From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.
Diagnosing Circuits with State:

An Inherently Underconstrained Problem

Walter Hamscher
Randall Davis

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
545 Technology Square
Cambridge, Mass 02139

"Hard problems” can be hard because they are
computationally intractable. or because they are
underconstrained. Here we describe candidate generation for
digital devices with state, a fault localization problem that is
intractable when the devices are described at low levels of
abstraction, and is underconstrained when described at
higher levels of abstraction. Previous work [1] has shown that
a fault in a combinatorial digital circuit can be localized using
a constraint-based representation of structure and behavior.
In this paper we (1) extend this representation to model a
circuit with state by choosing a time granularity and
vocabulary of signals appropriate to that circuit; (2)
demonstrate that the same candidate generation procedure
that works for combinatorial circuits becomes indiscriminate
when applied to a state circuit modeled in that extended
representation; (3) show how the common technique of single-
stepping can be viewed as a divide-and-conquer approach to
overcoming that lack of constraint; and (4) illustrate how using
structurat detail can help to make the candidate generator
discriminating once again, but only at great cost.

Introduction

Faults in combinatorial digital circuits can be localized
using a constraint-based representation of structure and
behavior. This fault localization procedure. candidate
generation. is reviewed below. The procedure is general and
should apply to circuits with state: we have extended the
constraint-based representation to include these devices. A
key feature of the extended representation is the use of layers
of temporal granularities. In this paper we show a simple
example of such a multilayered description.

But. having extended the representation. we show that the
same diagnostic procedure that works well for combinatorial
circuits becames indiscriminate when applied to state circuits.
Intuition tells us that circuits with state are more difficult to
diagnose than combinatorial ones: we show that this intuition
is correct by presenting a computational view of the candidate
generation process. Intuition also tells us that single-stepping
a circuit is a good way to localize faults: this intuition too turns
out to have firm computational grounds. Finally, we show that
knowledge about the substructure of a device can provide
consjderabie additional discriminatory power.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technaoiogy. Support for the
Latoratory's Al research on hardware troubleshooting is provided in part by a
research grant supplied to MIT by the Digital Equipment Corporation, and in
part by the Advanced Research Projects Agency cf the Department of
Defense under Cifice of Naval Research contract N00O14-80-C-0505.

142

Candidate Generation

Given a device exhibiting faulty behavior. we wish to
determine which of its subcomponents could be responsible
for the misbehavior. We call these components candidates.
The most eftective diagnoses are those which propose the
fewest alternative candidates. in which the candidates
represent the least complex hardware, and in which the
candidates’ hypothesized misbehaviors are most specific.

We represent each component of a circuit as a modufe [3].
Modules have substructure. composed of modules connected
by wires. The primitive modules of the system are logic gates.
The behavior of each module can be expressed as a
constraint [4. 5] on the values at its terminals. The constraint
is itself composed of a set of rules spanning the device. For
example. the behavior of a two-input NAND-gate can be
described as a constraint composed of the following rules:

If both inputs are 1, the output must be 0.

If one input is O, the output must be 1.

If the output is 0, both inputs must be 1.

If the output is 1 & one input is 1, other input is 0.

For the sake of simplicity in this discussion, we assume that
faults occur only in modules. This allows us to ignore some
uninteresting details without affecting the essential nature of
candidate generation. The process is best understood by
considering a simple example. Figure 1 shows a
combinatorial circuit that computes F = AC + BD and
G = BD + CE, with inputs 3, 3. 1, 1, and 3. The modules’
behavicral constraints tell us that if all the modules are
working, we can expect the cutputs at F and G tc be 6 and 6.
Imagine. however, that we observe the outputs in the actual
device to be 5 and 6. Which companents could be
responsible for this discrepancy?

