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Abstract

The assumption of positivity or experimental treatment assignment requires that
observed treatment levels vary within confounder strata. This article discusses
the positivity assumption in the context of assessing model and parameter-speci?c
identi?ability of causal e?ects. Positivity violations occur when certain subgroups
in a sample rarely or never receive some treatments of interest. The resulting
sparsity in the data may increase bias with or without an increase in variance and
can threaten valid inference. The parametric bootstrap is presented as a tool to
assess the severity of such threats and its utility as a diagnostic is explored using
simulated data. Several approaches for improving the identi?ability of parame-
ters in the presence of positivity violations are reviewed. Potential responses to
data sparsity include restriction of the covariate adjustment set, use of an alter-
native pro jection function to de?ne the target parameter within a non-parametric
marginal structural model, restriction of the sample, and modi?cation of the target
intervention. All of these approaches can be understood as trading o? proximity
to the initial target of inference for identi?ability; we advocate approaching this
tradeo? systematically.
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Abstract

The assumption of positivity or experimental treatment assignment re-
quires that observed treatment levels vary within confounder strata. This ar-
ticle discusses the positivity assumption in the context of assessing model and
parameter-specific identifiability of causal effects. Positivity violations occur
when certain subgroups in a sample rarely or never receive some treatments of
interest. The resulting sparsity in the data may increase bias with or without an
increase in variance and can threaten valid inference. The parametric bootstrap
is presented as a tool to assess the severity of such threats and its utility as a
diagnostic is explored using simulated data. Several approaches for improving
the identifiability of parameters in the presence of positivity violations are re-
viewed. Potential responses to data sparsity include restriction of the covariate
adjustment set, use of an alternative projection function to define the target pa-
rameter within a non-parametric marginal structural model, restriction of the
sample, and modification of the target intervention. All of these approaches
can be understood as trading off proximity to the initial target of inference for
identifiability; we advocate approaching this tradeoff systematically.

Keywords: experimental treatment assignment, positivity, marginal structural model,
inverse probability weight, double robust, causal inference, counterfactual, parametric
bootstrap, realistic treatment rule, trimming, stabilized weights, truncation
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1 Introduction.

Incomplete control of confounding is a well-recognized source of bias in causal ef-
fect estimation- measured covariates must be sufficient to control for confounding in
order for causal effects to be identified based on observational data. The identifia-
bility of causal effects further requires sufficient variability in treatment or exposure
assignment within strata of confounders. The dangers of causal effect estimation
in the absence of adequate data support have long been understood.1 More recent
causal inference literature refers to the need for adequate exposure variability within
confounder strata as the assumption of positivity or experimental treatment assign-
ment.2;3;4 While perhaps less well-recognized than confounding bias, violations and
near violations of the positivity assumption can increase both the variance and bias
of causal effect estimates, and if undiagnosed can seriously threaten the validity of
causal inferences.

Positivity violations can arise for two reasons. First, it may be theoretically impossible
for individuals with certain covariate values to receive a given exposure of interest. For
example, certain patient characteristics may constitute an absolute contraindication
to receipt of a particular treatment. The threat to causal inference posed by such
structural or theoretical violations of positivity does not improve with increasing
sample size. Second, violations or near violations of positivity can arise in finite
samples due to chance. This is a particular problem in small samples, but also occurs
frequently in moderate to large samples when the treatment is continuous or can
take multiple levels, or when the covariate adjustment set is large and/or contains
continuous or multi-level covariates. Regardless of the cause, causal effects may be
poorly or non-identified when certain subgroups in a finite sample do not receive some
of the treatment levels of interest. In this paper, we will use the term “sparsity” to
refer to positivity violations and near-violations arising from either of these causes,
recognizing that other types of sparsity can also threaten valid inference.

In this article, we discuss the positivity assumption within a general framework for
assessing the identifiability of causal effects. The causal model and target causal
parameter are defined using a non-parametric structural equation model (NPSEM)
and the positivity assumption is introduced as a key assumption needed for parameter
identifiability. The counterfactual or potential outcome framework is then used to
review estimation of the target parameter, assessment of the extent to which data
sparsity threatens valid inference for this parameter, and practical approaches for
responding to such threats. For clarity, we focus on a simple data structure in which
treatment is assigned at a single time point. Concluding remarks generalize to more
complex longitudinal data structures.

Data sparsity can increase both the bias and variance of a causal effect estimator; the
extent to which each are impacted will depend on the estimator used. An estimator-
specific diagnostic tool is thus needed to quantify the extent to which positivity viola-
tions threaten the validity of inference for a given causal effect parameter (for a given
model, data-generating distribution, and finite sample). Wang, et. al. proposed such
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a diagnostic based on the parametric bootstrap.5 Application of a candidate estima-
tor to bootstrapped data sampled from the estimated data generating distribution
provides information about the estimator’s behavior under a data generating distri-
bution that is based on the observed data. The true parameter value in the bootstrap
data is known and can be used to assess estimator bias. A large bias estimate can
alert the analyst to the presence of a parameter that is poorly identified, an important
warning in settings where data sparsity may not be reflected in the variance of the
causal effect estimate.

Once bias due to violations in positivity have been diagnosed, the question remains
how best to proceed with estimation. We review several approaches. Identifiability
can be improved by extrapolating based on subgroups in which sufficient treatment
variability does exist; however, such an approach requires additional parametric model
assumptions. Alternative approaches for responding to sparsity include the following:
restriction of the sample to those subjects for whom the positivity assumption is not
violated (known as trimming); re-definition of the causal effect of interest as the
effect of only those treatments that do not result in positivity violations (estimation
of the effects of “realistic” or “intention to treat” dynamic regimes); restriction of
the covariate adjustment set to exclude those covariates responsible for positivity
violations; and, when the target parameter is defined using a marginal structural
working model, use of a projection function that focuses estimation on areas of the
data with greater support.

As we discuss, all of these approaches change the parameter being estimated by
trading proximity to the original target of inference for improved identifiability. We
advocate incorporation of this tradeoff into the effect estimator itself. This requires
defining a family of parameters, the members of which vary in their proximity to the
initial target and in their identifiability. An estimator can then be defined that selects
among the members of this family according to some pre-specifed criteria.

1.1 Outline.

The article is structured as follows. Section 2 introduces a non-parametric structural
equation model for a simple point treatment data structure, defines the target causal
parameter using a non-parametric marginal structural model, and discusses conditions
for parameter identifiability with an emphasis on the positivity assumption. Section
3 reviews three classes of causal effect estimators and discusses the behavior of these
estimators in the presence of positivity violations. Section 4 reviews approaches for
assessing threats to inference arising from positivity violations, with a focus on the
parametric bootstrap. Section 5 investigates the performance of the parametric boot-
strap as a diagnostic tool using simulated data. Section 6 then applies the diagnostic
tool to a real data example. Section 7 reviews methods for responding to positivity
violations once they have been diagnosed, and integrates these methods into a general
approach to sparsity that is based on defining a family of parameters. Section 8 offers
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some concluding remarks and advocates a systematic approach to possible violations
in positivity.

2 Framework for causal effect estimation.

We proceed from the basic premise that model assumptions should honestly reflect
investigator knowledge. The non-parametric structural equation model (NPSEM)
framework of Pearl provides a systematic approach for translating background knowl-
edge into a causal model and corresponding statistical model, defining a target causal
parameter, and assessing the identifiability of that parameter.6 We illustrate this
approach using a simple point treatment data structure. We minimize notation by
focusing on discrete-valued random variables.

2.1 Model.

Let W denote a set of baseline covariates on a subject, let A denote a treatment
or exposure variable, and let Y denote an outcome. Specify the following structural
equation model (with random input U ∼ PU):

W = fW (UW ) (1)

A = fA(W,UA)

Y = fY (W,A,UY ),

where U = (UW , UA, UY ) denotes the set of background factors that deterministically
assign values to (W,A, Y ) according to functions (fW , fA, fY ). Each of the equations
in this model is assumed to represent a mechanism that is autonomous, in the sense
that changing or intervening on the equation will not affect the remaining equations,
and that is functional, in the sense that the equation reflects assumptions about
how the observed data were in fact generated by Nature. In addition, each of the
equations is non-parametric, in the sense that its specification does not require as-
sumptions regarding the true functional form of the underlying causal relationships.
However, if aspects of the functional form of any of these equations are known based
on background knowledge, such knowledge can be incorporated into the model.

A causal graph is derived from a non-parameteric structural equation model by con-
necting each observed variable to its “parents” (the subset of covariates found in the
right hand side of the corresponding structural equation) with arrows emanating from
the parents. The causal graph corresponding to Model (1) is given in Figure 1. The
background factors U are assumed to be jointly independent in this particular model;
or in other words, the model is assumed to be Markov.6 This assumption is encoded
in the absence of double headed arrows between the elements of U in Figure 1. The
NPSEM framework can also be applied to non-Markov models.

5
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Figure 1: Causal Graph for Non-Parametric Structural Equation Model (1).
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Let the observed data consist of n i.i.d. observations O1, . . . , On of

O = (W,A, Y ) ∼ P0.

Causal model (1) places no restrictions on the allowed distributions for P0, and thus
implies a non-parametric statistical model.

2.2 Target causal parameter.

A causal effect can be defined in terms of the joint distribution of the observed data
under an intervention on one or more of the structural equations, or equivalently, un-
der an intervention on the causal graph. For example, consider the post-intervention
distribution of Y under an intervention on the structural model to set A = a. Such
an intervention corresponds to replacing A = fA(W,UA) with A = a in the structural
model (1), as follows:

W = fW (UW ) (2)

A = a

Y = fY (W,a, UY ).

The counterfactual outcome that a given subject with background factors u would
have had if he or she were to have received treatment level a is denoted Ya(u).7;8

This counterfactual can be derived as the solution to the structural equation fY in
equation system (2) within input U = u.

Let FX denote the distribution ofX = (W, (Ya : a ∈ A)), whereA denotes the possible
values that the treatment variable can take (e.g. {0, 1} for a binary treatment). FX
describes the joint distribution of the baseline covariates and counterfactual outcomes
under a range of interventions on treatment variable A. A causal effect can be defined
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as some function of FX . For example, a common target parameter for binary A is the
average treatment effect

EFX
(Y1 − Y0), (3)

or the difference in expected counterfactual outcome if every subject in the population
had received versus had not received treatment.

Alternatively, an investigator may be interested in estimating the average treatment
effect separately within certain strata of the population and/or for non-binary treat-
ments. Specification of a marginal structural model (a model on the conditional
expectation of the counterfactual outcome given effect modifiers of interest) provides
one option for defining the target causal parameter in such cases.4;9;10 Marginal struc-
tural models take the following form:

EFX
(Ya | V ) = m(a, V | β), (4)

where V ⊂ W denotes the strata in which one wishes to estimate a conditional causal
effect. For example, one might specify the following model:

m(a, V | β) = β1 + β2a+ β3V + β4aV.

For a binary treatment A ∈ {0, 1}, such a model implies an average treatment effect
within stratum V = v equal to β2 + β4v.

The true functional form of EFX
(Ya | V ) will generally not be known. One option is

to assume that the parametric model m(a, V | β) is correctly specified, or in other
words that EFX

(Ya | V ) = m(a, V | β) for some value β. Such an approach, however,
can place additional restrictions on the allowable distributions of the observed data
and thus change the statistical model. In order to respect the premise that the
statistical model should faithfully reflect the limits of investigator knowledge and not
be altered in order to facilitate definition of the target parameter, we advocate an
alternative approach in which the target causal parameter is defined using a non-
parametric marginal structural model. Under this approach the target parameter β
is defined as the projection of the true causal curve EFX

(Ya | V ) onto the specified
model m(a, V | β) according to some projection function h(a, V ):

β(FX ,m, h) = argmin
β
EFX

[∑
a∈A

(Ya −m(a, V |β))2h(a, V )

]
.11 (5)

When h(a, V ) = 1, the target parameter β corresponds to an unweighted projection of
the entire causal curve onto the model m(a, V |β); alternative choices of h correspond
to placing greater emphasis on specific parts of the curve (i.e. on certain (a, V )
values).

Use of a non-parametric marginal structural model such as (5) is attractive because
it allows the target causal parameter to be defined within the original statistical
model. However, this approach by no means absolves the investigator from careful
consideration of marginal structural model specification. A poorly specified model
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m(a, V |β) may result in a target parameter that provides a poor summary of the
features of the true causal relationship that are of interest.

In the following sections we discuss the parameter β(FX ,m, 1) as the target of infer-
ence, corresponding to a focus on estimation of the treatment-specific mean for all
levels a ∈ A within strata of V as projected onto modelm, with projection h(a, V ) = 1
chosen to reflect a focus on the entire causal curve. To simplify notation we use β to
refer to this target parameter unless otherwise noted.

