(

1 when)(

)(:)(:

::

ΨΨI

ΓΓI
F  ,  

and FP+Q+1 is an identity matrix with the appropriate dimension. 

Define ]......[ 22222

11 vwwuu QP
σσσσσ T in Equation (8) as θ , EU as the space containing all 

possible values of U, and ES as the space containing all possible values of θ  (in the most general 

case, EU is 1×ℜ P  and ES is a (P+Q+1)×1 space spanned by nonnegative real numbers). 
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Diagnosability is defined following the definition of identifiability in Rao and Kleffe (1988). 

Definition 1   In model (5), a linear parametric function pTα , 1×ℜ∈ Pp , UE∈α  is said to be 

diagnosable if,  ∀ UE∈21, αα ,  

1 21 2 ( ) | ( ) |T T E E= =≠ ⇒ ≠U α U αp α p α Y Y . (9)  

A linear parametric function fTθ , 1)1( ×++ℜ∈ QPf , SE∈θ is said to be diagnosable if, ∀ SE∈21, θθ ,  

1 21 2 ( ) | ( ) |T T Cov Cov= =≠ ⇒ ≠θ θ θ θf θ f θ Y Y . (10) 

Remarks:   

1. In model (5), we are only concerned about the mean and variance of process faults.  

Therefore, only the first and second order moments are considered in the definition.   

2. The above definition means that a fault combination is called diagnosable if the change in 

the combined mean or variance causes a change in the mean or variance of observation Y.  

This definition does not depend on any specific diagnosis algorithm. 

3. By selecting different p and f, the diagnosability of different fault combinations can be 

evaluated. For example, by selecting T]0...01[or =fp , we can check if the mean or 

variance of the 1st fault is diagnosable.  If yes, we say the mean or variance of this fault can 

be uniquely identified or diagnosed. 

3.2 Criterion of Fault Diagnosability and Minimal Diagnosable Class 

The necessary and sufficient condition of fault diagnosability in a linear system is given by 

Theorem 1.  The proof can be found in Appendix A2. 

Theorem 1  Define the range space of a matrix as )(⋅R , and ][ ΨΓD = .  In model (5),  

(i) pTα  is diagnosable if and only if )( TR Γp ∈ .   

(ii) fTθ  is diagnosable if and only if )(Hf R∈ , where H is symmetric and given as 
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where L is the length of TT
N

TT ][ 21 yyy L  in Equation (3). 

Theorem 1 gives us a powerful tool to test if some combinations of faults are diagnosable.  From 

Theorem 1, it is clear that the means of all the faults are uniquely diagnosable if and only if ΓΓT  is 

of full rank.  The variances of all the faults are uniquely diagnosable if and only if H is of full rank.  

For the above criterion, the diagnosability of the variance of process fault includes the effects of 

the modeling error w and the observation noise v.  This means that even if a fault can be 

distinguished from other faults, it could still be non-uniquely diagnosable if it is tangled with the 

modeling error or the observation noise.  In some cases, if the modeling error and the observation 

noise can be assumed small or their variance can be estimated from the normal working condition of 

a manufacturing process, we can ignore their effects when exploring the diagnosability of process 

faults.  The testing matrix is revised accordingly by reducing θ  to include only ][ 22

1 Puu σσ L  and 

reducing the H matrix in Theorem 1 to Hr, where Hr is a sub-block of H, i.e.,  
2 2 2

:1 :1 :1 : :1 :

2 2 2
: :1 : : : :

2 2 2
: :1 : : : :

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

T T T
i P

T T T
r i i i i P

T T T
P P i P P

 
 
 
 =
 
 
  

Γ Γ Γ Γ Γ Γ

H Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ

" " " " "

" " " " "

. (12) 

Remarks: 

1. Under the setting that noises w and v are assumed negligible, the diagnosability matrix was 

defined in Ding, Shi, and Ceglarek (2002) as )(Γπ , where π(⋅) is a matrix transformation defined 

in their paper.  The variances of process faults are considered fully diagnosable if and only if 

)()( T ΓΓ ππ  is of full rank.  In fact, this condition is the same as what we derived here.  It can be 

shown that R(Hr)=R( )()( T ΓΓ ππ ).  Therefore, their work can be considered as a special case of 

the general framework presented in this paper. 

2. If noise terms are not included, Ding, Shi, and Ceglarek (2002) showed that the mean being 

diagnosable is a sufficient condition for variance being diagnosable.  However, the converse is 

not true.  This is illustrated in the case study of machining process in Section 4. 

Theorem 1 alone is not very effective in analyzing a partially diagnosable system where not all 
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faults are diagnosable.   It is not obvious from Theorem 1 what are the other faults that we need to 

know before we can identify a non-uniquely diagnosable fault.  To analyze the partial diagnosable 

system, we propose the concept of a minimal diagnosable class.  We first introduce the concept of 

the diagnosable class, and then present the definition of the minimal diagnosable class. 