We find the potential candidates by tracing backward from
the discrepant output F. All modules that ccntributed to that
output are potential candidates: in this case. MULT-1, MULT-2,
and app-1. To find out which of those potential candidates
can account far all the behavior observed. we ccnsider each
one in turn. suspending its constraint (2], and asking whether
the resulting_network is now consistent with the inputs and
observations,

.
The same procedure works under weaker assumptions, e.g. assuming
two points of failure we suspend pairs of constraints.

In .this example we find that MULT-2 is not a consistent
can@ldate. Suspending its constraint leads to a contradiction:
the inputs at A-E and the observations at F and G are

inconsistent with correct behavior of the remaining four
modules. MULT-1 is. however. a consistent candidate: it could
have misbehaved by having 3 and 1 as inputs and 2 as its
output. ADD-1 is also a consistent candidate: it could have had
a3 and a3 asinputs and a5 as its output.

Having deduced these possible misbehaviors for ApD-1 and
MULT-1. we can in eftect construct a new behavior for each
candidate. This informaticn is important: it says not only
whether the module could be failing. but if it is. how it's failing.
Each new test then supplies additional information about the
module’s (mis)behavior, in effect building up a truth table
showing how the module must be (mis)behaving.

Representation of Circuits with State

We have seen that the behavior of purely combinatorial
devices can be modeled in a natural way using constraints.
We maodel devices with state by extending our representation
to include constraints that span time. To do this. we aiso need
to extend our description of signals from single numbers to
sequences of (value.time) pairs. with each pair denoting the
signal's value at an instant. The behavior of a flipflop is then
described as:

If the clock inputis O attime t-7 and 1 attime ¢
Then output Q at time ¢ + 7 equals D at time t
Else output @ at time ¢t + 1 equals Q at time ¢.

Since a hierarchic representation of time is as useful as a
hierarchic representation of structure. we describe the
behavior of modules using several different granularities of
time. The most basic unit of time is the switching time of a
gate. Other, coarser, units are less cbvious and one of the
difficulties we encounter lies in choosing the appropriate
levels of temporal abstraction. One of the secondary
contributions of this paper is its attempt to define a number of
levels that appear to be both useful and intuitive in the current
domain.

With a hierarchic representation of time, the behavior of a
module can be described at several different levels of
abstraction. For example, at the finest level of detail, a NOR
gate can be modelled as having a unit delay. This would be a
appropriate in an asynchronous feedback circuit, since the
delay is important in understanding the behavior of the circuit.

But a NOR gate in the combinatorial part of a properly
designed clocked circuit can be modelled as having no delay;
indeed. a "properly designed" clocked circuit is one in which
the clock pericd is longer than the maximum delay to
guiescence of any combinatorial component.

Similarly, it is appropriate in some contexts to medel a JK
flip-flop as imposing a unit delay between its data inputs and
its outputs: it may also be necessary to model its behavior at
the gate-delay level. in which case the delay between the J
and K inputs and the outputs may be 4 or more units. We
maintain alternative descriptions for the same type of device,
as well as explicit mappings between those descriptions at
different granularities.

143

Different granularities of time also lead us to make use of
symbolic values for signals in cases where transitions, rather
than quiescent values. are important. For example, the clock
input of a rising-edge-triggered flipflop is described using the
values 0 and + P, where + P denotes a rising edge followed by
a falling edge. This abstraction allows us to describe the
fliptlop’s behavior in part as:

If the clock input is +P at time t,
Then output attime t + 1 is same as D at time .

A more complex example is shown in Figure 2, which shows
a two-bit register "T8R" that clears itself whenever 1's are
clocked into both its flipflops. Figure 3 shows. at three
different time granularities. TBR's response to a series of
changes on its inputs. We describe the behavior of this device
at these multiple levels. to show how behavior at fine temporal
granularities maps onto behavior at coarser granularities.