2.3 Identifiability.

We assess whether the target parameter β of the counterfactual data distribution FX
is identified as a parameter of the observed data distribution P0 under causal Model
(1). Because Model (1) is Markov, we have that

PFX
(Ya = y) =

∑
w

P0(Y = y|W = w,A = a)P0(W = w), (6)

identifying the target parameter β according to projection (5).6 This identifiability
result is often referred to as the G-computation formula.2;3;12 The weaker assumption
of randomization, or the assumption that A and Ya are conditionally independent
given W , is also sufficient for identifiability result (6) to hold.

Randomization Assumption:

A
∐

Ya|W for all a ∈ A.2;3;12 (7)

Whether or not a given structural model implies that assumption (7) holds can be
assessed directly from the graph through the back door criterion.6

2.3.1 The need for experimentation in treatment assignment.

The G-computation formula (6) is only a valid formula if the conditional distributions
in the formula are well-defined. Let g0(a | W ) ≡ P0(A = a | W ), a ∈ A denote the
conditonal distribution of treatment variable A under the observed data distribution
P0. If one or more treatment levels of interest do not occur within some covariate
strata, the conditional probability P0(Y = y|A = a,W = w) will not be well-defined
for some value(s) (a, w) and the identifiability result (6) will break down.

A simple example provides intuition into the threat to parameter identifiability posed
by sparsity of this nature. Consider an example in which W = I(woman), A is
a binary treatment, and no women are treated (g0(1|W = 1) = 0). In this data
generating distribution there is no information regarding outcomes among treated
women. Thus, as long as there are women in the target population (i.e. P0(W =
1) > 0), the average treatment effect EFX

(Y1 − Y0) will not be identified without
additional parametric assumptions.
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This simple example illustrates that a given causal parameter under a given model
may be identified for some joint distributions of the observed data but not for oth-
ers. An additional assumption is thus needed to ensure identfiability. We begin
by presenting the strong version of this assumption, needed for the identification of
PFX

((Ya = y,W = w) : a, y, w) in a non-parametric model.

Strong Positivity Assumption:

inf
a∈A

g0(a | W ) > 0, - a.e. (8)

The strong positivity assumption, or assumption of experimental treatment assign-
ment (ETA), states that each possible treatment level occurs with some positive
probability within each strata of W .

Parametric model assumptions may allow the positivity assumption to be weakened.
In the example above, an assumption that the treatment effect is the same among
treated men and women would result in identification of the average treatment effect
(3) based on extrapolation from the estimated treatment effect among men (assuming
that other identifiability assumptions were met). Parametric model assumptions of
this nature are particularly dangerous, however, because they extrapolate to regions
of the joint distribution of (A,W ) that are not supported by the data. Such assump-
tions should be approached with caution and adopted only when they have a solid
foundation in background knowledge.

In addition to being model-specific, the form of the positivity assumption needed
for identifiability is parameter-specific. Many target causal parameters require much
weaker versions of positivity than (8). To take one simple example, if the target
parameter is E(Y1), the identifiability result only requires that g0(1|W ) > 0 hold; it
doesn’t matter if there are some strata of the population in which no one was treated.
Similarly, the identifiability of β(FX ,m, h), defined using a marginal structural model,
relies on a weaker positivity assumption.

Positivity Assumption for β(FX , h,m):

sup
a∈A

h(a, V )

g(a|W )
<∞, - a.e. (9)

Choice of projection function h(a, V ) used to define the target parameter thus has
implications for how strong an assumption on positivity is needed for identifiability.
In Section 7 we consider specification of alternative target parameters that allow for
weaker positivity assumptions than (8), including parameters indexed by alternative
choices of h(a, V ). For now we focus on the target parameter β indexed by the choice
h(a, V ) = 1 and note that (8) and (9) are equivalent for this parameter.

Once a target parameter has been specified, an assessment of its identifiability should
precede estimation. Causal graphs provide a tool for assessment of identifiability as-
sumption (7); however, an additional tool is needed to assess threats to identifiability
arising from positivity violations or near violations. Section 4 reviews approaches
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for diagnosing such threats, with a focus on the parametric bootstrap. Because the
impact of positivity violations is estimator-specific, we first review several common
estimators of β and discuss their behavior in the face of sparsity.

3 Estimator-specific behavior in the face of posi-

tivity violations.

Let Ψ(P0) denote the target parameter of the observed data distribution, which under
the assumptions of randomization (7) and positivity (9) equals the target causal pa-
rameter β(FX ,m, h). Estimators of this parameter are denoted Ψ̂(Pn), where Pn is the
empirical distribution of a sample of n i.i.d observations from P0. We use Q0W (w) ≡
P0(W = w), Q0Y (y|A,W ) ≡ P0(Y = y|A,W ), and Q̄0(A,W ) ≡ E0(Y |A,W ). Recall
that g0(a|W ) ≡ P0(A = a|W ). We review three classes of estimators Ψ̂(Pn) of β
that employ estimators of distinct parts of the observed data likelihood. Maximum
likelihood-based substitution estimators (also referred to as “G-computation” estima-
tors) employ estimators of Q0 ≡ (Q0W , Q̄0). Inverse probability weighted estimators
employ estimators of g0. Double robust estimators employ estimators of both g0 and
Q0. A summary of these estimators is provided in Table 1. Their behavior in the face
of positivity violations is illustrated in Section 5 and previous work.11;13;14;15;16

We focus our discussion on bias in the point estimate of the target parameter β. While
estimates of the variance of β can also be biased when data are sparse, methods
exist to improve variance estimation. The non-parametric bootstrap provides one
straightforward approach to variance estimation in setting where the central limit
theorem may not apply as a result of sparsity; alternative approaches to correct
for biased variance estimates are also possible.17 These methods will not, however,
protect against misleading inference if the point estimate itself is biased.

3.1 The G-computation estimator.

The G-computation estimator Ψ̂Gcomp(Pn) provides a mapping from the empirical

data distribution Pn to a parameter estimate β̂Gcomp. Ψ̂Gcomp(Pn) is a substitution
estimator based on identifiability result (6). It is implemented based on an estimator
of Q0 ≡ (Q0W , Q̄0) and its consistency relies on the consistency of this estimator.2;3

Q0W can generally be estimated based on the empirical distribution of W . However,
even when positivity is not violated, the dimension of A,W is frequently too large
for Q̄0 to be estimated simply by evaluating the mean of Y within strata of (A,W ).
Due to the curse of dimensionality, estimation of Q̄0 under a non-parametric or semi-
parametric statistical model thus frequently requires data-adaptive approaches such
as cross-validated loss-based learning.18;19;20

Given an estimator Q̄n of Q̄0, the G-computation estimator can be implemented by
generating a predicted counterfactual outcome for each subject under each possible
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Table 1: Overview of three classes of causal effect estimator.

G-computation Estimator (Section 3.1)

Needed for Implementation: Estimator Qn of Q0

Needed for Consistency: Qn is a consistent estimator of Q0

Response to Sparsity:
Extrapolates based on Qn

Sparsity can amplify bias due to model misspecification

IPTW Estimator (Section 3.2.)

Needed for Implementation: Estimator gn of g0

Needed for Consistency:
gn is a consistent estimator of g0

g0 satisfies positivity

Response to Sparsity:
Does not extrapolate based on Qn

Sensitive to positivity violations and near violations

DR Estimators (Section 3.3.)

Needed for Implementation: Estimator gn of g0 and Qn of Q0

Needed for Consistency:
gn is consistent or Qn is consistent
gn converges to a distribution that satisfies positivity

Response to Sparsity:
Can extrapolate based on Qn

Without positivity, relies on consistency of Qn

treatment: Ŷa,i = Q̄n(a,Wi) for a ∈ A, i = 1, ..., n. The estimate β̂Gcomp is then

obtained by regressing Ŷa on a and V according to the model m(a, V | β), with
weights based on the projection function h(a, V ).

When all treatment levels of interest are not represented within all covariate strata
(i.e. assumption (8) is violated), some of the conditional probabilities in the non-
parametric G-computation formula (6) will not be defined. A given estimate Q̄n may
allow the G-computation estimator to extrapolate based on covariate strata in which
sufficient experimentation in treatment level does exist. Importantly, however, this
extrapolation depends heavily on the model for Q̄0 and the resulting effect estimates
will be biased if the model used to estimate Q̄0 is misspecified.

Moore et. al. illustrate the bias that can arise in the G-computation estimator when
simple model fitting algorithms such as forward and backward selection are used to
estimate Q̄0(A,W ).15 While more sophisticated model fitting techniques can improve
estimator performance, they do not resolve the potential for data sparsity to result
in substatial bias. One possible source of positivity violations is collinearity between
a confounder or set of confounders and the treatment or exposure of interest. If
data-adaptive methods are used to fit Q̄(A,W ), covariates that are collinear or highly
correlated with treatment may be dropped from a model in which treatment is forced.
If these covariates are also confounders, resulting effect estimates will be biased.

Traditional Multivariable Approaches. A traditional approach to effect estima-
tion in many fields is to estimate Q̄0 ≡ E0(Y |A,W ) using a multivariable regression
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Hosted by The Berkeley Electronic Press



model and to report the estimated coefficient on A (or some transformation of this
coefficient, such as its exponentiated value) as the estimated causal effect. In some
cases such an estimate is equivalent to the G-computation estimate. For example, if
the target of inference is the average treatment effect for binary A, a traditional anal-
ysis might fit the model Ê(Y |A,W ) = β̂0 + β̂1A+k(W ) and report an effect estimate
of β̂1. In this case, β̂1 will be equivalent to β̂Gcomp (assuming the same model is used
for Q̄n when implementing the G-computation estimator).

In many cases, however, the coefficient on A in the multivariable regression model
used to estimate Q̄0 represents a distinct estimand. For example, for binary Y a
common approach is to fit a logistic regression model such as Ê(Y |A,W ) = 1/(1 +

exp−(β̂0+β̂1A+k(W ))). Here exp(β̂1), which is commonly reported as the causal effect
estimate of interest, is an estimate of the conditional odds ratio and is not equivalent
to either the average treatment effect or the marginal odds ratio. If G-computation is
used to estimate either of the latter two quantities then clearly the resulting estimates
will not be equivalent. Traditional regression approaches can consistently estimate
causal parameters when identifiability conditions are met and Q̄n is correctly specified;
however, care must be taken to ensure that the parameter estimated corresponds to
the causal question of interest.

3.2 The Inverse Probability of Treatment Weighted estima-
tor

The IPTW estimator Ψ̂IPTW (Pn) provides a mapping from the empirical data distri-
bution Pn to a parameter estimate β̂IPTW based on an estimator gn of g0(A|W ).10;21

The estimator is defined as the solution in β to the following estimating equation:

0 =
n∑
i=1

h(Ai, Vi)

gn(Ai | Wi)

d

dβ
(m(Ai, Vi|β))(Y −m(Ai, Vi | β)), (10)

where h(A, V ) is the projection function used to define the target causal parameter
β(FX ,m, h) according to (5). The IPTW estimator of β can be implemented as the
solution to a weighted regression of the outcome Y on treatment A and effect modi-
fiers V according to model m(A, V |β), with weights equal to h(A,V )

gn(A|W )
. Consistency of

Ψ̂IPTW (Pn) requires that g0 satisfies positivity and that gn is a consistent estimator
of g0. As with Q̄0, g0 can be estimated using loss-based learning and cross validation.
Depending on choice of projection function, implementation may further require esti-
mation of h(A, V ); however, the consistency of the IPTW estimator does not depend
on consistent estimation of h(A, V ).

The IPTW estimator is particularly sensitive to bias due to data sparsity. Bias can
arise due to structural positivity violations (positivity may not hold for g0) or may
occur because by chance certain covariate and treatment combinations are not repre-
sented or sparsely represented in a given finite sample. In the latter case, gn(a|W = w)
will have values of zero or close to zero for some (a, w) even when positivity holds for
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g0 and gn is consistent.5;13;14;16;15 As fewer individuals within a given covariate stratum
receive a given treatment, the weights of those rare individuals who do receive the
treatment become more extreme. The disproportionate reliance of the causal effect
estimate on the experience of a few unusual individuals can result in substantial finite
sample bias.

While values of gn(a | W ) remain positive for all a ∈ A, elevated weights inflate
the variance of the effect estimate and can serve as a warning that the data may
poorly support the target parameter. However, as the number of individuals within a
covariate stratum who receive a given treatment level shifts from few (each of whom
receive a large weight and thus elevate the variance) to none, estimator variance can
decrease while bias increases rapidly. In other words, when gn(a|W = w) = 0 for
some (a, w), the weight for a subject with A = a and W = w is infinity; however, as
no such individuals exist in the dataset, the corresponding threat to valid inference
will not be reflected in either the weights or in estimator variance.