Definition 2  A nonempty set of n faults {
1

...
ni iu u } forms a mean or variance diagnosable class 

if a nontrivial linear combination of their means {
1

...
ni iµ µ } or variances {

1

2 2...
ni iσ σ } are 

diagnosable.  "Nontrivial" means at least one coefficient of the linear combination is nonzero. 

Definition 3 A nonempty set of n faults {
1

...
ni iu u } forms a minimal mean or variance 

diagnosable class if no strict subset of {
1

...
ni iu u } is mean or variance diagnosable. 

The diagnosability of the mean and the variance can be dealt with separately, and the testing 

procedures are very similar (the only difference is the testing matrix; it is Γ T for mean and H for 

variance).  Hence, no distinction between mean or variance diagnosability will be made hereafter 

unless otherwise indicated.   

The minimal diagnosable classes expose the inter-relationship between different faults.  

Intuitively, a minimal diagnosable class represents a set of faults that are closely coupled together.  

We can only identify a linear combination of them, but we cannot identify any strict subset.  With 

this information, we can show the coupling relationship among faults and learn what additional 

information is needed to identify certain fault.   

We found that the minimal diagnosable class can be generated from the Reduced Row Echelon 

Form (RREF) (Lay 1997) of the transpose of testing matrices.  This result is stated in the following 

theorem.  The proof of this theorem is given in Appendix A3.   

Theorem 2 Given a testing matrix mn×ℜ∈G  (G is Γ T or H) and n faults =θ T
nu...u ][ 1  

corresponding to G, the fault set ][vθ  is a minimal diagnosable class if v is a nonzero row of the 

RREF of GT, where ][vθ  is a subset of θ  such that )(iθ  (the ith element of θ ) ∈ ][vθ  if v(i) (the ith 

element of v) ≠ 0. 

When the RREF of GT is calculated, we can obtain some of the minimal diagnosable classes.  
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The following corollary shows that by re-arranging the columns in GT, we can obtain all the possible 

minimal diagnosable classes (the proof is listed in Appendix A4).  The re-arranging process is 

known as matrix permutation.  The permuted matrix is defined as: if {ci}i=1…n denote the column 

vectors of GT and correspond to the faults =θ T
nu...u ][ 1 , the column-wise permuted matrix 

]...[
1 nii

T ccG =′  is called the permuted matrix corresponding to the fault permutation 

T
ii n

uu ]...[
1

=′θ .  

Corollary 1 Given a testing matrix mn×ℜ∈G  and if 
1

{ , ..., }
si iu u=Θ  is a minimal diagnosable 

class, then ][vθ =Θ , where v is the last nonzero row of T
r′G .  T

r′G  is the RREF of the permuted 

matrix of GT corresponding to the fault permutation 
11... ...

s n si i i iu u u u+ .  

Corollary 1 tells that a complete list of minimal diagnosable classes can be obtained by 

thoroughly permuting GT.  However, the number of permutations will explode if the number of 

faults is large.  To handle this problem, we need the concept of the “connected fault class.”   

Given the RREF of GT, assume we can divide its nonzero rows into two sets of rows (C1 and C2) 

such that for any iv ∈ C1 and jv ∈ C2, 0vv =ji * , where * is the Hadamard product (Scott 1997).  

In other words, iv  does not share any common nonzero column positions with jv . Define symbol 

[ ]Cθ  as the fault set of ( [ ])k
k
θ v∪  for all kv ∈ C, where C is a set of rows. We can show that for an 

arbitrary minimal diagnosable class [ ]θ v , either 1[ ] [ ]C⊆θ v θ  or 2[ ] [ ]C⊆θ v θ . From Theorem 1, v  

is in the space spanned by the rows of GT.  Thus, 2211 vvv aa += , where v1 and v2 are in the space 

spanned by the rows in C1 and C2, respectively.  However, if a1 and a2 are both nonzero, the facts 

that 0vv =ji *  and 1[ ]θ v , 2[ ]θ v  are both diagnosable will lead to the contradiction that ][vθ  is not 

minimal.  The implication is that the complete list of minimal diagnosable classes can be obtained 

by only permuting the faults within 1[ ]Cθ  and 2[ ]Cθ , respectively.  Following the same rule, C1 and 

C2 can be further divided into smaller groups iteratively until they are no longer dividable. If Ci is an 

un-dividable set of rows, [ ]iCθ  is called a “connected fault class.”   Following a similar argument, 

we know that the complete list of minimal fault classes can be obtained through permutations only 

within each connected fault class.   

If there are many small connected fault classes in the system, the computational load required to 



         

- 14 -  

find all minimal diagnosable classes can be significantly reduced.  The worst case is that all faults 

are connected in a big fault class.  However, that is usually not the situation in practice. For 

instance, one principle in manufacturing process design is to reduce the accumulation and 

propagation chain of process faults (Halevi and Weill, 1995).  For many actual engineering systems, 

the entire fault set can often be partitioned into much smaller connected fault subsets, as we will see 

in the case studies in Section 4. 

