
Diagnosing Circuits with State:
An Inherently Underconstrained Problem

Walter Hamscher
Randall Davis

Artificial Intelligence Laboratory
Massachusetts lnstltute of Technology

545 Technology Square
Cambridge, Mass 02139

“Hard problems” can be hard because they are
computationally intractable. or because they are
underconstrained. Here we describe candidate generation for
digital devrces with state, a fault localization problem that is
intractable when the devices are described at low levels of
abstraction, and is underconstrained when described at
higher levels of abstraction. Previous v;ork [l] has shown that
a fault in a combinatorial digital circuit can be localized using
a constraint-based representation of structure and behavior.
ln this paper we (1) extend this represerltation to model a
circuit with state by choosrng a time granularity and
vocabulary of signals appropriate to that circuit; (2)
demonstrate that the same candidate generation procedure
that works for combinatorial circuits becomes indiscriminate
when applied to a state circuit modeled in that extended
representationL(3) show how the common technique of single-
stepping can be viewed as a divide-and-conquer approach to
overcoming that lack of constraint; and (4) illustrate how using
structural de?ail can help to make the candidate generator
discriminating once again, but only at great cost.

Int reduction

Faults in combinatorial digital circuits can be localized
using a constraint-based representation of structure and
behavior. This fault locatizatlon procedure. c;irldtdate
generar~on. IS revtewed below. The procedure IS general and
should apply to circuits with state: we have extended the
constraint-based representation to include these devices. A
key feature of the extended representation is the use of layers
of temporal granularities. In this paper we show a simple
example of such a multllayered descrtption.

But. having extended the representation. we show that the
same diagnostrc procedure that works weil for combinatonal
circuits becomes Indiscriminate when applied to state circuits.
lnturtlon tells us that circuits with state are more difficult to
diagnose than combinatorial ones: we show that this intuition
is correct by presenting a computatlonal view of the candidate
generation process. Intuition also tells us that single-stepping
a circuit is a good way to localize faults: this intuition too turns
out to have firm computational grounds. Finally, we show that
knowledge about the substructure of a device can provide
considerable additional discriminatory power.

This report describes research done at the Artificial Intelligence

Laboratory of :he Massachusetts Institute of Technoiogy. Support for the

Laboratory’s Al research on hardware troubleshooting is provided in part by a

research grant supplied to MIT by the DigItal Equipment Corporation, and in

pat: by !he Advanced Research Projects Agency of the Department of

Defense under Cfflce of Naval Research contract NOOOl4-00-C-0505.

Candidate Generation

Given a device exhibiting faulty behavior. we wish to
determine which of its subcomponents could be responsible
for the misbehavior. We call these components c;lnd/dale.s.
The most effective diagnoses are those which propose the
fewest alternative candidates. in which the candidates
represent the least complex hardware. and in which the
candidates’ hypothesized mlsbehaviors are most specific.

We represent each component of a circuit as a module [3].
Modules have substructure. composed of modules connected
by wires. The primitive modules of the system are logic gates.
The behavior of each module can be expressed as a
constraint [-I, 51 on the values at Its terminals. The constraint
is itself composed of a set of rules spanning the device. For
example. the behavior of a two-input NAND-gate can be
described as a constraint composed of the following rules:

If both irlputs are 1, the output must be 0.
If one input is 0, the output must be 1.
If the output is 0. both inputs must be 1.
If the output is 1 & one input is 1, other input is 0.

For the sake of simplicity in this discussion, we assume that
faults occur only in modules. This allows us to ignore some
uninteresting details without affecting the essential nature of
candidate generation. The process is best understood by
considering a simple example. Figure 1 shows a
combinatorial circuit that computes F = AC + BD and
G = ED + CE. with inputs 3, 3. 1, 1, and 3. The modules’
behavioral constraints tell us that if all the modules are
working, we can expect the outputs at F and G to be 6 and 6.
Imagine. however, that we observe the outputs in the actual
device to be 5 and 6. Which components could be
responsible for this discrepancy?

We find the potential candidates by tracing backward from
the discre;oant output F. All modules that contnbuted to that
output are potential candidates: in this case. MULT-1, MULT-2,

and ADD.I. To find out which of those potential candidates
can account for all the behavior observed. we consider each
one in turn. suspending Its constraint [2], and asking whether
the resulting.network is now consistent with the inputs and
observations.

The same procedure works under weaker assumptions,

two points of failure we suspend pairs of constraints.

e.g.

142

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

In this example we find that MULT-2 is not a consistent
candidate. Suspending its constraint leads to a contradiction:
the inputs at A-E and the observations at F and G are

InconsIstent with correct behavior of the remaining four
modules. MULT-I IS. however. a conslstent candrdate: it could
have misbehaved by havirly 3 and 1 as Inputs and 2 as its
output. ADD. I IS also a consrstent candidate: It could have had
a 3 and a 3 as Inputs and a 5 as Its output.