Weight truncation. Weights are commonly truncated or bounded in order to im-
prove the performance of the IPTW estimator in face of data sparsity.5;15;16;22;23

Weights are truncated at either a fixed or relative level (for example, at the 1st
and 99th percentiles), thereby reducing the variance arising from large weights and
limiting the impact of a few possibly non-representative individuals on the effect es-
timate. This advantage comes at a cost, however, in the form of increased bias due
to misspecification of the treatment model gn, a bias that does not decrease with
increasing sample size. In Section 5, we use simulated data to illustrate the perfor-
mance of the IPTW estimator under a range of values for weight truncation, illustrate
how even in the face of sparsity, weight truncation can increase rather than decrease
estimator mean squared error, and discuss how the parametric bootstrap can be used
to approach truncation.

Stabilized Weights. Use of projection function h(a, V ) = 1 implies the use of
unstabilized weights. In contrast, stabilized weights, corresponding to a choice of
h(a, V ) = g(a|V ) (where g(a|V ) denotes P0(A = a|V )) are generally recommended
for the implementation of marginal structural model-based effect estimation. The
choice of h(a, V ) = g(a|V ) results in a weaker positivity assumption, according to
(9), by allowing the IPTW estimator to extrapolate to sparse areas of the joint distri-
bution of (A, V ) using the model m(a, V |β). For example, if A is an ordinal variable
with multiple levels, V = {}, and the target parameter is defined using the model
m(a, V |β) = β0 + β1a, the IPTW estimator with stabilized weights will extrapolate
to levels of A that are sparsely represented in the data by assuming a linear rela-
tionship between Ya and a ∈ A. We note, however, that when the target parameter
β is defined using a non-parametric marginal structural model according to (5) (an
approach that acknowledges that the model m(A, V |β) may be misspecified), the use
of stabilized versus unstabilized weights corresponds to a shift in the target parameter
via choice of an alternative projection function.11
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3.3 Double Robust estimators.

Double robust (DR) approaches to estimation of β include the augmented inverse
probability weighted estimator (A-IPTW) and targeted maximum likelihood estima-
tor (TMLE) (which for the target parameter β(FX , h,m) corresponds to the extended
double robust parametric regression estimator of Sharfstein et. al.).4;24;25;26;27;28 Im-
plementation of the double robust estimators requires estimators of both Q0 and
g0; as with the IPTW and G-computation estimators, a non-parametric loss-based
approach can be employed in the estimation of both. An implementation of the
TMLE estimator of the average treatment effect E(Y1 − Y0) for binary A is avail-
able in the R package tmleLite; an implementation of the A-IPTW estimator in
the point treatment setting is available in the R package cvDSA (both available at
http://www.stat.berkeley.edu/ laan/Software/index.html). Prior literature provides

further details regarding implementation and theoretical properties.4;11;13;24;26;27;28

Double robust estimators remain consistent if either 1) gn is a consistent estimator
of g0 and g0 satisfies positivity; or, 2) Qn is a consistent estimator of Q0 and gn
converges to a distribution g∗ that satisfies positivity. Thus when positivity holds,
these estimators are truly double robust, in the sense that consistent estimation of
either g0 or Q0 results in a consistent estimator. When positivity fails, however, the
consistency of the double robust estimators relies entirely on consistent estimation of
Q0. In the setting of positivity violations, double robust estimators are thus faced
with the same vulnerabilities as the G-computation estimator.

In addition to illustrating how positivity violations increase the vulnerability of double
robust estimators to bias resulting from inconsistent estimation of Q0, these asymp-
totic results have practical implications for the implementation of the double robust
estimators. Specifically, they suggest that use of an estimator gn that satisfies pos-
itivity (or in other words, that yields predicted values in [0 + γ, 1 − γ] where γ is
some small number) can improve finite sample performance. One way to achieve
such bounds is by truncating the predicted probabilities generated by gn, similar to
the process of weight truncation described for the IPTW estimator.

Alternative double robust estimators are available that make more sophisticated
choices in estimating g0. In particular, the collaborative targeted maximum likeli-
hood estimator (C-TMLE) selects an estimator gn aimed at optimizing estimation of
the target parameter as assessed by the targeted log likelihood. In particular this im-
plies that the C-TMLE estimator includes in the fit of gn only those covariates that
improve estimation of the target.29 However, when the target parameter is poorly
identified due to positivity violations, C-TMLE may be forced to accept significant
bias in its aim to optimize mean squared error for the target parameter. Diagnostic
procedures remain essential to alert the analyst that such a tradeoff is occurring.
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4 Diagnosing bias due to positivity violations.

Positivity violations can result in substantial bias, with or without a corresponding
increase in variance, regardless of the causal effect estimator used. Practical methods
are thus needed to diagnose and quantify estimator-specific positivity bias for a given
model, parameter and sample. Cole and Hernan suggest a range of informal diagnos-
tic approaches when the IPTW estimator is applied.16 Basic descriptive analyses of
treatment variability within covariate strata can be helpful; however, this approach
quickly becomes unwieldy when the covariate set is moderately large and includes
continuous or multi-level variables. Examination of the distribution of the estimated
weights can also provide useful information as near violations of the positivity as-
sumption will be reflected in large weights. As noted by these authors and discussed
above, however, well-behaved weights are not sufficient in themselves to ensure the
absence of positivity violations.

An alternative formulation is to examine the distribution of the estimated propensity
score values given by gn(a|W ) for a ∈ A. Values of gn(a|W ) close to 0 for any a
constitute a warning regarding the presence of positivity violations. We note that
examination of the propensity score distribution is a general approach not restricted
to the IPTW estimator. However, while useful in diagnosing the presence of positiv-
ity violations, examination of the estimated propensity scores does not provide any
quantitative estimate of the degree to which such violations are resulting in estimator
bias and may pose a threat to inference. The parametric bootstrap can be used to
provide an optimistic bias estimate specifically targeted at bias caused by positivity
violations and near-violations.5

4.1 The parametric bootstrap as a diagnostic tool.

We focus on the bias of estimators that target a parameter of the observed data
distribution; this target observed data parameter is equal under the randomization
assumption (7) to the target causal parameter. (Divergence between the target ob-
served data parameter and target causal parameter when (7) fails is a distinct issue
not addressed by the proposed diagnostic.) The bias in an estimator is the differ-
ence between the true value of the target parameter of the observed data distribution
and the expectation of the estimator applied to a finite sample from that distribu-
tion:

Bias(Ψ̂, P0, n) = EP0Ψ̂(Pn)−Ψ(P0),

where we recall that Ψ(P0) is the target observed data parameter, Ψ̂(Pn) is an esti-
mator of that parameter (which may be a function of gn, Qn or both), and Pn denotes
the empirical distribution of a sample of n i.i.d observations from the true observed
data distribution P0.

Bias in an estimator can arise due to a range of causes. First, the estimators gn and/or
Qn may be inconsistent. Second, g0 may not satisfy the positivity assumption. Third,
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consistent estimators gn and/or Qn may still have substantial finite sample bias. This
latter type of finite sample bias arises in particular due to the curse of dimensionality
in a non-parametric or semi-parametric model when gn and/or Qn are data-adaptive
estimators, although it can also be substantial for parametric estimators. Fourth,
estimated values of gn may be equal or close to zero or one, despite use of a consistent
estimator gn and a distribution g0 that satisfies positivity. The relative contribution
of each of these sources of bias will depend on the model, the true data generating
distribution, the causal effect estimator, and the finite sample.

The parametric bootstrap provides a tool that allows the analyst to explore the extent
to which bias due to any of these causes is affecting a given parameter estimate. The
parametric bootstrap-based bias estimate is defined as:

B̂iasPB(Ψ̂, P̂0, n) = EP̂0
Ψ̂(P#

n )−Ψ(P̂0), (11)

where P̂0 is an estimate of P0 and P#
n is the empirical distribution of a bootstrap

sample obtained by sampling from P̂0. In other words, the parametric bootstrap is
used to sample from an estimate of the true data generating distribution, resulting
in multiple simulated data sets. The true data generating distribution and target
parameter value in the bootstrapped data are known. A candidate estimator is then
applied to each bootstrapped data set and the mean of the resulting estimates com-
pared with the known “truth” (i.e. the true parameter value for the bootstrap data
generating distribution).

We focus on a particular algorithm for parametric bootstrap-based bias estimation,
which specifically targets the component of estimator-specific finite sample bias due
to violations and near violations of the positivity assumption. The goal is not to
provide an accurate estimate of bias, but rather to provide a diagnostic tool that can
serve as a “red flag” warning that positivity bias may pose a threat to inference. The
distinguishing characteristic of the diagnostic algorithm is its use of an estimated
data generating distribution P̂0 that both approximates the true P0 as closely as
possible and is compatible with the estimators Q̄n and/or gn used in Ψ̂(Pn). In other
words, P̂0 is chosen such that the estimator Ψ̂ applied to bootstrap samples from P̂0

is guaranteed to be consistent unless g0 fails to satisfy the positivity assumption or gn
is truncated. As a result, the parametric bootstrap provides an optimistic estimate of
finite sample bias, in which bias due to model misspecification other than truncation
is eliminated.

We refer informally to the resulting bias estimate as ETA.Bias because in many
settings it will be predominantly composed of bias from the following sources: 1)
violation of the positivity assumption by g0; 2) truncation, if any, of gn in response to
positivity violations; and, 3) finite sample bias arising from values of gn close to zero
or one (sometime referred to as practical violations of the positivity assumption). The
term ETA.Bias is imprecise because the bias estimated by the proposed algorithm
will also capture some of the bias in Ψ̂(Pn) due to finite sample bias of the estimators
gn and Q̄n (a form of sparsity only partially related to positivity). Due to the curse of
dimensionality, the contribution of this latter source of bias may be substantial when
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gn and/or Qn are data-adaptive estimators in a non-parametric or semi-parametric
model. However, the proposed diagnostic algorithm will only capture a portion of
this bias because, unlike P0, P̂0 is guaranteed to have a functional form that can be
well-approximated by the data-adaptive algorithms employed by gn and Qn.

The diagnostic algorithm for ETA.Bias is implemented as follows.

Step 1. Estimate P0. Estimation of P0 requires estimation of Q0W , g0, and Q0Y ,
(i.e. estimation of P0(W = w), P0(A = a|W = w), and P0(Y = y|A = a,W = w)
for all (w, a, y)). We define QP̂0W

= QPnW (or in other words, use an estimate based
on the empirical distribution of the data), gP̂0

= gn, and Q̄P̂0
= Q̄n. Note that the

estimators QPnW , gn, and Q̄n were all needed for implementation of the IPTW, G-
compuation, and DR estimators; the same estimators can be used here. Additional
steps may be required to estimate the entire conditional distribution of Y given (A,W )
(beyond the estimate of its mean given by Q̄n). The true target parameter for the
known distribution P̂0 is only a function of Qn = (QPnW , Q̄n), and Ψ(P̂0) is the same
as the G-computation estimator (using Qn) applied to the observed data:

Ψ(P̂0) = Ψ̂Gcomp(Pn).

Step 2. Generate P#
n by sampling from P̂0. In the second step, we assume that

P̂0 is the true data generating distribution. Bootstrap samples P#
n , each with n i.i.d

observations, are generated by sampling from P̂0. For example, W can be sampled
from the empirical, a binary A can be generated as a Bernoulli with probability
gn(1|W ), and a continuous Y can be generated by adding a N(0, 1) error to Q̄n(A,W )
(alternative approaches are also possible).

Step 3. Estimate EP̂0
Ψ̂(P#

n ). Finally, the estimator Ψ̂ is applied to each bootstrap

sample. Depending on the estimator being evaluated, this step involves applying
the estimators gn, Qn or both to each bootstrap sample. If Qn and/or gn are data-
adaptive estimators, the corresponding data-adaptive algorithm should be rerun in
each bootstrap sample; otherwise, the coefficients of the corresponding models should
be refit. ETA.Bias is calculated by comparing the mean of the estimator Ψ̂ across
bootstrap samples (EP̂0

Ψ̂IPTW (P#
n )) with the true value of the target parameter under

the bootstrap data generating distribution (Ψ(P̂0)).

The parametric bootstrap-based diagnostic applied to the IPTW estimator is available
as an R function check.ETA in the cvDSA package.5 The routine takes the original data
as input and performs bootstrap simulations under user-specified information such
as functional forms for m(a, V | β), gn and Qn. Application of the bootstrap to the
IPTW estimator offers one particularly sensitive assessment of positivity bias because,
unlike the G-computation and double robust estimators, the IPTW estimator can not
extrapolate based on Q̄n. However, this approach can be applied to any causal effect
estimator, including estimators introduced in Section 7 that trade off identifiability
for proximity to the target parameter. In assessing the threat posed by positivity
violations the bootstrap should ideally be applied to both the IPTW estimator and
the estimator of choice.
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Remarks on interpretation of the bias estimate. We caution against using the
parametric bootstrap for any form of bias correction. The true bias of the estimator
is EP0Ψ̂(Pn)− Ψ(P0), while the parametric bootstrap estimates EP̂0

Ψ̂(P#
n )− Ψ(P̂0).