In summary, the algorithm obtaining all the minimal diagnosable classes is given as: 

(a) Calculate the RREF of GT,  

(b) Remove all the uniquely identifiable faults because each of them will form a minimal 

diagnosable class; remove the faults corresponding to zero columns because they are invisible to 

the measurement system and hence not diagnosable, and will not appear in any minimal 

diagnosable classes. 

(c) Find the connected fault classes based on the RREF of GT. 

(d) Permute the columns within the connected fault classes and obtain the minimal diagnosable 

classes based on the permuted matrices until all the possible permutations are visited.   

The minimal diagnosable classes expose the "aliasing" structure among the faults in the system, 

revealing critical fault diagnosability information.  For example, if a single fault forms a minimal 

diagnosable class, it is uniquely diagnosable.  If a fault is not uniquely diagnosable and it forms a 

minimal diagnosable class with several other faults, this fault can be identified when all other faults 

are known.  Thus, by looking at the minimal diagnosable classes, we can identify which fault can be 

identified from the measurements, and if not, what other faults need to be known to identify it.  

Minimal diagnosable classes can be used to evaluate the performance of different gauging 

systems in terms of the diagnosability of the process faults.  Consider the panel assembly process in 

Figure 1 as an example.  Another gauging system implemented in this system is shown in Figure 3.  

Counting potential locator errors on all stations, we have a total of n=18 potential faults, which are 

assigned a serial number from 1 to 18 as shown in Figure 3.  The difference between the two 

gauging systems in Figure 1 and in Figure 3 is the position of M5.  The problem of how to compare 
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these two systems in terms of the diagnosability of all 18 potential faults is addressed in the next 

subsection.   

 Pi   – locating points 
 Mi  – measurement points 

  - active 4-way locator  
  - active 2-way locator 
  - inactive 4-way locator 
  - inactive 2-way locator 
  - measurement location 

(a) Station I (b) Station II 
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Figure 3. Gauging System 2 for the Multistage 2-D Panel Assembly Process 

3.3 Gauging System Evaluation Based on Minimal Diagnosable Class 

To evaluate a gauging system, we may need several easy-to-interpret indices to characterize the 

information obtained through the gauging system. We propose three criteria for evaluation of 

gauging systems: information quantity, information quality, and system flexibility. 

The information quantity refers to the degree to which we know about process faults from the 

measurement data.  When two gauging systems are used for the same manufacturing system, the 

number of potential faults is the same.  However, for two different partially diagnosable systems, the 

number of faults that we need to know to ensure full diagnosability will often be different.  This 

number can be used to quantify the amount of information obtained by different gauging systems.  

The following corollary indicates that the rank of the diagnosability testing matrix should be used to 

quantify the amount of measurement information.  

Corollary 2  Given a testing matrix mn×ℜ∈G  and n faults T
nuu ]...[ 1=θ corresponding to G, if 

the rank of G is ρ, then n-ρ faults need to be known in order to uniquely identify all n faults. 

The proof is omitted here.  It will use the property of the RREF of a matrix.  An intuitive 

understanding of this corollary is given as follows.  The solvability condition of a linear system 

=Y AX  can be determined by analyzing the RREF of A.  In such a linear system, n-ρ free variables 
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need to be known before uniquely solving X, where n is the dimension of X, ρ=rank(A).  If we 

consider the testing matrix G as if it is in a similar situation to matrix A, the result of Corollary 2 is 

not surprising.  

The second criterion is information quality.  Even if two gauging systems provide the same 

amount of information per the criterion developed above, the detailed information contents could be 

very different.  In practice, it is always desirable to have unique identification of a fault so that a 

corrective action can be undertaken right away to eliminate the fault and to restore the system to its 

normal condition.  The decision of corrective actions cannot be made for a fault coupled with others 

without further investigation or measurement.  Thus, we use the number of uniquely identifiable 

faults to benchmark the quality of measurement information. The uniquely identifiable faults can be 

easily found by counting the number of the minimal diagnosable classes that contain only one single 

fault.  

The third criterion is the flexibility provided by the current gauging system toward achieving the 

full diagnosability.  Some gauging systems could be rigid in the sense that certain faults or fault 

combinations, which may be difficult to measure in practice, have to be known to achieve a fully 

diagnosable system.  Some other gauging systems may provide information in a flexible way, i.e., 

many fault combinations can be selected to make the system fully diagnosable.  This comparison 

needs the concept of minimal complementary classes.  A minimal complementary class is a minimal 

set of faults such that if they are known, all the faults of the system can be uniquely identified.  

Consider a system with four faults and three minimal diagnosable classes as {u1, u2}, {u1, u3, u4}, 

and {u2, u3, u4}.  One can verify that the minimal complementary classes for this system are {u1, 

u3}, {u1, u4}, {u2, u3}, {u2, u4}, and {u3, u4}.  The number of minimal complementary classes is 

five.  A system with more minimal complementary classes is considered to be more flexible.   