Figure 3a shows the changes on TBR's signals at the lowest
time granularity, using delay of a gate as the basic unit (the
small tick marks on the time axis). To represent behavior at
this level. we use the flinflop behavior description given above
and a description for the AND gate that impaoses a unit delay
between the inputs and outputs:

If both inputs are 1 at time t, output is 1 at time t + 1.
Ifan inputis 0 att, the output mustbe O att+ 7.
If the output is 1 at ¢, both inputs mustbe 1 att-7.
If the outputis O att and an inputis 1 at t-1,
the other inputisQ att-17.

At this lowest level. every transition on signals in TBR is
visible; this is a fairly continuous view of the device's behavior.

Figure 3b shows the behavior at the next coarsest level,
showing the values of all signals only at the instants of
possible clock transitions (the large tick marks on the time
axis). The values of DO, D1. and Q1 have been sampled at
those points, producing the values at the next level. Here the
basic unit is the cycle time of the clock and the internal CLR
signal has become invisible. This yields the external behavicr
of the device, described as:

If CLK is +P at time t,
Then Q1 attime ¢+ 7is AND(D1 at t,NOT(Do0 at t))
Eise Qt attimet+ 1is Q1 attimet.

There are two key features to this mapping between levels.
First, the fongest delay until quiescence at the finer level
determines how many fine-grain units correspond to one
coarse-grain unit. In this example, 5 units at the finer level
maps onto a unit delay at the coarser level. because the
behavior of the device normally requires at most 5 of the fine
units to reach quiescence.

Second, events whose duration is shorter than the current
level of granularity are not represented. In this example the
duration of the momentary "1" value of Q1 after the second
clock transition is not represented at the coarser level,
because it falls entirely within one unit of time at that tevel. and
hence is never "seen"”.

Figure 3c shows the behavior at the coarsest level of
granularity, representing TBR's external signails only at those
instants when the clock makes a paositive-going transition.

This hides the details of the CLK signal: we can see the
changes that occur when the clock makes its transition. but
have no idea of how long it is between transitions. We
represent this behavior as:

at attimet+ 1isthe AND of D1 at+ and NOT(Do at t)).

Candidate Generation Applied to A
Circuit With State

We can combine the candidate generaticn technique
reviewed above with this representation of circuits with state
as a first step in diagnosing those circuits.

Consider for example a 4-bit sequential multiplier MULT
shown in Figure 4. MULT has two input registers A and B, and
an 8-bit accumulator register @. When the NIT signal is high,
the A and 8 inputs are loaded into the A and 8 registers and
the Q register is cleared. On each clock pulse. the A register
shifts down, the B register shifts up. and the a register
accumulates the product. After four clock cycles the a
register contains the product A*B.

If we load the inputs 6 and 9 into the A and B registers on
the first clock cycle, we expect to see 54 in register a four
clock cycles later. Suppose. however. we observe 58. We
want to find out which components could have failed in such a
way as to produce this symptom.

To illustrate how constraint suspension can be used to find
the consistent candidates in the circuit, we use a standard
technique of replicating the multiplier over five clock cycles
(as in Figure 5), producing a snapshot of the circuit behavior
at each cycle. The ovals in the diagram represent signal
values. Each signal is replicated five times in the diagram;
each of these ovals represents the vaiue of the signal at each
of five clock pulses. The snapshots are linked by connections
that suggest the transmission of register values from one time
period to the next. The diagram shows that we expect the
successive values of @ to be 0, 0. 18, 54, and 54. The CLK
signal is implicit, just as in the layered temporal representation
described above. The INIT signal is not shown for simplicity’s
sake; it makes no contribution to the following analysis.

Suppose we observe only the final contents of Q, which is
58 instead of the expected 54. Tracing back from the
expected value of @, we find that all five components of MULT
were supposed to contribute to that output. Thus all five
components are potential candidates. To check whether
these modules are consistent candidates under the single
point of failure assumption. we suspend each of their
behaviors in turn, by removing the constraint that each
component imposes in all time slices, and check to see
whether its removal is consistent with the incoirect output.
Doing this, we find that register A is not a consistent
candidate, since there is no sequence of 1's and 0's that we
can assign to the least significant bit of register a that could
explain the result of 58.