The performance of the diagnostic thus depends on the extent to which P̂0 approx-
imates the true data generating distribution. This suggests the importance of using
flexible data-adaptive algorithms to estimate P0. Regardless of estimation approach,
however, when the target parameter Ψ(P0) is poorly identified due to positivity vio-
lations Ψ(P̂0) may be a poor estimate of Ψ(P0). In such cases one would not expect
the parametric bootstrap to provide a good estimate of the true bias. Further, the
ETA.Bias implementation of the parametric bootstrap provides a deliberately opti-
mistic bias estimate by excluding bias due to model misspecifcation for the estimators
gn and Q̄n.

Rather, the parametric bootstrap is proposed as a diagnostic tool. Even when the
data generating distribution is not estimated consistently, the bias estimate provided
by the parametric bootstrap remains interpretable in the world where the estimated
data generating mechanism represents the truth. If the estimated bias is large, an
analyst who disregards the implied caution is relying on an unsubstantiated hope that
first, he or she has inconsistently estimated the data generating distribution but still
done a reasonable job estimating the causal effect of interest; and second, the true
data generating distribution is less affected by positivity (and other finite sample)
bias than is the analyst’s best estimate of it.

The threshold level of ETA.Bias that is considered problematic will vary depending
on the scientific question and the point and variance estimates of the causal effect.
With that caveat, we suggest the following two general situations in which ETA.Bias
can be considered a “red flag” warning: 1) when ETA.Bias is of the same magnitude
as (or larger than) the estimated standard error of the estimator; and, 2) when the
interpretation of a bias-corrected confidence interval would differ meaningfully from
initial conclusions.

Use of a data-adaptive algorithm for Q̄n may result in exclusion of those elements
of W responsible for positivity violations. Bootstrap data sampled from the result-
ing estimate P̂0 will contain less sparsity than is present in the true data generating
distribution, resulting in an underestimate of bias due to positivity violations. One
approach to improving the sensitivity of the diagnostic in such settings is to force the
estimator Q̄n(A,W ) to include all W known or thought to contribute to positivity
violations. The estimated propensity score provides a convenient dimension reduc-
tion of exactly those W . Thus a more comprehensive approach to identifying threats
to inference due to positivity bias could involve implementing the bootstrap-based
ETA.Bias diagnostic using several estimators Qn, including an estimator that forces
inclusion of A but allows W to be selected data adaptively and an estimator that
forces inclusion of both A and the propensity score but allows W to be selected data-
adaptively. Finally, when the targeted maximum likelihood estimator is implemented,
the bootstrap can sample from the targeted estimate of the likelihood it provides, an
estimate in which Qn is already a function of the propensity score. We demon-
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strate the propensity score-based approaches in Section 5; however, the performance
of the diagnostic when data-adaptive approaches are used and positivity violations
are present, as well as the relative performance of various approaches to improving
diagnostic performance in such settings, should be investigated further.

5 Simulations.

Data were simulated under three data generating distributions with different de-
grees and sources of positivity violations. In each set of simulations, four estima-
tors described in Section 3, G- computation, IPTW, A-IPTW, and TMLE, were
applied. (Specifically, TMLE was implemented with a logistic fluctuation for contin-
uous and binary Y .)30 For each simulation, each estimator was implemented using
a range of approaches to estimate g0 and Q0. Both the behavior of the estimator
and the performance of the parametric bootstrap as a diagnostic tool were investi-
gated under each scenario. The objectives of these simulations were (1) to demon-
strate how different estimators are affected differently by violations of the positivity
assumption; (2) to demonstrate the value and limitations of the bootstrap-based
diagnostic in different settings; and (3) to illustrate how the diagnostic might be
used in practice to inform interpretation of results. We provide selected simula-
tion results here; additional results together with simulation code are available at
http://www.stat.berkeley.edu/ laan/Software/index.html.

5.1 Data generating distributions.

All three simulations used a binary A, and targeted the same causal parameter,
E(Y1−Y0) or the average treatment effect. This target parameter is a special case of
β(FX ,m, h) corresponding to V = {} and use of marginal structural model m(a|β) =
β0 + β1a, and a case in which G-computation corresponds to traditional regression-
based adjustment. The true target parameter value Ψ(P0) = β1.

The simulations were based, to varying degrees, on a data generating distribution used
by Freedman and Berk.31 Two baseline covariates, W = (W1,W2), were generated

bivariate normal, N(µ,Σ), with µ1 = 0.5, µ2 = 1, and Σ =

[
2 1
1 1

]
. The true

conditional expectation of Y , given A and W , Q̄0(A,W ) ≡ E0(Y |A,W ) is given
by:

Q̄0(A,W ) = 1 + A+W1 + 2W2,

and Y was generated as Q̄0(A,W )+U , with U ∼ N(0, 1). The true value of the target
parameter Ψ(P0) = 1. The true treatment mechanism, g0(1|W ) ≡ P0(A = 1|W ) is
given by:

g0(1|W ) = Φ(0.5 + 0.25W1 + 0.75W2),
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where Φ is the CDF of the standard normal distribution. In other words, the treat-
ment mechanism, or conditional probability of treatment given covariates, was based
on a probit model.

Simulation 1: For our first simulation, we modified g0 to reduce the extent of
positivity violations by multiplying all coefficients in g0 by 0.3. Therefore, the true
treatment mechanism in Simulation 1 is given by:

g0(1|W ) = Φ(0.3(0.5 + 0.25W1 + 0.75W2)).

With this treatment mechanism, g0 ∈ [0.48, 0.92]. We generated 250 samples of size
1000 for this simulation.

Simulation 2: Simulation 2 is identical to Freedman and Berk’s original simulation
described above. Again we generated 250 samples of size 1000. In this simulation,
g0 ∈ [0.001, 1].

Simulation 3: For this simulation, W1 ∼ N(0.5, 1) and W2 ∼ Bernoulli(0.5). We
varied Q̄0(A,W ) such that:

Q̄0(1,W ) = expit(−1 + 5A+W1 + 10W2).

Binary Y was generated as a Bernoulli trial with probability Q̄0(1,W ). The tar-
get parameter E(Y1 − Y0) for binary Y corresponds to the risk difference. For this
simulation, Ψ(P0) = 0.29. The treatment mechanism for this simulation is given
by:

g0(1|W ) = expit(−3− 1W1 + 9W2).

Binary A was generated as a Bernoulli trial with probability g0(1|W ). Under this
treatment mechanismA andW2 are collinear, with correlation 0.95 and g0 ∈ [0.001, 1].
For this simulation, we generated 250 samples of size 200 instead of size 1000. The
smaller sample size increased the sparsity in the data.

5.2 Investigation of estimator behavior and the performance
of the parametric bootstrap-based diagnostic.

The bias, variance, and mean squared error of each estimator were estimated by
applying the estimator to 250 samples drawn from the three data generating distri-
butions above. For Simulations 1 and 2, each of the four estimators was implemented
with each of the following three approaches: 1) use of a correctly specified model to
estimate both Q̄0 and g0 (a specification referred to as “Qcgc”); 2) use of a correctly
specified model to estimate Q̄0 but omission of W2 from the model used to estimate
g0 (“Qcgm”); and, 3) omission of W2 from Q̄n while correctly specifying the model
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used to estimate g0 (“Qmgc”). In Simulation 3, each of the four estimators was
implemented using correctly specified models for both g0 and Q̄0 (Qcgc), and using
forward stepwise selection based on AIC to estimate both Q̄0 and g0, using the R
function step and forcing A to be included in Q̄n (“Qdgd1”) . The double robust
and IPTW estimators were further implemented using the following sets of bounds
for the values of gn: [0, 1] (or no bounding), [0.025, 0.975], [0.05, 0.95], and [0.1, 0.9].
For the IPTW estimator, the latter three bounds correspond to truncation of the
unstabilized weights at [1.03, 40], [1.05, 20], and [1.11, 11.1].

The parametric bootstrap was then applied to estimate ETA.Bias for 10 of the 250
samples from each of the three simulations. For each sample and for each model spec-
ification (Qcgc, Qmgc and Qcgm for Simulations 1 and 2; and Qcgc and Qdgd1 for
Simulation 3), the estimates Qn and gn were used to draw 1000 parametric bootstrap
samples. Specifically, W was drawn from the empirical distribution for that sample; A
was generated as a series of Bernoulli trials with probability gn(1|W ), and Y was gen-
erated either by adding a N(0, 1) error to Q̄n(A,W ) (for continuous Y in Simulations
1 and 2) or as a series of Bernoulli trials with probability Q̄n(1|A,W ) (for binary Y in
Simulation 3). Each candidate estimator was then applied to each bootstrap sample.
In Simulation 3, an alternative implementation of the diagnostic based on including
the propensity score in Q̄n was also applied (“Qdgd2”). Specifically, the stepwise
algorithm was forced to retain both A and the estimated propensity score gn(1|W )
as covariates in the estimate Q̄n used to generate the bootstrap samples.

For the specifications Qcgc, Qmgc and Qcgm, the models used to estimate g0 and Q̄0

were held fixed across bootstrap samples and their coefficients refit in each bootstrap
sample. For the data-adaptive approaches Qdgd1 and Qdgd2, the stepwise selection
algorithm was rerun in each bootstrap sample, and was forced to retain A in Q̄n.
ETA.Bias was estimated for each of the 10 samples as the difference between the
mean of the bootstrapped estimator and the initial G-computation estimate Ψ(P̂0) =
Ψ̂Gcomp(Pn) in that sample.

5.3 Results: Simulation 1.

In this simulation the positivity assumption is not violated, and as expected, all four
estimators performed well when correctly specified models were used to estimate g0

and Q̄0. The bias, variance, and MSE for each estimator are shown in Table 2. As
described in Section 3, misspecification of the model used to estimate Q̄0 introduced
bias in the G-computation estimator, misspecification of the model used to estimate
g0 introduced bias in the IPTW estimator, and the double robust estimators remained
minimally biased if the model for either Q̄0 or g0 was correctly specified.

Table 3 reports the mean and variance of the estimated ETA.Bias for each estimator
and model specification across 10 of the 250 original samples. Consistent with the
results in Table 2, the estimated ETA.Bias was minimal and varied little across the
10 samples. The parametric bootstrap would not have raised a red flag for any of the

21

Hosted by The Berkeley Electronic Press



Table 2: Performance of estimators by specification in Simulation 1: g0 in [0.48,0.92],
shown for unbounded gn only. Results are based on 250 samples of size 1000.

Qcgc Qcgm Qmgc
Bias Var MSE Bias Var MSE Bias Var MSE

G-COMP 1.5e-03 5.9e-03 5.9e-03 1.5e-03 5.9e-03 5.9e-03 2.6e-01 1.9e-02 8.5e-02
IPTW 6.0e-03 9.2e-03 9.2e-03 2.6e-01 2.1e-02 9.0e-02 6.0e-03 9.2e-03 9.2e-03
A-IPTW 2.6e-04 6.2e-03 6.2e-03 5.9e-04 6.0e-03 6.0e-03 7.2e-04 6.7e-03 6.7e-03
TMLE -6.7e-06 6.2e-03 6.2e-03 3.9e-04 6.0e-03 6.0e-03 5.0e-04 6.6e-03 6.6e-03

estimators in this scenario, an appropriate result given Table 2.

5.4 Results: Simulation 2.

Simulation 2 introduced substantial data sparsity. Table 4 demonstrates the effect
of positivity violations and near-violations on estimator behavior across 250 samples.
The G-computation estimator remained minimally biased when the estimator Q̄n was
consistent; use of inconsistent Q̄n resulted in bias. Given consistent estimators Q̄n and
gn, the IPTW estimator was more biased than the other three estimators, as expected
given the practical positivity violations present in the simulation. For this particular
data-generating distribution and choice of misspecified model, misspecification of gn
increased the bias of the IPTW estimator further; however, this will not always be
the case.

The finite sample performance of the A-IPTW and TMLE estimators was also af-
fected by the presence of practical positivity violations. The DR estimators achieved
the lowest MSE when 1) Q̄n was consistent and 2) gn was inconsistent but satisfied
positivity (as a result either of truncation or of omission of W2, a major source of pos-
itivity bias). Interestingly, in this simulation TMLE still did quite well when Q̄n was
inconsistent and the model used for gn was correctly specified but its values bounded
at [0.025, 0.925].

Choice of bound imposed on gn affected both the bias and variance of the IPTW,
A-IPTW, and TMLE estimators. As expected, truncation of the IPTW weights
improved the variance of the estimator but increased bias. Without additional diag-
nostic information, an analyst who observed the dramatic decline in the variance of
the IPTW estimator that occurred with weight truncation might have concluded that
truncation improved estimator performance; however, in this simulation weight trun-
cation increased MSE. In contrast, and as predicted by theory, use of bounded values
of gn decreased MSE of the double robust estimators in spite of the inconsistency
introduced to gn.

Table 5 shows the mean and variance of the estimates of ETA.Bias across 10 of the
250 samples. Based on the results shown in Table 4, a red flag diagnostic for the
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Table 3: True finite sample bias by specification (based on 250 samples of sample
size 1000 with consistent gn and Qn) and mean and variance of estimated ETA.Bias
(based on the first 10 of the 250 samples) in Simulation 1: g0 in [0.48,0.92], shown
for unbounded gn only.