In general, it is difficult to find the complete sets of minimal complementary classes by simply 

trying out different fault combinations, especially for a complex system with large fault number and 

intricate fault combinations. Corollary 3 facilitates the determination of minimal complimentary 

classes; its proof can be found in Appendix A5. 
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Corollary 3  A set of faults forms a minimal complementary class if and only if the set contains n-ρ 

faults but does not contain any minimal diagnosable class, where n is the total number of faults and 

ρ is the rank of the diagnosability testing matrix. 

With Corollary 3, the complete minimal complementary classes can be found through a search 

among all fault sets with n-ρ faults.  If the entire fault set can be partitioned into many smaller 

distinct connected fault classes, the load of searching the complete minimal complementary classes 

can be further substantially reduced.  Corollary 3 can be applied to a connected fault class but n 

should be the total number of faults in the connected fault class and ρ is the rank of the space 

spanned by the associated row vectors in the RREF of the transpose of the testing matrix. Individual 

searches can be conducted within each connected fault class. The complete set of minimal 

complementary classes can then be obtained by joining the minimal complementary classes from 

each connected fault class and adding the non-diagnosable faults.  An example will be given in 

Section 4 to illustrate this procedure. 

The order of using the three criteria generally depends on the requirements of individual 

applications.  In some cases, when the ultimate goal is to design a gauging system providing the full 

diagnosability, we can skip the second criterion and compare the number of minimal complementary 

classes directly.  In some other cases, the second criterion can be used before the first criterion if the 

uniquely identified fault is highly desired.  Based on our experience, using the three criteria in the 

sequence in which they were presented here is an effective way for gauging system evaluation in 

many industrial applications.  

4. Case Study 

4.1 Case Study of a Multistage Assembly Process 

Consider the assembly processes shown in Figure 1 and Figure 3.  The product state variable xk 

is denoted by random deviations associated with the degrees of freedom (d.o.f.) of each part.  Each 

2-D part in this example has three d.o.f. (two translational and one rotational) and the size of  xk is 

12×1 given that there are four parts.  The state vector xk is expressed as 
T

kkkkkkk zxzx ][ ,4,4,4,1,1,1 δαδδδαδδ= LLx  (13) 
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where δ is the deviation operator, kix ,δ , kiz ,δ , and k,1δα  are two translational and one rotational 

deviations of part i on station k, respectively.  If part i has not yet appeared on station k, the 

corresponding kix ,δ , kiz ,δ , and k,1δα  are zeros.   

The input vector uk represents the random deviations associated with fixture locators on station 

k.  There are a total of 18 components of fixture deviations on three stations as indicated by the 

number 1-18 (i.e., the 18 faults) in Figure 3.  Thus, we have Tpp ][ 611 δδ= Lu , 

=2u Tpp ][ 157 δδ L , =3u Tppp ][ 181716 δδδ , where ipδ  is the deviation associated with fault 

i. 

The measurement y contains positional deviations detected at Mi, i=1,…,5.  In this 2-D case, 

each Mi can deviate in x- and/or z-directions.  Hence, =1y TzMxMzMxM ])()()()([ 2211 δδδδ , 

=2y TzMxMzMxM ])()()()([ 4433 δδδδ , and =3y  TzMxM ])()([ 55 δδ . 

The state space representation of this process is shown as follows 

1111 wuBx +=   and  kkkkkk wuBxAx ++= −− 11 , k=2, 3, (14) 

kkkk vxCy += , k=1,2,3. (15) 

Matrices Ak, Bk, and Ck are determined by process design and sensor deployment. The Ak 

characterizes the change in product state when a product is transferred from station k to station k+1.  

Thus, Ak depends on the coordinates of fixture locators on two adjacent stations k and k+1.  The Bk 

determines how fixture deviations affects product deviations on station k and is thus determined by 

the coordinates of fixture locators on station k. The Ck is determined by the coordinates of 

measurement points such as M1 to M5 in this example.   

Following the model development presented in Jin and Shi (1999) and Ding, Ceglarek, and Shi 

(2000), we give the numerical expressions of A’s, B’s, and C’s of the assembly processes shown in 

Figures 1 and 3, respectively.  The A’s, B’s, C1, and C2 are the same for these two processes since 

their fixture layouts are the same for all stations and the sensor deployments are the same for Station 

I and Station II.   
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We use 1
3C  and 2

3C  to denote C3 of these two gauging systems, respectively.  Their expressions are 
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For simplicity, we only discuss the variance diagnosability of fixture faults in this study.  Thus, 

we use Hr in Equation (12) as the testing matrix.  In order to use Hr, we need to obtain Γ  first.  