But all four of the other devices are consistent candidates.
Worse. we are not able to deduce any specific misbehavior for
them. The reason for this can be seen by looking at the
constraint graph in Figure 5. If we know only the inputs at the
top and the single output at the bottom. then suspending the
constraint for the driver or the adder disconnects the graph

and the inputs become irrelevant. Suspending the 8 register
constraint leaves an almost-disconnected graph. In this case
the values of the B register at (2 and t3 can be any pair that
sums to 58.

The candidate generator has become indiscriminate: four
of five modules in the muitiplier are candidates. This is
significant. because this example is not a pathological one.
The problem is intrinsic to devices with state: hypothesizing a
failure in a part means removing constraints in many
time-slices. This in turn tends to leave large gaps in which it is
impossible to deduce what actually happened.

Intuition tells us that circuits with state are hard to diagnose;
this intuition now has firm computational ground: circuits with
state are hard to diagnose in part because the problem is often
inherently underconstrained.

Introducing More Visibility

Intuition also tells us that single-stepping state circuits and
observing the intermediate results vastly reduces the problem.
We can now see why.

Suppose we are able to cbserve the contents of @ at each of
the five clock cycles. and we cbserve that it contains 0. 1. 20.
57. and 58 instead of 0. 0. 18. 54. and 54 as expected. This
provides two important sources of power. First. we have in
each slice a strictly combinatorial device. Since the
subproblem of generating candidatas in combinatorial circuits
is typically sufficiently constrained. we expect to generate a
more restricted set of candidates in each slice. Second. we
have four 1/0 pairs. in effect four tests of the device. Since we
are assuming a single point of failure. to be a candidate a
component must be consistent with the observations in all four
stices. This too will help to restrict the numter of candidates
generated.

If we examine Figure 4, we find discrepancies at Q in the
first through fourth time slices. In each slice we trace
backwards from q. yielding four sets of potential candidates.
We intersect these sets to find the candidates consistent with
the information in all four slices: the Q register, A register,
adder, and driver. The B register was eliminated from
consideration because its misbehavior could not explain the
discrepant output of @ at .. Having determined the potential
candidates by tracing back from discrepancies and enforcing
consistency across time slices. we now determine which of
these mcdules is consistent with the observations.

o As before, register 4 is not a consistent candidate.
(There is no set of assignments to its least
significant bit over four time slices that yields the
observed contents of @ when the 8 input is 9 and
all other constraints are operating.)

eThe driver is a consistent candidate, its
misbehavior can be partially described by the
following truth table:

CTL IN__ | OUT
0 9 |1 (should be Q)
1 18 | 19 (should be 18)
1 36 | 37 (should be 36)
0 72 | 1 (shouldbe0)

Table 1: Truth Table of Misbehaving Driver

e The adder is a consistent candidate. (Note that
removing its constraint in all four time slices
completely disconnects each of the observed
values from the inputs and from each other; for
this reascn a faulty adder would explain any
observations.) It has the following misbehavior:

INPUT-1_INPUT-2 |OUTPUT
0 0 | 1 {should be 0)
18 1 | 20 {should be 19)
36 20 | 57 (should be 56)
0 57 | &8 (should be57)

Table 2: Truth Table of Misbehaving Adder

e The Q register is a consistent candidate. As with
the adder above. removing its constraint
disconnects our observations from the inputs, so
that this device's failure could explain anything.
Its truth table is:

INPUT att | OUTPUT att+ 1
0 | 1 (should be 0)
19 | 20 (should be 19)
56 | 57 (should be £6)
57 | 58 (should be 57)

Table 3: Truth Table of Misbehaving Q Register

We have gained important information in the form of truth
tables that describe how each candidate could have failed so
as to prcduce the observed symptoms. Still, even with
complete visibility of the outputs, under a strong set of
assumptions. we are unable to distinguish among 3 of the 5
components of this device. We need yet more information.