G-COMP IPTW A-IPTW TMLE
True finite sample bias 1.51e-03 5.95e-03 2.61e-04 -6.71e-06

Mean(ETA.Bias) -4.21e-04 5.92e-04 -5.43e-04 -6.94e-04
Qcgc Variance(ETA.Bias) 2.23e-06 2.81e-06 2.34e-06 2.35e-06

Mean(ETA.Bias)/True Bias -2.79e-01 9.94e-02 -2.08e+00 1.03e+02
Mean(ETA.Bias) 6.17e-04 1.27e-03 4.17e-04 2.42e-04

Qcgm Variance(ETA.Bias) 7.32e-06 1.57e-05 6.48e-06 6.54e-06
Mean(ETA.Bias)/True Bias 4.09e-01 2.14e-01 1.60e+00 -3.61e+01
Mean(ETA.Bias) 6.99e-04 1.51e-03 4.78e-04 3.05e-04

Qmgc Variance(ETA.Bias) 6.37e-06 8.18e-06 7.27e-06 7.25e-06
Mean(ETA.Bias)/True Bias 4.63e-01 2.54e-01 1.83e+00 -4.54e+01

Table 4: Performance of estimators by specification and by bound on gn in Simulation
2: g0 in [0.001,1]. Results are based on 250 samples of size 1000.

Bound on gn Qcgc Qcgm Qmgc
Bias Var MSE Bias Var MSE Bias Var MSE

G-COMP
None 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336
[0.025,0.975] 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336
[0.05,0.95] 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336
[0.1,0.9] 0.007 0.009 0.009 0.007 0.009 0.009 1.145 0.025 1.336

IPTW
None 0.544 0.693 0.989 1.547 0.267 2.660 0.544 0.693 0.989
[0.025,0.975] 1.080 0.090 1.257 1.807 0.077 3.340 1.080 0.090 1.257
[0.05,0.95] 1.437 0.059 2.123 2.062 0.054 4.306 1.437 0.059 2.123
[0.1,0.9] 1.935 0.043 3.787 2.456 0.043 6.076 1.935 0.043 3.787

A-IPTW
None 0.080 0.966 0.972 -0.003 0.032 0.032 -0.096 16.978 16.987
[0.025,0.975] 0.012 0.017 0.017 0.006 0.017 0.017 0.430 0.035 0.219
[0.05,0.95] 0.011 0.014 0.014 0.009 0.014 0.014 0.556 0.025 0.334
[0.1,0.9] 0.009 0.011 0.011 0.008 0.011 0.011 0.706 0.020 0.519

TMLE
None 0.251 0.478 0.540 0.026 0.059 0.060 -0.675 0.367 0.824
[0.025,0.975] 0.016 0.028 0.028 0.005 0.021 0.021 -0.004 0.049 0.049
[0.05,0.95] 0.013 0.019 0.020 0.010 0.016 0.017 0.163 0.027 0.054
[0.1,0.9] 0.010 0.014 0.014 0.009 0.013 0.013 0.384 0.018 0.166
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presence of bias due to positivity violations was needed for the IPTW estimator at
all levels of bounding gn, and for the TMLE estimator with unbounded gn. (The A-
IPTW estimator had a small to moderate level of bias with unbounded gn; however
the high variance of this estimator would have alerted an analyst to sparsity.) The
parametric bootstrap correctly identified the presence of substantial ETA.Bias in
the IPTW estimator regardless of truncation level and in the TMLE estimator with
unbounded gn. It suggested minimal ETA.Bias for the remaining estimators.

For correctly specified Qn and gn (gn unbounded), the diagnostic captured 78% and
69% of the true finite sample bias of the IPTW and TMLE estimators, respectively.
The fact that the true bias was underestimated in both cases illustrates a key limita-
tion of the parametric bootstrap- its performance suffers when the target estimator is
not asymptotically normally distributed.32 Bounding gn improved the ability of the
bootstrap to accurately diagnose bias by improving estimator behavior (in addition
to adding a new source of bias due to use of inconsistent gn). This finding suggests
that practical application of the bootstrap to a given estimator should at minimum
generate ETA.Bias estimates for a single low level of bounding gn in addition to
any unbounded estimate. When gn was bounded, the estimated ETA.Bias for the
IPTW estimator captured 96-98% of the true finite sample bias. The ETA.Bias
for the TMLE estimator with bounded gn was accurately estimated to be minimal.
As expected, misspecification of gn or Q̄n by excluding a key confounder lead to an
estimated data generating distribution with less sparsity than the original, and as a
result the parametric bootstrap underestimated the true extent of positivity bias for
these model specifications.

While use of an unbounded gn resulted in an underestimate of the true degree of
ETA.Bias for the IPTW and TMLE estimators, in this simulation the parametric
bootstrap would still have functioned well as a diagnostic in each of the 10 samples
considered. Tables 6 and 7 report the output that would have been available to an
analyst applying the parametric bootstrap to the IPTW and TMLE estimators for
each of the 10 samples. For both unbounded gn for both estimators, the estimated
ETA.Bias was similar in magnitude or larger than the estimated standard error of
the estimator, and was of significant magnitude relative to the point estimate of the
causal effect. The magnitude of ETA.Bias increased for the IPTW estimator when
bounded gn was used.

Table 5 further demonstrates how the parametric bootstrap can be used to investi-
gate the tradeoffs between bias due to weight truncation/bounding of gn and positivity
bias. The parametric bootstrap accurately diagnosed both an increase in the bias of
the IPTW estimator with increasing truncation and a reduction in the bias of the
TMLE estimator with truncation. When viewed in light of the standard error esti-
mates under different levels of truncation, the diagnostic would have accurately sug-
gested that truncation of gn for the TMLE estimator was beneficial, while truncation
of the weights for the IPTW estimator was of questionable benefit. (The parametric
bootstrap can also be used to provide a more refined approach to choosing an optimal
truncation constant based on estimated MSE.23)
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Table 5: True finite sample bias (based on 250 samples of size 1000 with Qcgc) and
mean and variance of estimated ETA.Bias (based on the first 10 of the 250 samples)
by specification and by bound on gn in Simulation 2: g0 in [0.001,1].

Bound on gn
None [0.025,0.975] [0.05,0.95] [0.1,0.9]

G-COMP True finite sample bias 7.01e-03 7.01e-03 7.01e-03 7.01e-03
Mean(ETA.Bias) -8.51e-04 -8.51e-04 -8.51e-04 -8.51e-04

Qcgc Variance(ETA.Bias) 5.63e-06 5.63e-06 5.63e-06 5.63e-06
Mean(ETA.Bias)/True bias -1.21e-01 -1.21e-01 -1.21e-01 -1.21e-01
Mean(ETA.Bias) 2.39e-04 2.39e-04 2.39e-04 2.39e-04

Qcgm Variance(ETA.Bias) 1.37e-05 1.37e-05 1.37e-05 1.37e-05
Mean(ETA.Bias)/True bias 3.41e-02 3.41e-02 3.41e-02 3.41e-02
Mean(ETA.Bias) 5.12e-04 5.12e-04 5.12e-04 5.12e-04

Qmgc Variance(ETA.Bias) 1.22e-05 1.22e-05 1.22e-05 1.22e-05
Mean(ETA.Bias)/True bias 7.30e-02 7.30e-02 7.30e-02 7.30e-02

IPTW True finite sample bias 5.44e-01 1.08e+00 1.44e+00 1.93e+00
Mean(ETA.Bias) 4.22e-01 1.04e+00 1.40e+00 1.90e+00

Qcgc Variance(ETA.Bias) 9.55e-03 2.19e-02 2.34e-02 2.39e-02
Mean(ETA.Bias)/True Bias 7.76e-01 9.63e-01 9.73e-01 9.80e-01
Mean(ETA.Bias) 1.34e-01 4.83e-01 7.84e-01 1.23e+00

Qcgm Variance(ETA.Bias) 1.96e-03 1.08e-02 1.83e-02 2.40e-02
Mean(ETA.Bias)/True Bias 2.46e-01 4.48e-01 5.46e-01 6.37e-01
Mean(ETA.Bias) 2.98e-01 7.39e-01 9.95e-01 1.35e+00

Qmgc Variance(ETA.Bias) 3.75e-03 9.65e-03 1.09e-02 1.36e-02
Mean(ETA.Bias)/True Bias 5.48e-01 6.84e-01 6.93e-01 7.00e-01

A-IPTW True finite sample bias 7.99e-02 1.25e-02 1.07e-02 8.78e-03
Mean(ETA.Bias) 1.86e-03 2.80e-03 5.89e-05 1.65e-03

Qcgc Variance(ETA.Bias) 1.51e-04 1.12e-05 4.68e-06 1.51e-05
Mean(ETA.Bias)/True bias 2.32e-02 2.24e-01 5.50e-03 1.88e-01
Mean(ETA.Bias) -3.68e-04 -6.36e-04 2.56e-05 5.72e-04

Qcgm Variance(ETA.Bias) 7.54e-05 1.16e-05 1.15e-05 1.53e-05
Mean(ETA.Bias)/True bias -4.60e-03 -5.09e-02 2.39e-03 6.51e-02
Mean(ETA.Bias) -3.59e-04 1.21e-04 -1.18e-04 -1.09e-03

Qmgc Variance(ETA.Bias) 2.19e-04 1.04e-05 1.41e-05 5.31e-06
Mean(ETA.Bias)/True bias -4.50e-03 9.70e-03 -1.10e-02 -1.25e-01

TMLE True finite sample bias 2.51e-01 1.60e-02 1.31e-02 9.98e-03
Mean(ETA.Bias) 1.74e-01 4.28e-03 2.65e-04 1.84e-03

Qcgc Variance(ETA.Bias) 3.26e-03 2.32e-05 6.26e-06 2.23e-05
Mean(ETA.Bias)/True bias 6.94e-01 2.67e-01 2.02e-02 1.84e-01
Mean(ETA.Bias) 2.70e-02 -3.07e-04 2.15e-04 7.74e-04

Qcgm Variance(ETA.Bias) 2.88e-04 1.50e-05 1.27e-05 1.46e-05
Mean(ETA.Bias)/True bias 1.08e-01 -1.92e-02 1.64e-02 7.76e-02
Mean(ETA.Bias) 1.11e-01 9.82e-04 -2.17e-04 -1.47e-03

Qmgc Variance(ETA.Bias) 8.95e-04 2.59e-05 2.52e-05 6.48e-06
Mean(ETA.Bias)/True bias 4.44e-01 6.13e-02 -1.66e-02 -1.47e-01
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to the analyst having an bias estimate due to misspecification of g0. It’s important
to remind the reader that ETA.Bias includes bias both due to ETA and to bounding
gn.

We recommend that the parametric bootstrap be applied to the IPTW estimator in
addition to the analyst’s estimator of choice. Tables 5 and 6 illustrate the benefits of
this approach. Diagnosis of substantial bias in the IPTW estimator due to positivity
violations would have alerted an analyst that the G-computation estimator was rely-
ing heavily on extrapolation, and that the double robust estimators were sensitive to
bias arising from misspecification of the model used to estimate Q̄0.

5.5 Results: Simulation 3.

This simulation investigated the performance of the parametric bootstrap as a tool
for diagnosing finite sample bias caused by collinearity between A and W , with the
following objectives: 1) investigate further the utility of the parametric bootstrap in
a setting in which estimators could not be assumed to be asymptotically normally
distributed; 2) illustrate how use of a data-adaptive approach to fit Qn can result in
a poorly performing diagnostic tool unless specific measures are taken to ensure the
bootstrapped data retains the sparsity present in the original data; and 3) investigate
whether inclusion of the propensity score gn(1|W ) as a covariate in Qn improved the
sensitivity of the diagnostic in the setting of collinearity.

Table 8: Performance of estimators by specification in Simulation 3: g0 in [0.001,1],
shown for unbounded gn only.

Qcgc Qdgd1
Bias Var MSE Bias Var MSE

G-COMP 0.133 0.038 0.055 0.212 0.027 0.072
IPTW 0.233 0.230 0.284 0.232 0.231 0.284
A-IPTW 0.134 0.038 0.055 0.175 0.027 0.057
TMLE 0.291 0.120 0.205 0.329 0.136 0.245

Table 8 demonstrates that all estimators exhibited substantial bias, even when Q̄n

and gn were consistent. This remained true regardless of the level at which gn was
bounded; in the interest of space, results across bounding levels for gn are not shown
for this simulation. When stepwise selection was used to estimate Q0, (forcing in-
clusion of A), the algorithm did not select W2 due to the collinearity with A. The
consequences are reflected in the greater bias of Qdgd1 versus Qcgc in those estimators
that rely on Q0.