Substituting A’s, B’s and C’s in Equations (16) ~ (19) into Equation (3) yields 
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and 



         

- 20 -  







































−−
−−−−

−
−

−−
−−

−
−

−
−

=

057.1057.00183.024.000000057.00000000

096.0096.01304.04.010000096.01000000

00000048.148.20000000000

0000006.06.01000000000

000000000070.0070.10070.000143.0073.00

000000000385.0385.01385.000786.0401.00

00000000000026.126.20000

0000000000001.11.11000

000000000000000143.0143.10

000000000000000786.0786.01

2Γ

  (21) 

where the superscript 1 or 2 indicates which gauging system the Γ  is associated with.  Further, Hr 

can be obtained following its definition in Equation (12).  Their expressions are 
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The RREF of Hr’s and the corresponding fault structures are compared in Table 1. For gauging 

system 1, fourteen rows have only one nonzero element, corresponding to fourteen uniquely 

identified faults and hence minimal diagnosable classes, {1},…,{12},{16},{17}.  Two faults 
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(13,14) correspond to zero columns and hence they are not diagnosable. The 13th row has two 

nonzero elements, i.e., ]100100[ 121×0 , indicating that {15, 18} is a minimal diagnosable 

class.  The class {15, 18} is also a connected fault class and since it is already minimal, no further 

permutation is needed.  Similarly, for gauging system 2, there are thirteen uniquely diagnosable 

classes, {1},…,{12}, {18}. Two minimal diagnosable classes, {13, 16} and {14, 15, 17}, 

correspond to the 13th and 14th row, respectively.  No permutation of Hr is needed for gauging 

system 2, either. 

For gauging system 1, in order to achieve a fully diagnosable system, at least n-ρ=3 faults need 

to be known.  We first search fault set {15,18} with n=2 and ρ=1.  It is clear that {15} and {18} are 

two minimal complementary fault classes for the connected fault class {15, 18}.  Adding the non-

diagnosable faults {13, 14}, we obtain the minimal complementary classes as {13, 14, 15} and {13, 

14, 18}.  The number of minimal complementary classes is two. 

For gauging system 2, in order to find the minimal complementary class, we search the faults 

among {13, 16} with n=2 and ρ=1 and among {14,15,17} with n=3 and ρ=1.  The search yields 

{13} and {16} for {13, 16} and {14,15}, {14,17}, and {15,17} for {14,15,17}.  Joining these two 

fault groups together gives us 1 1
2 3 6C C⋅ =  minimal complementary classes, which are listed in Table 

1.  This analysis verifies that although engineering systems have many potential faults (18 faults in 

this case), they can often be partitioned into smaller connected fault classes.   

Neither gauging systems provides full diagnosability since their Hr’s are not of full rank.  Ranks 

of Hr’s are the same (ρ=15), suggesting that the amount of information obtained by both systems is 

the same.  But gauging system 1 can uniquely identify 14 faults, which are faults 1-12, 16, and 17, 

while gauging system 2 can only uniquely identify 13 faults, which are faults 1-12 and 18.  The 

information quality provided by gauging system 1 is considered better than that of gauging system 2.  

In this sense, gauging system 1 provides more valuable information.  However, one may also notice 

that gauging system 2 can have six possible ways of measuring additional faults in achieving a fully 

diagnosable system, while gauging system 1 only has two possibilities.  This difference indicates 

that gauging system 2 is more flexible.  If the third criterion is in a higher priority, gauging system 2 
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is more favorable. 

Table 1.  Comparison of gauging systems 1 and 2 

 Gauging System 1 Gauging System 2 

RREF(Hr) 
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# of potential faults 18 18 

Rank of testing matrix 15 15 

Minimal diagnosable classes {1},…,{12},{16},{17}, {15, 18} 
{1}, …, {12}, {18}, {13,16},  

{14, 15, 17} 

# of uniquely identified faults 14 13 

Minimal complementary classes {13, 14, 15}, {13, 14, 18} 
{13, 14, 15}, {13, 14, 17}, {13, 15, 17}, 
{16, 14, 15}, {16, 14, 17}, {16, 15, 17} 

# of minimal complementary classes 2 6 

4.2 Case Study of a Multistage Machining Process 

The proposed evaluation criteria can also be applied to multistage machining processes.  To 

machine a workpiece, we need first to fix the location of the workpiece in the space.  Figure 4 

shows a widely used 3-2-1 fixturing setup.  If we require the workpiece to touch all the locating 

pads (L1~L3) and locating pins (P1~P3), the location of the workpiece in the machine coordinate 

system XYZ is fixed.  The surface of the workpiece that touches the locating pads (L1~L3) (surface 

ABCD in Figure 4) is called "primary datum."  Similarly, surface ADHE is called "secondary 

datum" and DCGH is called "tertiary datum" in Figure 4.  Since the primary datum (surface ABCD) 

touches L1~L3, the translational motion in Z direction and the rotational motion in X and Y 

directions are restrained.  Similarly, the secondary datum constrains the translational motion in X 

direction and the rotational motion in Z direction; the tertiary datum constrains the translational 

motion in the Y direction.  Therefore, all six degrees of freedom associated with the workpiece are 

constrained by these three datum surfaces and the corresponding locating pins and pads. 