Hierarchic Diagnosis

The only remaining source of information is the
substructure of the candidates. We can use this information
by applying the candidate generation procedure to each of the
remaining consistent candidates. Note that we take this step
with some reluctance: from a practical point of view. using
structural information is expensive because the number of
potential and consistent candidates tends to increase
dramatically. even though the compiexity of the individual
candidates decreases.

e The Q register is built from eight D-flipflops
sharing their clock and clear inputs (Figure 6).
We use the behavior deduced for a and map down
from our coarse-grained tempaoral view to the next
level of temporal detail. at which the clock signal
is visible. Applying candidate gsneration to Q. we
find that there is no single flipflcp whose failure
could expiain the observed misbehavior of Q.
That is. there is no single flipflop whose failure
could produce the symptoms shown in Table
3,(The discrepancies in @ occurred in the three
low-order bits. Each of these discrepancies
results in a set of potential candidates. But the
intersection of these sets is null.)

o The driver is composed of eight AND gates
sharing a control input (Figure 7). Proceeding as
above, we find that one AND gate --- the one

145

enabling the least significant bit --- is a consistent
candidate: if this AND gate’'s output is always 1 no
matter what its inputs, we get the observations of
Table 1.

e The adder is composed of eight single-bit adder
slices. (Figure 8). The least significant slice is a
consistent candidate: its output, viewed as a 2-bit
integer. is always 1 greater than it should be.

The candidate set has now been reduced to only two
modules: one AND gate in the driver and one bit-slice in the
adder. Given the symptoms available. and excluding the
possibility of internal probes, it is not possible to distinguish
between the two,

This result illustrates the power of information about
substructure in refining candidate generation, both in the
number of candidates and in their complexity. The single
point of failure assumption and single-stepping of state
circuits, while reducing the possible candidates considerably,
were still not sufficient to reach a satisfactory diagnosis.

As a final note of the power of this approach. note that the
final candidate set was reached even without assuming that
the fault was nonintermuitent. The nonintermittency
assumption says that the faulty module is failing consistently,
i.e.. given the same inputs. it produces the same (incorrect)
output. In our terms this amounts to insisting that the
behaviors deduced for a candidate be consistent across all
the time slices. i.e.. the tabies like those shown in the previous
section have to be seif-consistent.

We were able to rule out many of the potential candidates
using a weaker form of consistency implied by the single point
of failure assumption: we required only that some behavior of
each candidate be able to account for the discrepancies in all
the time siices. It might. for example. have been the case that
the adder could be a candidate only if it added 0 and 0 to get 1
in time slice 1. and added 0 and 0 to get O in time slice 4. Even
with this weaker form of consistency. we were able to
constrain the candidates we generated simply because they
could not account for the discrepancies in all four time slices
under any behavior, intermittent or not.

Limitations and Future Work

The temporal abstraction described and used here is
limited: short events are invisible at higher levels of
abstraction. yet often hardware failures inveolve short events.
Consider for example a gate which has faited by slowing
down. rather than failing altogether. This will cause incorrect
results only when this slowness causes some signal to be
sampled too soon. before it has a chance to change to its
correct value. If this misbehavior is observed at a coarse
temporal granularity. it may appear to be intermittent. Any
level or kind of abstraction. in fact. falls prey to faults that it
can represent. but not derive: a coarsa-grained mode! of time
can represent hazards and races as intermittent faults, but it
can't distinguish between devices that have slowed down and
ones that are genuinely unpredictable. This fact puts a
premium cn careful definition of the mappings between layers
of temporal granuiarities. One goal of this research is to
further investigate the nature of hierarchic diagnosis using
these temporal hierarchies in addition to structural ones.