28

http://biostats.bepress.com/ucbbiostat/paper269



Table 9: True finite sample bias for G-computation, IPTW and A-IPTW estimators
(based on 250 samples of size 1000 with Qcgc) and mean and variance of estimated
ETA.Bias (based on the first 10 of the 250 samples) by specification in Simulation
3: g0 in [0.001,1], shown for unbounded gn only.

G-COMP True finite sample bias 1.33e-01

Mean(ETA.Bias) 4.18e-02
Qcgc Variance(ETA.Bias) 5.62e-03

Mean(ETA.Bias)/True Bias 3.14e-01

Stepwise G-COMP True finite sample bias 2.12e-01

Mean(ETA.Bias) 1.97e-02
Qdgd1 Variance(ETA.Bias) 1.21e-03

Mean(ETA.Bias)/True Bias 9.29e-02
Mean(ETA.Bias) 1.17e-01

Qdgd2 Variance(ETA.Bias) 1.37e-02
Mean(ETA.Bias)/True Bias 5.52e-01

IPTW True finite sample bias 2.33e-01

Mean(ETA.Bias) 8.19e-02
Qcgc Variance(ETA.Bias) 4.89e-03

Mean(ETA.Bias)/True Bias 3.51e-01

Stepwise IPTW True finite sample bias 2.32e-01

Mean(ETA.Bias) 7.03e-02
Qdgd1 Variance 5.44e-03

Mean(ETA.Bias)/True Bias 3.03e-01
Estimated ETA.Bias 1.41e-01

Qdgd2 Variance(ETA.Bias) 1.34e-02
Mean(ETA.Bias)/True Bias 6.08e-01

A-IPTW True finite sample bias 1.34e-01

Mean(ETA.Bias) 4.20e-02
Qcgc Variance(ETA.Bias) 5.63e-03

Mean(ETA.Bias)/True Bias 3.14e-01

Stepwise A-IPTW True finite sample bias 1.75e-01

Mean(ETA.Bias) 1.47e-02
Qdgd1 Variance(ETA.Bias) 7.14e-04

Mean(ETA.Bias)/True Bias 8.40e-01
Mean(ETA.Bias) 9.66e-02

Qdgd2 Variance 1.22e-02
Mean(ETA.Bias)/True Bias 5.52e-01
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Table 10: True finite sample bias for TMLE estimators (based on 250 samples of size
1000 with Qcgc) and mean and variance of estimated ETA.Bias (based on the first
10 of the 250 samples) by specification in Simulation 3: g0 in [0.001,1], shown for
unbounded gn only.

TMLE True finite sample bias 2.91e-01

Mean(ETA.Bias) 1.70e-01
Qcgc Variance(ETA.Bias) 1.05e-02

Mean(ETA.Bias)/True Bias 5.83e-01

Stepwise TMLE True finite sample bias 3.29e-01

Mean(ETA.Bias) 1.93e-01
Qdgd1 Variance(ETA.Bias) 1.24e-02

Mean(ETA.Bias)/True Bias 5.87e-01
Mean(ETA.Bias) 2.56e-01

Qdgd2 Variance(ETA.Bias) 1.53e-02
Mean(ETA.Bias)/True Bias 7.78e-01
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The parametric bootstrap underestimated ETA.Bias more substantially in this sim-
ulation. It would have provided a reasonable albeit imperfect diagnostic tool. Tables
9 and 10 demonstrate that for all estimators, when Q̄n and gn were consistent the
estimates of ETA.Bias captured 30-35% of the true finite sample bias of the G-
computation, IPTW, and A-IPTW estimators , and 58% of the finite sample bias
of the TMLE estimator. Tables 11 and 12 show the sample-specific ETA.Bias esti-
mates for the IPTW and TMLE estimators. When compared by an analyst to the
corresponding point and variance estimates for the target parameter, the diagnostic
would have suggested caution in many but not all cases. Tables 9 and 10 further
demonstrate that use of a stepwise algorithm that forces A to be included in Q̄n

generally resulted in a greater underestimate of ETA.Bias because bootstrap data
are simulated from a distribution in which sparsity plays less of a role. Retention of
the propensity score in the fit of Q̄0 that was used to generate the bootstrap data
(Qdgd2) improved the sensitivity of the diagnostic.

5.6 Discussion of Simulation Results.

In summary, examination of the estimated treatment mechanism and corresponding
propensity scores g(a|W ) may provide an initial alert to the presence of positivity
violations; however, this approach does not provide a quantitative estimate of the
resulting bias. The parametric bootstrap is a supplemental tool that allows the an-
alyst to evaluate estimator behavior under a range of hypothetical data-generating
distributions in which both the true value of the target parameter and the correct spec-
ification of nuisance parameter models is known. Further study of the performance
of the diagnostic under a range of true and estimated data generating distributions
is needed.

6 Data example: HIV resistance mutations.

6.1 Data and question.

We analyzed an observational cohort of HIV-infected patients in order to estimate the
effect of mutations in the HIV protease enzyme on viral response to the antiretroviral
drug lopinavir. The question, data, and analysis have been described previously.33

Here, a simplified version of prior analyses was performed and the parametric boot-
strap was applied to investigate the potential impact of positivity violations on re-
sults.

Briefly, baseline covariates, mutation profiles prior to treatment change, and viral
response to therapy were collected for 401 treatment change episodes (TCEs) in
which protease inhibitor-experienced subjects initiated a new antiretroviral regimen
containing the drug lopinavir. We focused on 2 target mutations in the protease
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enzyme: p82AFST and p82MLC (present in 25% and 1% of TCEs, respectively).
The data for each target mutation consisted of O = (W,A, Y ), where A was a
binary indicator that the target mutation was present prior to treatment change,
W was a set of 35 baseline characteristics including summaries of past treatment
history, mutations in the reverse transcriptase enzyme, and a genotypic suscep-
tibility score for the background regimen (based on the Stanford scoring system;
http://hivdb.stanford.edu/). The outcome Y was the change in log10(viral load)
following initiation of the new antiretroviral regimen. The target observed data pa-
rameter was EW (E(Y |A = 1,W )− E(Y |A = 0,W )), equal under (7) to the average
treatment effect E(Y1 − Y0).

6.2 Methods.

Effect estimates were obtained for each mutation using the IPTW estimator and
TMLE with a logistic fluctuation.34 Q̄0 and g0 were estimated with stepwise forward
selection of main terms based on the AIC criterion, using the step function in the stats
v2.11.1 package in R. Estimators were implemented using both unbounded values for
gn(A | W ) and values truncated at [0.025, 0.975]. Following standard practice in
much of the literature, standard errors were estimated using the influence curve,
corresponding to the standard output for the glm and tmle functions in R, treating
the values of gn as fixed. The parametric bootstrap was used to estimate bias for each
estimator using 1000 samples and the ETA.Bias algorithm, with the step function
rerun in each parametric bootstrap sample.

6.3 Results.

Results for both mutations are presented in Table 13. p82AFST is known to be a
major mutation for lopinavir resistance.35 The current results support this finding;
the IPTW and TMLE point estimates were similar and both suggested a significantly
more positive change in viral load (corresponding to a less effective drug response)
among subjects with the mutation as compared to those without it. The parametric
bootstrap-based bias estimate was minimal, raising no red flag that these findings
might be attributable to positivity bias.

The role of mutation p82CLM is less clear based on existing knowledge; depending on
the scoring system used it is either not considered a lopinavir resistance mutation, or
given an intermediate lopinavir resistance score (http://hivdb.stanford.edu/).35 Ini-
tial inspection of the point estimates and standard errors in the current analysis would
have suggested that p82CLM had a large and highly significant effect on lopinavir
resistance. Application of the parametric bootstrap-based diagnostic, however, would
have suggested that these results should be interpreted with caution. In particular,
the bias estimate for the unbounded TMLE was larger than the estimated standard
error, while the bias estimate for the unbounded IPTW estimator was of roughly the

34

http://biostats.bepress.com/ucbbiostat/paper269



Table 13: Point estimate, standard error and parametric bootstrap-based bias esti-
mates for the effect of two HIV resistance mutation on viral response, by estimator
and bound on gn.

TMLE Estimator IPTW Estimator
β̂TMLE ŜE ETA.Bias β̂IPTW ŜE ETA.Bias

p82AFST
[0, 1] 0.65 0.13 −0.01 0.66 0.15 −0.01
[0.025, 0.975] 0.62 0.13 0.00 0.66 0.15 −0.01

p82MLC
[0, 1] 2.85 0.14 −0.37 1.29 0.14 0.09
[0.025, 0.975] 0.86 0.10 −0.01 0.80 0.23 0.08

same magnitude. While neither bias estimate was of sufficient magnitude relative
to the point estimate to change inference, their size relative to the corresponding
standard errors would have suggested that further investigation was warranted.

In response, the non-parametric bootstrap (based on 1000 bootstrap samples) was ap-
plied to provide an alternative estimate of the standard error. Using this alternative
approach, the standard errors for the unbounded TMLE and IPTW estimators of the
effect of p82MLC were estimated to be 2.77 and 1.17, respectively. Non-parametric
bootstrap-based standard error estimates for the bounded TMLE and IPTW esti-
mators were lower (0.84 and 1.12, respectively), but still substantially higher than
the initial naive standard error estimates. These revised standard error estimates
dramatically changed interpretation of results, suggesting that the current analysis
was unable to provide essentially any information on the presence, magnitude, or
direction of the p82CLM effect. (Non-parametric bootstrap-based standard error es-
timates for p82AFST were also somewhat larger than initial estimates, but did not
change inference).

In this example, ETA.Bias is expected to include some non-positivity bias due to
the curse of dimensionality. However, the resulting bias estimate should still be
interpreted as highly optimistic (i.e. as an underestimate of the true finite sample
bias). The parametric bootstrap sampled from estimates of g0 and Q̄0 that had been
fit using the step algorithm. This ensured that the estimators gn and Q̄n (which
applied the same stepwise algorithm) would do a good job approximating gP̂0

and
Q̄P̂0

in each bootstrap sample. Clearly, no such guarantee exists for the true P0.
This simple example further illustrates the utility of the non-parametric bootstrap
for standard error estimation in the setting of sparse data and positivity violations.
In this particular example, the improved variance estimate provided by the non-
parametric bootstrap was sufficient to prevent positivity violations from leading to
incorrect inference. As demonstrated in the simulations, however, in other settings
even accurate variance estimates may fail to alert the analyst to threats posed by
positivity violations.
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7 Practical approaches to causal inference in the

presence of positivity violations

How should analysis proceed once threats to inference due to data sparsity have
been identified? In this section we review several approaches to effect estimation in
the presence of positivity violations. These include changing the projection function
h(a, V ) used to defined the target parameter β, restricting the covariate adjustment
set, restricting the sample, and redefining the causal effect of interest through the
use of realistic and intention to treat parameters. Moore et. al. provide an extended
review of these approaches.15 All four approaches can be viewed as a means to define
a family of parameters that approximate the original target of inference to differing
degrees. Estimators can then be defined that select among members of a given fam-
ily based on the tradeoff between degree of divergence from the original target and
identifiability.

7.1 Approach #1: Change the projection function h(A, V ).

Throughout this paper we have focused on the target causal parameter β(FX ,m, h)
defined according to (5) as the projection of the EFX

(Ya|V ) on the marginal struc-
tural model m(a, V |β). Choice of function h(a, V ) both defines the target parameter
by specifying which values of (A, V ) should be given greater weight when estimat-
ing β and, by assumption (9), defines the positivity assumption needed for β to be
identifiable.

We have focused on parameters indexed by h(a, V ) = 1, a choice that gives equal
weight to estimating the counterfactual outcome for all values (a, v).11 Alternative
choices of h(a, V ) can significantly weaken the needed positivity assumption. For
example, if the target of inference only involves counterfactual outcomes among some
restricted range [c, d] of possible values A, defining h(a, V ) = I(a ∈ [c, d]) weakens
the positivity assumption by requiring sufficient variability only in the assignment
of treatment levels within the target range. In some settings, the causal parameter
defined by such a projection over a limited range of A might be of substantial a priori
interest. For example, one may wish to focus estimation of a drug dose response curve
only on the range of doses considered reasonable for routine clinical use, rather than
on the full range of doses theoretically possible or observed in a given data set.

An alternative approach, commonly employed in the context of IPTW estimation
and introduced in Section 3.2, is to choose h(a, V ) = g(a|V ), where g(a|V ) ≡ P (A =
a|V ) is the conditional probability of treatment given the covariates included in the
marginal structural model. In the setting of IPTW estimation this choice corresponds
to the use of stabilizing weights, a common approach to reducing both the variance
of the IPTW estimator in the face of sparsity.21 When the target causal parameter is
defined using a non-parametric marginal structural model, use of h(a, V ) = g(a, V )
corresponds with a decision to define a target parameter that gives greater weight
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to those regions of the joint distribution of (A, V ) that are well-supported, and that
relies on smoothing or extrapolation to a greater degree in areas that are not.11

Use of a marginal structural working model makes clear that the utility of choosing
h(a, V ) = g(a|V ) as a method to approach data sparsity is not limited to the IPTW
estimator. Recall that the G-computation estimator can be implemented by regressing
predicted values for Ya on (a, V ) according to model m(a, V |β) with weights provided
by h(a, V ). When the projection function is chosen to be g(a|V ), this corresponds to
a weighted regression in which weights are proportional to the degree of support in
the data.