The cutting tool-path is calibrated with respect to the machine coordinate system XYZ.  Clearly, 

an error in the position of locating pads and pins will cause a geometric error in the machined 
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feature.  Suppose that we mill a slot on surface EFGH in Figure 4.  If L1 is higher than its nominal 

position, the workpiece will be tilted with respect to XYZ.  However, the cutting tool path is still 

determined with respect to XYZ.  Hence, the bottom surface of the finished slot will not be parallel 

to the primary datum (ABCD).  Besides the fixture error, the geometric errors in the datum feature 

will also affect the workpiece quality.  For example, if the primary datum (ABCD) is not 

perpendicular to the secondary datum (ADHE), the milled slot will not be perpendicular to the 

secondary datum, either. 
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Figure 4. A Typical 3-2-1 Fixturing Configuration 

A three-stage machining process using this 3-2-1 fixture setup is shown in Figure 5.  The 

product is an automotive engine head.  The features are the cover face (M), joint face, and the slot 

(S).  The cover face, joint face, and the slot are milled at the 1st (Figure 5(a)), the 2nd (Figure 5(b)), 

and the 3rd (Figure 5(c)) stages, respectively.   

We treat the positional errors of product features after stage k as state vector xk, the errors of 

fixture and cutting tool-path at stage k as input uk, and the measurements of positions and 

orientations of the machined product features as yk, which can be obtained by a Coordinate 

Measuring Machine (CMM).  The state space model (Equation (1)) can be obtained through a 

similar (to the above panel assembly) but more complicated 3D kinematics analysis, where Ak-1xk-1 

is the error contributed by the errors of datum features (these features are produced in previous 

stages) and Bkuk is the error contributed by fixture and/or cutting tool at stage k.  Details of this 

process and the corresponding state space model can be found in Zhou, Huang, and Shi (2002).  
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   (a)          (b)    (c) 

Figure 5.  Process Layout at Three Stages 

  After the model in Equation (1) is obtained, the diagnosability study for the multistage 

machining process can be conducted following the theories in Sections 2 and 3.  We focus on the 

fixture error in this case study. For a 3-2-1 fixture setup, there are 6 potential fixture errors at each 

stage (each locating pad and pin could have one error).  Hence, there are 18 potential faults in the 

whole system, where faults 1-6 represent locator errors at the 1st stage, faults 7-12 at the 2nd stage, 

and faults 13-18 at the 3rd stage, respectively.  Three gauging systems are used to measure slot S, 

cover face M, and the rough datum, respectively, where the rough datum is the primary datum at the 

1st stage and can be seen from the joint face.  The results of a fault diagnosability for the three 

systems are listed in Table 2. 

The RREF of the testing matrices of gauging system 1 and 2 have a very simple structure.  For 

the gauging system 3 (the 4th column in Table 2), the first 3 rows of RREF(ΓΓΓΓ) share common 

nonzero column positions.  The corresponding faults, {1, 2, 3, 7, 8, 9}, form a connected fault class 

regarding its mean diagnosability. By permuting the corresponding columns of RREF(ΓΓΓΓ), we can 

generate 15 minimal diagnosable classes (each has four faults) within this connected fault class as 

shown in Table 2. The minimal complementary class of this connected fault class can be found by 

searching the class with n = 6, ρ = 3.  We obtain 3
6C = 20 minimal complementary classes for the 

connected class: {1, 7, 8}, {2, 7, 8}, {3, 7, 8}, {1, 7, 9}, {2, 7, 9}, {3, 7, 9}, {1, 8, 9}, {2, 8, 9}, {3, 

8, 9}, {1, 2, 7}, {1, 2, 8}, {1, 2, 9}, {1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {2, 3, 7}, {2, 3, 8}, {2, 3, 9}, {1, 

2, 3}, {7, 8, 9}.  Adding the non-diagnosable faults {4, 5, 6, 13~18}, we can obtain 20 minimal 

complementary classes for the system regarding the mean diagnosability.  It is also interesting to see 
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that while the faults {1, 2, 3, 7, 8, 9} form a connected fault class regarding its mean diagnosability, 

they are uniquely diagnosable regarding its variance diagnosability.  This verifies our previous 

remark that mean diagnosability requires a stronger condition than variance diagnosability does. 