Conclusion

Combinatorial circuits can be modeled in a natural way
using constraints and this representation can be used for
generating candidate components. Circuits with state can
also be modeled by constraints if the representation is
extended to use multiple levels of time granularity. Intuition
tells us that circuits with state are more difficult to diagnose
than combinatorial ones. and we have shown a computational
reason for this: when less than complete state visibility is
available, candidate generation is inherently underconstrained
and therefore indiscriminate. \ntuttion also tells us that single-
stepping a suspect state circuit is a good way to localize
fauits: we showed that this intuition too turns out to have firm
computational grounds: single stepping allows us to view the
problem as a more constrained problem. that of diagnosing a
combinatorial circuit. Finally. by using information about
devices' internal structure and viewing devices at a fine
temporal granularity, specific diagnoses can be obtained even
for devices with state.

Acknowledgments

Howard Shrobe. Ramesh Patil. Thomas Knight. and all the
members of the MIT Al Lab’s Hardware Troubleshooter group
contributed to the content and presentation of this research.

References

(1] R. Davis.
Diagnosis Via Causal Reasoning: Paths of Interaction
and the Locality Principle.
in Proceedings of AAAI-83, pages 88-94. AAAL,
August, 1983.

[2] R. Davis.
Reasoning from Structure and Behavior.
1984.
To appear in Artificial Intelligence.

(3] R. Davis and H. Shrobe.
Representing the Structure and Behavior of Hardware.
IEEE Computer 16(10):75-82, October, 1983.

[4] DeKleer, J., and G. J. Sussman.
Propagation of Constraints Applied to Circuit
Synthesis.
International Journal of Circuit Theory 8(2):127-144,
April, 1980.

[5] G. L. Steele.
The Definition and Implementation of a Computer
Programming Language Based on Constraints.
Technical Report Al-TR-595, MIT, 1980.

3) a >
MULT-1 _‘l__)
(3) B—L AapD-1 > ¢ (B)
(1) ¢ — MULT-2 |~
(1 o _“._I—, aoD2 [—> o (6)
>

MULT-3

@) £ —

Figure 1: Combinatcrial Circuit Example

— e ————— Q1
N - AH‘D o ’77 Jgt‘)
r:j\m{' - - 01 — — — Q1
T And TBR
[Pl 00 ——-

Ct.
i GUR
- - . CLK

CLK 1
Figure 2: Self-clearing Two-bit Register
Q1 3 0 0 1
D1 0 1 1 0
c DO 0 1 0 1
Qt 2 0 0 1 1
D1 0 1 1 1 0
b. DO 0 1 0 0 1
CLK +P +P +P 0 +P
0 A } 0 1
| | I ! !
o1 [|Enal | | |
I Ceoen =l cnen wiERE o
CLR L.
a. D1 M
i, W

CLK J W
time |-+t

Figure 3: a,b,c: Multileve! Timing Diagrams for Device TBR

—
cK A register Bregister Q register
INIT ——— :1

LSB

) input-2
irput-1 Adder
sum
) S

Figure 4: Sequential Multiplier with 8-bit Result Register

Tine

Figure 5: Multiplier Behavicr Viewed Over Five Clock Cycles

o7 cé cs D4 03 02 Dt 00
|

RS N A S N B
| ; |

CLK : o) 00— Db D‘b—b D 0 D}p D! |
— H | I { T R i |
CLR ———CL 3 —4CL g —ACL g =acL o F4CL _— QO —act Q—act g! i
[S : i |

i
i

ool

Q7 Q6 Qs G4 a3 Q2 [o}} (o]

Figure 6: Eight-Bit Q Register

in? ing n§ nd n3 n2 n (BN

CTL

Figure 7: Eight-Bit Driver

87 A7 86 A6 85 A5 a4 A4 83 A3 82 A2 81 A1 B0 AD

Figure 8: Eight-Bit Adder

147