Even when one is ideally interested in the entire causal curve (implying a target
parameter defined by choice h(a, V ) = 1), specification of alternative choices for h
offers a means of improving identifiability, at a cost of redefining the target parameter.
For example, one can define a family of target parameters indexed by hδ(a, V ) =
I(a ∈ [c(δ), d(δ)]), where an increase in δ corresponds to progressive restriction on the
range of treatment levels targeted by estimation. Fluctuation of δ thus corresponds
to trading a focus on more limited areas of the causal curve for improved parameter
identifiability. Selection of the final target from among this family can be based on an
estimate of bias provided by the parametric bootstrap. For example, the bootstrap
can be used to select the parameter with the smallest δ below some pre-specified
threshold for allowable ETA.Bias.

7.2 Approach #2: Restrict the adjustment set.

Exclusion of problematic W (i.e. those covariates resulting in positivity violations
or near violations) from the adjustment set, provides a means to trade confounding
bias for a reduction in positivity violations.36 In some cases, exclusion of covariates
from the adjustment set may come at little or no cost to bias in the estimate of the
target parameter. In particular, a subset of W that excludes covariates responsible
for positivity violations may still be sufficient to control for confounding. In other
words, a subset W ′ ⊂ W may exist for which both identifying assumptions (7) and
(8) hold (i.e. Ya

∐
A | W ′ and g0(a|W ′) > 0, a ∈ A), while positivity fails for the full

set of covariates. In practice, this approach can be implemented by first determining
candidate subsets of W under which the positivity assumption holds, and then using
causal graphs to assess whether any of these candidates is sufficient to control for con-
founding. Even when no such candidate set can be identified, background knowledge
(or sensitivity analysis) may suggest that problematic W represent a minimal source
of confounding bias (Moore et. al. provide an example).15 Often, however, those
covariates that are most problematic from a positivity perspective are also strong
confounders.

As suggested with respect to choice of projection function h(a, V ) in the previous sec-
tion, the causal effect estimator can be fine-tuned to select the degree of restriction on
the adjustment set W according to some pre-specified rule for eliminating covariates

37

Hosted by The Berkeley Electronic Press



from the adjustment set, and the parametric bootstrap used to select the minimal
degree of restriction that maintains ETA.Bias below an acceptable threshold.36 Also,
the C-TMLE estimator mentioned briefly in Section 3.3, which includes in the fit of
gn only those covariates that improve estimation of the target parameter, will restrict
W in a ”black-box” manner. In the case of substantial positivity violations, such ap-
proaches can result in small covariate adjustment sets. While such limited covariate
adjustment accurately reflects a target parameter that is poorly supported by the
available data, the resulting estimate can be difficult to interpret and will no longer
carry a causal interpretation.

7.3 Approach # 3: Restrict the sample.

An alternative approach, sometimes referred to as “trimming”, is to discard classes
of subjects for whom there exists no or limited variability in observed treatment
assignment. A causal effect is then estimated in the remaining subsample. This
approach is popular in the econometrics and social science literature; Crump provides
a recent review.37;38;39;40

When the subset of covariates responsible for positivity violations is low or one di-
mensional, such an approach can be implemented simply by discarding subjects with
covariate values not represented in all treatment groups. For example, say that one
aims to estimate the average effect of a binary treatment, and in order to control for
confounding needs to adjust for W , a covariate with possible levels {1, 2, 3, 4}. How-
ever, inspection of the data reveals that no one in the sample with W = 4 received
treatment (ie. gn(1|W = 4) = 0). The sample can be trimmed by excluding those
subjects for whom W = 4 prior to applying a given causal effect estimator for the
average treatment effect. As a result, the target parameter is shifted from E(Y1−Y0)
to E(Y1− Y0|W < 4), and the positivity assumption (8) now holds (as W = 4 occurs
with zero probability).

Often W is too high dimensional to make this straightforward implementation fea-
sible; in such a case matching on the propensity score provides a means to trim the
sample. There is an extensive literature on propensity score-based effect estimators;
however such estimators are beyond the scope of the current review. Several poten-
tial problems arise with the use of trimming methods to address positivity violations.
First, discarding subjects responsible for positivity violations shrinks sample size, and
thus runs the risk of increasing the variance of the effect estimate. Further, sample
size and the extent to which positivity violations arise by chance are closely related.
Depending on how trimming is implemented, new positivity violations can be in-
troduced as sample size shrinks. Second, restriction of the sample may result in a
causal effect for a population of limited interest. In other words, as can occur with
alternative approaches to improve identifiability by shifting the target of inference,
the parameter actually estimated may be far from the initial target. Further, when
the criterion used to restrict the sample involves a summary of high dimensional
covariates, such as is provided the propensity score, it can be difficult to interpret
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the parameter estimated. Finally when treatment is longitudinal, the covariates re-
sponsible for positivity violations may themselves be affected by past treatment.15

Trimming to remove positivity violations in this setting amounts to conditioning on
post-treatment covariates and can thus introduce new bias.

Crump proposes an approach to trimming that falls within the general strategy of
redefining the target parameter in order to explicitly capture the tradeoff between pa-
rameter identifiability and proximity to the initial target.37 In addition to focusing on
the treatment effect in an a priori specified target population, he defines an alterna-
tive target parameter corresponding to the average treatment effect in that subsample
of the population for which the most precise estimate can be achieved. Crump further
suggests the potential for extending this approach to achieve an optimal (according to
some user-specified criteria) tradeoff between the representativeness of the subsample
in which the effect is estimated and the variance of the estimate.

7.4 Approach #4: Change the intervention of interest.

A final alternative for improving the identifiability of a causal parameter in the pres-
ence of positivity violations is to redefine the intervention of interest. Realistic rules
rely on an estimate of the propensity score g(a|W ) to define interventions that ex-
plicitly avoid positivity violations. This ensures that the causal parameter estimated
is sufficiently supported by existing data.

Realistic interventions avoid positivity violations by first identifying subjects for
whom a given treatment assignment is not realistic (i.e. subjects whose propen-
sity score for a given treatment is small or zero) and then assigning an alternative
treatment with better data support to those individuals. Such an approach is made
possible by focusing on the causal effects of dynamic treatment regimes.41;42 The
causal parameters described thus far are summaries of the counterfactual outcome
distribution under a fixed treatment applied uniformly across the target population.
In contrast, a dynamic regime assigns treatment in response to patient covariate
values. This characteristic makes it possible to define interventions under which a
subject is only assigned treatments that are possible (or “realistic”) given a subject’s
covariate values.

To continue the previous example in which no subjects with W = 4 were treated,
a realistic treatment rule might take the form “treat only those subjects with W
less than 4.” More formally, let d(W ) refer to a treatment rule that deterministically
assigns a treatment a ∈ A based on a subject’s covariates W and consider the rule
d(W ) = I(W < 4). Let Yd denote the counterfactual outcome under the treatment
rule d(W ), which corresponds to treating a subject if and only if his or her covariate
W is below 4. In this example E(Y0) is identified as

∑
w E(Y |W = w,A = 0)P (W =

w); however, since E(Y |W = w,A = 1) is undefined for W = 4, E(Y1) is not
identified (unless we are willing to extrapolate based on W < 4). In contrast, E(Yd) is
identified by the non-parametric G-computation formula:

∑
w E(Y = y|W = w,A =
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d(W ))P (W = w). Thus the average treatment effect E(Yd−Y0), but not E(Y1−Y0),
is identified. The redefined causal parameter can be interpreted as the difference in
expected counterfactual outcome if only those subjects with W < 4 were treated as
compared to the outcome if no one were treated.

More generally, realistic rules indexed by a given static treatment a assign a only
to those individuals for whom the probability of receiving a is greater than some
user-specified probability α (such as α > 0.05). Let d(a,W ) denote the rule indexed
by static treatment a. If A is binary, then d(1,W ) = 1 if g(1|W ) > α, otherwise
d(1,W ) = 0. Similarly, d(0,W ) = 0 if g(0|W ) > α; otherwise d(0,W ) = 1. Real-
istic causal parameters are defined as some parameter of the distribution of Yd(a,W )

(possibly conditional on some subset of baseline covariates V ⊂ W ). Estimation
of the causal effects of dynamic rules d(W ) allows the positivity assumption to be
relaxed to g(d(W )|W ) > 0 -a.e (i.e. only those treatments that would be assigned
based on rule d to patients with covariates W need to occur with positive probability
within strata of W ). Realistic rules d(a,W ) are designed to satisfy this assumption
by definition.

When a given treatment level a is unrealistic (i.e. when g(a | W ) < α), realistic
rules assign an alternative from among viable (well-supported) choices. Choice of
an alternative is straightforward when treatment is binary. When treatment has
more than two levels, however, a rule for selecting the alternative treatment level
is needed. One option is to assign a treatment level that is as close as possible to
the orignal assignment while still remaining realistic. For example, if high doses of
drugs occur with low probability in a certain subset of the population, a realistic rule
might assign the maximum dose that occurs with probability > α in that subset. An
alternative class of dynamic regimes, referred to as “intent-to-treat” rules, instead
assign a subject to his or her observed treatment value if an initial assignment is
deemed unrealistic. Moore, et. al. and Bembom, et. al. provide illustrations of both
of these types of realistic rules using simulated and real data.15;14

The causal effects of realistic rules clearly differ from their static counterparts. The
extent to which the new target parameter diverges from the initial parameter of
interest depends on both the extent to which positivity violations occur in the finite
sample (i.e. the extent of support available in the data for the initial target parameter)
and on a user-supplied threshold α. The parametric bootstrap approach presented in
Section 4 can be employed to data-adaptively select α based on the level of ETA.Bias
deemed acceptable.14

7.5 Selection among a family of parameters.

Each of the methods described for estimating causal effects in the presence of data
sparsity corresponds to a particular strategy for altering the target parameter in
exchange for improved identifiability. In each case, we have outlined how this trade-
off could be made systematically, based on some user-specified criterion such as the
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bias estimate provided by the parametric bootstrap. We now summarize this gen-
eral approach in terms of a formal method for estimation in the face of positivity
violations.

1. Define a family of parameters. The family should include the initial target of
inference together with a set of related parameters, indexed by γ in index set I,
where γ represents the extent to which a given family member trades improved
identifiability for decreased proximity to the initial target. In the examples given
in the previous section, γ could be used to index a set of projection functions
h(a, V ) based on an increasingly restrictive range of the possible values A,
degree to which the adjustment covariate set or sample is restricted, or choice
of a threshold for defining a realistic rule.

2. Apply the parametric bootstrap to generate an estimate ETA.Bias for each
γ ∈ I. In particular, this involves estimating the data generating distribution,
simulating new data from this estimate, and then applying an estimator to each
target indexed by γ.

3. Select the target parameter from among the set that fall below a pre-specified
threshold for acceptable ETA.Bias. In particular, select the parameter from
within this set that is indexed by the value γ that corresponds to the greatest
proximity to the initial target.

This approach allows an estimator to be defined in terms of an algorithm that iden-
tifies and estimates the parameter within a candidate family that is as close to the
initial target of inference as possible while remaining within some user-supplied limit
on the extent of tolerable positivity violations.

8 Conclusions.

The identifiability of causal effects relies on sufficient variation in treatment assign-
ment within covariate strata. The strong version of positivity requires that each pos-
sible treatment occur with positive probability in each covariate strata; depending on
the model and target parameter, this assumption can be relaxed to some extent. In
addition to assessing identifiability based on measurement of and control for sufficient
confounders, data analyses should directly assess threats to identifiability based on
positivity violations. The parametric bootstrap is a practical tool for assessing such
threats, and provides a quantitative estimator-specific estimate of bias arising due to
positivity violations.

The objective of the parametric bootstrap diagnostic is to raise a red flag in settings
where positivity violations (as well as bounding of gn) may be resulting in bias of
sufficient magnitude to threaten reliable inference. The simulations showed that the
diagnostic worked best when (1) Qn and gn were consistently estimated; (2) gn was at
least minimally bounded so that the estimator was more likely to be asymptotically
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normal; and, (3) any data-adaptive algorithm used to fit Q̄0 was forced to include not
only A but also the propensity score in order to retain sparsity in the bootstrapped
distribution. Although the diagnostic may underestimate the true ETA.Bias, in the
simulations presented here the diagnostic was generally successful in raising a red-flag
for bias due to positivity violations in the settings where such a warning was needed.
The performance of the diagnostic should be further investigated under a range of
true and estimated data generating distributions, however.