Table 2.  Comparison of gauging systems  

Gauging System System 1 (Slot S) System 2 (Cover Face M) System 3 (Rough Datum) 

Mean Diagnosability: 
RREF( )Γ  

6 12 6 6

30 12 30 6

36 18

× ×

× ×

×

 
 
  

0 I

0 0
 

6 3 6 6 6 6

30 3 30 6 30 3 30 6

36 18

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

× × ×

× × × ×

×

 
 
 

− 
 
 
 
 
 
   

0 I 0

0 0 0 0

 
3 3 3 3 3 3 3 6

3 3 3 3 3 3 3 3 3 6

30 3 30 3 30 3 30 3 30 6

-0.63 0.53 -0.90

0.47 -0.57 -0.90

-0.49 -0.48 -0.04

× × × ×

× × × × ×

× × × × ×

 
 
 
 
 
 
 
 
 
 
 
 
   

I 0 0 0

0 0 0 I 0

0 0 0 0 0

 

Variance 
Diagnosability: 
RREF(Hr) 

6 12 6 6

12 12 12 6

18 18

× ×

× ×

×

 
 
  

0 I

0 0
 

6 3 6 6 6 6

12 3 12 6 12 3 12 6

18 18

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

× × ×

× × × ×

×

 
 
 
 
 
 
 
 
 
   

0 I 0

0 0 0 0

 
3 3 3 3 3 6 3 6

6 3 6 3 6 6 6 6

9 3 9 3 9 6 9 6

× × × ×

× × × ×

× × × ×

 
 
 
  

I 0 0 0

0 0 I 0

0 0 0 0

 

# of potential faults 18 18 18 

Γ  6 6 6 
Rank of testing matrix 

Hr 6 6 9 

 mean 
{13}, {14}, 
{15}, {16}, 
{17}, {18} 

{7}, {8}, {9}, {4, 10},  
{5, 11}, {6, 12} 

{10}, {11}, {12}, {1, 7, 8, 9}, {2, 
7, 8, 9}, {3, 7, 8, 9}, {1, 3, 8, 9}, 
{2, 3, 8, 9}, {1, 7, 3, 9}, {2, 7, 3, 
9}, {1, 7, 8, 3}, {2, 7, 8, 3}, {1, 2, 
8, 9}, {1, 7, 2, 9}, {1, 7, 8, 2}, {1, 
2, 3, 9}, {1, 2, 8, 3}, {1, 7, 2, 3} 

Minimal diagnosable 
classes 

 variance 
{13}, {14}, 
{15}, {16}, 
{17}, {18} 

{7}, {8}, {9}, {4, 10}, 
{5, 11}, {6, 12} 

{1}, {2}, {3}, {7}, {8}, {9}, 
{10}, {11}, {12} 

 mean 6 3 3 # of uniquely  
identified faults  variance 6 3 9 

 mean 1 8 20 # of minimal 
complementary classes  variance 1 8 1 

5.  Concluding Remarks 

This paper studied the diagnosability of process faults given the product quality measurements 

in a complicated multistage manufacturing process. This study reveals that the diagnosis capability 

that a gauging system can provide strongly depends on sensor deployment in a multistage 

manufacturing system. A poorly designed gauging system is likely to result in the loss of 
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diagnosability. On the contrary, a well-designed gauging system, which achieves the desired level of 

diagnosability, can not only monitor the process change but also quickly identify the process root 

causes of quality-related problems.  The quick root cause identification will lead to product quality 

improvement, production downtime reduction, and hence a remarkable cost reduction in 

manufacturing systems. 

  This study was a model-based approach; a linear fault-quality model was used.  The results can 

be used where a linear diagnostic model is available.  Because the errors of tooling elements 

considered in quality control problems are often much smaller than the nominal parameters, most of 

manufacturing systems can be linearized and then represented by a linear model under the small 

error assumption.  Many of the linear state space models reviewed in Section 2 were validated 

through comparison with either a commercial software simulation (Ding, Ceglarek, and Shi 2000) 

or with experimental data (Zhou, Huang, and Shi 2002; Djurdjanovic and Ni 2001).  Thus, the small 

error assumption is not restrictive and the methodology presented in this article is generic and 

applicable to various manufacturing systems.   

Another note on the applicability of the reported methodology is that for some poorly designed 

manufacturing system, a large number of process faults could possibly be coupled together and form 

a single huge connected fault class. As a result, it would be impractical to exhaust matrix column-

permutation in finding the complete list of minimal diagnosable classes and the diagnosability study 

itself then becomes intractable. 

The development of the diagnosis algorithm that can give the best estimation of process faults 

will follow this diagnosability study.  This is our ongoing research. 

Appendices 

A1. Theorem 4.2.1 in Rao and Kleffe (1988). 

Consider a general linear mixed model εXβY += , where β  represents the fixed effects and ε  is 

zero mean and rrθθCov VVε ++= ...)( 11 .  Denote T
r ]...[ 1 θθ=θ  as variance components.  pTβ  

is identifiable if and only if )( TR Xp ∈ , fTθ  is identifiable if and only if )(Hf R∈ , 

rjritr ji ≤≤≤≤=′ 1,1)),(( VVH . 
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A2. Proof of Theorem 1 

This theorem is an extension of the theorem (4.2.1) in Rao and Kleffe (1988) (it is listed in A1).  

From that theorem, pTα  is diagnosable if and only if ])...([ TTR ΓΓp ∈ .  It is clear that 

)(])...([ TTT RR ΓΓΓ = .  Therefore, (i) holds.  For (ii), fTθ  is diagnosable if and only if 

)(Hf ′∈ R , where ( ( )), 1 1, 1 1i jtr i P Q j P Q′ = ≤ ≤ + + ≤ ≤ + +H FF , and Fi and Fj are defined in 

Equation (8).  It can be further shown that HH M=′ .  Since a constant coefficient does not affect 

the range space of a matrix, the result of (ii) follows.       