This paper has focused on the positivity assumption for the causal effect of a treat-
ment assigned at a single time point. Extension to a longitudinal setting in which
the goal is to estimate the effect of multiple treatments assigned sequentially over
time introduces considerable additional complexity. First, practical violations of the
positivity assumption can arise more readily in this setting. Under the longitudi-
nal version of the positivity assumption the conditional probability of each possible
treatment history should remain positive regardless of covariate history. However, this
probability is the product of time point-specific treatment probabilities given the past.
When the product is taken over multiple time points it is easy for treatment histories
with very small conditional probabilities to arise. Second, longitudinal data make
it harder to diagnose the bias arising due to positivity violations. Implementation
of the parametric bootstrap in longitudinal settings requires Monte Carlo simulation
both to implement the G-computation estimator and to generate each bootstrap sam-
ple. In particular, this requires estimating and sampling from the time-point specific
conditional distributions of all covariates and treatment given the past. Additional re-
search on assessing the impact of of positivity bias on longitudinal causal parameters
is needed, including investigation of the parametric bootstrap in this setting.

When positivity violations occur for structural reasons rather than due to chance, a
causal parameter that avoids these positivity violations will often be of substantial
interest. For example, when certain treatment levels are contraindicated for certain
types of individuals, the average treatment effect in the population may be of less
interest than the effect of treatment among that subset of the population without
contraindications, or alternatively, the effect of an intervention that assigns treatment
only to those subjects without contraindications. Similarly, the effect of a multilevel
treatment may be of greatest interest for only a subset of treatment levels.

In other cases researchers may be happy to settle for a better estimate of a less
interesting parameter. Sample restriction, estimation of realistic parameters, and
change in projection function h(a, V ) all change the causal effect being estimated;
in contrast, restriction of the covariate adjustment set often results in estimation
of a non-causal parameter. However, all of these approaches can be understood as
means to shift from a poorly identified initial target towards a parameter that is less
ambitious but more fully supported by the available data. The new estimand is not
determined a priori by the question of interest, but rather is driven by the observed
data distribution in the finite sample at hand. There is thus an explicit tradeoff
between identifiability and proximity to the initial target of inference. Ideally, this
tradeoff will be made in a systematic way rather than on an ad hoc basis at the
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discretion of the investigator. Definition of an estimator that selects among a family
of parameters according to some pre-specified criteria is a means to formalize this
tradeoff. An estimate of bias based on the parametric bootstrap can be used to
implement the tradeoff in practice.

The parametric bootstrap also provides a means to optimize estimator performance
without changing the target parameter. The parametric bootstrap provides an esti-
mate of the whole sampling distribution of a candidate estimator, and thus can be
used to estimate MSE and fine-tune estimator performance based on this estimate.
Bembom et. al. illustrate this approach by using the bootstrap to data-adpatively
select the level of weight truncation that minimizes the estimated MSE of the IPTW
estimator; the same method can also be used to minimize estimated MSE using
alternative approaches such as progressive restriction of the adjustment set. We em-
phasize, however, that use of the parametric bootstrap to minimize estimator MSE
is fundamentally different than use of the parametric bootstrap to select among a
family of parameters, as described in Section 7.5. The former represents a means of
improving estimator performance for the same target parameter (by fine-tuning the
estimator to optimize bias-variance tradeoff). In contrast, the family of parameters
approach shifts the target of inference to a parameter that is adequately supported
by the data.

In summary, we offer the following advice for applied analyses: First, define the
causal effect of interest based on careful consideration of structural positivity viola-
tions. Second, consider estimator behavior in the context of positivity violations when
selecting an estimator. Third, apply the parametric bootstrap to quantify the extent
of estimator bias under data simulated to approximate the true data generating dis-
tribution. Fourth, when positivity violations are a concern, choose an estimator that
selects systematically among a family of parameters based on the tradeoff between
data support and proximity to the initial target of inference.

References

[1] W.G. Cochran. Analysis of covariance: Its nature and uses. Biometrics, 13:261–
281, 1957.

[2] J.M. Robins. A new approach to causal inference in mortality studies with
sustained exposure periods - application to control of the healthy worker survivor
effect. Mathematical Modelling, 7:1393–1512, 1986.

[3] J.M. Robins. Addendum to: “A new approach to causal inference in mortality
studies with a sustained exposure period—application to control of the healthy
worker survivor effect” [Math. Modelling 7 (1986), no. 9-12, 1393–1512; MR
87m:92078]. Comput. Math. Appl., 14(9-12):923–945, 1987.

[4] J.M. Robins. Robust estimation in sequentially ignorable missing data and causal

43

Hosted by The Berkeley Electronic Press



inference models. In Proceedings of the American Statistical Association: Section
on Bayesian Statistical Science, pages 6–10, 1999.

[5] Y. Wang, M. Petersen, D. Bangsberg, and M.J. van der Laan. Diagnosing bias
in the inverse probability of treatment weighted estimator resulting from viola-
tion of experimental treatment assignment. Technical Report 211, Division of
Biostatistics, University of California, Berkeley, 2006.

[6] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University
Press, New York, 2000.

[7] J. Neyman. On the application of probability theory to agricultural experiments.
essay on principles. section 9. Statistical Science, 5:465–480, 1923.

[8] D.B. Rubin. Estimating causal effects of treatments in randomized and non-
randomized studies. Journal of Educational Psychology, 66:688–701, 1974.

[9] J.M. Robins. Marginal structural models. In Proceedings of the American Sta-
tistical Association. Section on Bayesian Statistical Science 1997, pages 1–10,
1998.

[10] J.M. Robins. Marginal structural models versus structural nested models as tools
for causal inference. In Statistical models in epidemiology, the environment, and
clinical trials (Minneapolis, MN, 1997), pages 95–133. Springer, New York, 1999.

[11] R. Neugebauer and M. J. van der Laan. Non-parametric causal effects based
on marginal structural models. Journal of Statistical Planning and Inference,
137(2):419–434, 2007.

[12] J.M. Robins. A graphical approach to the identification and estimation of causal
parameters in mortality studies with sustained exposure periods. Journal of
Chronic Disease, 40(2):139s–161s, 1987.

[13] R. Neugebauer and M.J. van der Laan. Why prefer double robust estimates.
Journal of Statistical Planning and Inference, 129(1-2):405–426, 2005.

[14] O. Bembom and M.J. van der Laan. A practical illustration of the importance
of realistic individualized treatment rules in causal inference. Electronic Journal
of Statistics, 1:574–596, 2007.

[15] K.L. Moore, R.S. Neugebauer, M.J. van der Laan, and I.B. Tager. Causal infer-
ence in epidemiological studies with strong confounding. Technical Report 255,
Division of Biostatistics, University of California, Berkeley, 2009.

[16] S.R. Cole and M.A. Hernan. Constructing inverse probability weights for
marginal structural models. American Journal of Epidemiology, 168:656–664,
2008.

44

http://biostats.bepress.com/ucbbiostat/paper269



[17] M. M. Rosenblum and M. van der Laan. Confidence intervals for the population
mean tailored to small sample sizes, with applications to survey sampling. The
International Journal of Biostatistics, 1:4, 2001.

[18] M.J. van der Laan and S. Dudoit. Unified cross-validation methodology for
selection among estimators and a general cross-validated adaptive epsilon-net
estimator: Finite sample oracle inequalities and examples. Technical Report
130, Division of Biostatistics, University of California, Berkeley, 2003.

[19] M.J. van der Laan, E. C. Polley, and A. E. Hubbard. Super learner. Genetics
and Molecular Biology, 6, 2007.

[20] T. Hastie, R. Tibshirani, and J Friedman. The Elements of Statistical Learning.
Springer, London, 2009.

[21] J.M. Robins, M.A. Hernan, and B. Brumback. Marginal structural models and
causal inference in epidemiology. Epidemiology, 11(5):550–560, 2000.

[22] L. Kish. Weighting for unequal pi. Journal of Official Statistics, 8:183–200, 1992.

[23] O. Bembom and M.J. van der Laan. Data-adaptive selection of the truncation
level for inverse-probability-of-treatment-weighted estimators. Technical Report
230, Division of Biostatstics, University of California, Berkeley, 2008.

[24] J. M. Robins and A. Rotnitzky. Comment on the Bickel and Kwon article,
”Inference for semiparametric models: Some questions and an answer”. Statistica
Sinica, 11(4):920–936, 2001.

[25] J. M. Robins. Commentary on using inverse weighting and predictive inference
to estimate the effects of time-varying treatments on the discrete-time hazard by
Dawson and Lavori”. Statistics in Medicine, 21:1663–1680, 2002.

[26] D.O. Scharfstein, A. Rotnitzky, and J.M. Robins. Adjusting for non-ignorable
drop-out using semiparametric nonresponse models, (with discussion and rejoin-
der). Journal of the American Statistical Association, 94:1096–1120 (1121–1146),
1999.

[27] M.J. van der Laan and D. Rubin. Targeted maximum likelihood learning. The
International Journal of Biostatistics, 2(1):11, 2006.

[28] M. Rosenblum and M. van der Laan. Targeted maximum likelihood estimation
of the parameter of a marginal structural model. The International Journal of
Biostatistics, 6(2), 2010.

[29] M.J. van der Laan and S. Gruber. Collaborative double robust targeted penalized
maximum likelihood estimation. Technical Report 246, Division of Biostatistics,
University of California, Berkeley, 2009.

45

Hosted by The Berkeley Electronic Press



[30] S. Gruber and M.J. van der Laan. Estimator of a causal effect on a bounded con-
tinuous outcome. Technical Report 265, U.C. Berkeley Division of Biostatistics
Working Paper Series., 2000.

[31] D.A. Freedman and R.A. Berk. Weighting regressions by propensity scores.
Evaluation Review, 32(4):392–409, 2008.

[32] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Emprical Pro-
cesses. Springer-Verlag New York, 1996.

[33] O. Bembom, M.L. Petersen, S.-Y. Rhee, W. J. Fessel, S.E. Sinisi, R.W. Shafer,
and M.J. van der Laan. Biomarker discovery using targeted maximum likelihood
estimation: Application to the treatment of antiretroviral resistant HIV infection.
Statistics in Medicine, 28:152–72, 2009.

[34] S. Gruber and M.J. van der Laan. An application of collaborative targeted max-
imum likelihood estimation in causal inference and genomics. The International
Journal of Biostatistics, 6(1):Article 18, 2010.

[35] V.A. Johnson, F. Brun-Vezinet, and et. al. B. Clotet. Update of the drug resis-
tance mutations in HIV-1: December 2009. Topics in HIV Medicine, 17(5):138–
45, 2009.

[36] O. Bembom, J.W. Fessel, R.W. Shafer, and M.J. van der Laan. Data-adaptive
selection of the adjustment set in variable importance estimation. Technical
Report 231, Division of Biostatstics, University of California, Berkeley, 2008.

[37] R.K. Crump, V.J. Hotz, G.W. Imbens, and O.A. Mitnik. Moving the goalposts:
Adressing limited overlap in the estimation of average treatment effects by chang-
ing the estimand. Technical Report 330, National Bureau of Economic Research,
2006.

[38] R.J. LaLonde. Evaluating the econometric evaluations of training programs with
experimental data. American Economic Review, 76:604–620, 1986.

[39] J. Heckman, H. Ichimura, and R. Todd. Matching as an econometric evalua-
tion estimator: Evidence from evaluating a job training programme. Review of
Economic Studies, 64:605–654, 1997.

[40] R. Dehejia and S.Wahba. Causal effects in nonexperimental studies: Reevalu-
ating the evaluation of training programs. Journal of the American Statistical
Association, 94:1053–1062, 1999.

[41] M.J. van der Laan and M.L. Petersen. Causal effect models for realistic indi-
vidualized treatment and intention to treat rules. The International Journal of
Biostatistics, 3(1):3, 2007.

[42] J.M. Robins, L. Orellana, and Andrea Rotnitzky. Estimation and extrapolation
of optimal treatment and testing strategies. Statistics in Medicine, 27:4678–4721,
2008.

46

http://biostats.bepress.com/ucbbiostat/paper269


	text.pdf.1288037327.titlepage.pdf.rld6c
	Introduction.
	Outline.

	Framework for causal effect estimation.
	Model.
	Target causal parameter.
	Identifiability.
	The need for experimentation in treatment assignment.


	Estimator-specific behavior in the face of positivity violations.
	The G-computation estimator.
	The Inverse Probability of Treatment Weighted estimator
	Double Robust estimators.

	Diagnosing bias due to positivity violations.
	The parametric bootstrap as a diagnostic tool.

	Simulations.
	Data generating distributions.
	Investigation of estimator behavior and the performance of the parametric bootstrap-based diagnostic.
	Results: Simulation 1.
	Results: Simulation 2.
	Results: Simulation 3.
	Discussion of Simulation Results.

	Data example: HIV resistance mutations.
	Data and question.
	Methods.
	Results.

	Practical approaches to causal inference in the presence of positivity violations
	Approach #1: Change the projection function h(A,V).
	Approach #2: Restrict the adjustment set.
	Approach # 3: Restrict the sample.
	Approach #4: Change the intervention of interest.
	Selection among a family of parameters.

	Conclusions.