A3. Proof of Theorem 2  

Denote the row and column space of a matrix as Row(⋅) and Col(⋅), respectively, the RREF of GT as 
T
rG , and the nonzero row vectors of T

rG as {vi}i=1…ρ, where ρ is the rank of T
rG .  Noticing that T

rG  

is unique and Row( T
rG ) = Row(GT ) (Lay, 1997), we have )(Col Gv ∈i .  Hence, [ ]iθ v  is a 

diagnosable class.   

We need to further prove that [ ]iθ v  is a minimal diagnosable class. From the algorithm to obtain 

RREF, the leftmost element of vi is always a "leading 1."  The position of such a "leading 1" in vi is 

called the pivot position.  Denote the set of all pivot positions contributed by the rows of T
rG  as Ξ .  

It is known that (i) given an i∈ {1,…, ρ}, there is only one nonzero element in { ( )}i jj ∈ Ξv . (ii) if 

{ci}i=1…n are columns of T
rG , then there is only one nonzero element in ci if i ∈ Ξ .  From (i), [ ]iθ v  

must be in the form {
ki iip uuu ...,,,

1
}, 1, ...i kp i i∈ ∉Ξ Ξ .  Assume that [ ]iθ v  is not a minimal 

diagnosable class, we can then find a vector iv′  such that [ ] [ ]i i′ ⊂θ v θ v , )Row( T
ri Gv ∈′  and hence 

iv′  can be written as ∑
ρ

=

=′
1j

jji a vv .  However, from (ii), if there is a j, aj is nonzero, 
jpu  must be in 

[ ]i′θ v , where pj is the pivot position of vj.  Since [ ]iθ v  only contains one fault at the pivot position 

pi, ai is the only possible nonzero coefficient.  Then, [ ] [ ]i i′ =θ v θ v .  This contradicts the assumption 

that [ ] [ ]i i′ ⊂θ v θ v , implying that [ ]iθ v  is a minimal diagnosable class.   

A4. Proof of Corollary 1 

Denote {vi}i=1…ρ as the nonzero row vectors of T
r′G .  We want to prove that the pivot position of 

the last row vρ must be n-s+1 (this position corresponds to 
1i

u ).  First, suppose that the pivot 

position of vρ is larger than n-s+1.  If so, Θvθ ⊂ρ ][ .  According to Theorem 2, however, ][ ρvθ  is a 
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diagnosable class.  This contradicts the fact that Θ  is minimal.  Second, assume that the pivot 

position of vρ is smaller than n-s+1.  If so, a fault among {
ns ii uu ,...,

1+
} must belong to ][ ρvθ .  Since 

the pivot position of vρ is the largest among all the pivot positions of {vi}i=1…ρ, given any vector 

jjjf a vv ρ
=Σ= 1  (defined as an arbitrary nontrivial linear combination of {vi}i=1…ρ), [ ]fθ v  contains at 

least one element among {
ns ii uu ,...,

1+
}.  According to Theorem 1, any diagnosable class should 

contain at least one element among {
ns ii uu ,...,

1+
} since vf is an arbitrary vector in Row( T

r′G ).  This 

contradicts the assertion that },,{
1 sii uu K=Θ  is a minimal diagnosable class.  Therefore, the pivot 

position of vρ is at n-s+1, i.e., θ [vρ] ⊆ Θ .  Since θ [vρ] and Θ  are both minimal, θ [vρ]=Θ .  

A5. Proof of Corollary 3 

From Corollary 2, it is clear that a minimal complementary class should contain exactly n-ρ faults.  

Assume that a minimal complementary class contains a minimal diagnosable class that includes n1 

faults.  Since a minimal diagnosable class is diagnosable, we only need to know n1-1 faults in the 

minimal diagnosable class to identify all the n1 faults.  Then, the number of faults in the minimal 

complementary class can be reduced by 1.  Thus, a fault class is a minimal complementary class 

only if it does not contain any minimal diagnosable class.  Now we need to prove that if a fault class 

with n-ρ elements does not include any minimal diagnosable class, it is a minimal complementary 

class.  Assume that a fault class {
ρ−nii uu ...

1
} does not contain any minimal diagnosable class.  

Consider the RREF of the permuted matrix TG′  corresponding to the fault permutation in-

ρ+1…ini1…in-ρ.  Since 
ρ−nii uu ...

1
 do not include any minimal diagnosable class, the last n-ρ columns of 

the RREF should not include any pivot positions according to Corollary 1.  However, since there are 

total ρ pivot positions, every column among the first ρ columns of the RREF should contain only a 

"leading 1".  Hence, it is clear that all the faults can be uniquely identified if the n-ρ faults that 

correspond to the last n-ρ columns are known.     
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