Having deduced these possible misbehaviors for ADD-I and
MULT- 1. we can In ?ffect construct a new behavror for each
candidate. This Iriforrnat:cn IS importclnt: it says not only
cvneiher the module could be falling. but If 11 IS. ho~v It’s falling.
Each new test then supplles addrtronal informatton about the
module’s (mis)behavlor. in effect building up a truth table
showing how the module must be (mis)bchaving.

Representation of Circuits with State

We have seen that the behavior of purely combinatorial
devices can be modeled in a natural way using constraints.
We model devices with state by extc?ndIng our representation
to include constralnts that span time. To do this. we also need
to extend our description of slgnats from single numbers to
sequences of (val~c-.://~e) pairs. with each pair denoting the
signal’s value at an Instant. The beh;ivior of a flipflop is then
described as:

If the clock input is 0 at time t- 1 and 1 at time t
Then output Q at time f + I equals D at time t
Else output Q at time t + I equals a at time t.

Since a hierarchic representation of time is as useful as a
hierarchic representation of structure. we describe the
hehavror of modules using several different granularities of
time. The most basic unit of time is the switching time of a
gate. Other. coarser, units are less obvious and one of the
difficulties we encounter lies in choosrng the appropriate
levels of temporal abstraction. One of the secondary
contributions of this paper is its attempt to define a number of
levels that appear to be both useful and intuitive in the current
domain.

With a hierarchic representation of time. the behavior of a
module can be described at several different levels of
abstraction. For example, at the finest level of detail, a NOR
gate can be modelled as having a unit delay. This would be a
appropriate in an asynchronous feedback circuit, since the
delay is important in understanding the behavior of the circuit.

But a NOR gate in the combinatorial part of a properly
designed clocked circuit can be modelled as having no delay;
indeed, a “properly designed” clocked circuit is one in which
the clock period IS longer than the maximum delay to
quiescence of any combinatoriat component.

Similarly, it is appropriate in some contexts to model a JK
flip-flop as imposing a unit delay between its data inputs and
its outputs: it may also be necessary to model its behavior at
the gate-delay level. in which case the delay between the J
and K Inputs and the outputs may be 4 or more units. We
maintain alternative descriptions for the same type of device,
as well as explicit mappings between those descriptions at
different granularities.

Different granularities of time also lead us to make use of
symbolic values for signals in cases where transitions, rather
than quiescent values, are important. For example, the clock
input of a rising-edqe-triggered flipflop is described using the
values 0 and + P, where + P denotes a rising edge followed by

a falling edge. This abstraction allows us to describe the
flipflop‘s behavior in part as:

the clock input is +P at time 1,
Then output a at time r + 7 is same as D at time t.

A more complex example is shown in Fiyure 2. which shows
a two bit register “TLIR” that clears itself whenever l’s are

clocked into both Its flipflops. Figure 3 shows. at three
different time granularities. TBR’S response to a series of
changes on its inputs. We describe the behavior of this device
at these multiple levels. to show how behavior at fine temporal
granularities maps onto behavior at coarser granularities.

Figure 3a shows the changes on TBR’S signals at the lowest
time granularity, using delay of a gate as the basic unit (the
small trek marks on the time axis). To represent behavior at
this level. we use the flipflop behavior description given above
and a description for the AND gate that imposes a unit delay
between the Inputs and outputs:

If both inputs are 1 at time t, output is 1 at time f t 1.
If an input is 0 at t, the output must be 0 at t + 1.
If the output is 1 at t, both inputs must be 1 at f-7.
If the output is 0 at t and an input is 1 ai t-7,

the other input is 0 at t- 1.

At this lowest level. every transition on signals in TER is

visible; this is a fairly contmuous view of the device’s behavior.

Figure 3b shows the behavior at the next coarsest level,
showing the values of all signals only at the instants of
possible clock transitions (the large tick marks on the time
axts). The values of DO, Dl. and Ql have been sampled at
those points, producing the values at the next level. Here the
basic unrt is the cycle time of the clock and the internal CLR

signal has become mtislble. This yields the external behavior
of the device, described as:

If CLK is +-P at time t,
Then QI at time t r 7 is AND(oi at t,NOT(oo at t))
Else QI at time t + 7 is ai at time 1.

There are two key features to this mapping between levels.
First, the lonrjest delay until quiescence at the finer level
determines ho!v many fine-grain units correspond to one
coarse-grain unrt. In this example, 5 units at the finer level
maps onto a unit delay at the coarser level. because the
behavior of the device normally requires at most 5 of the fine
units to reach quiescence.

Second, events whose duration is shorter than the current
level of granularity are not represented. In this example the
duration of the momentary “1” value of 01 after the second

clock transitton is not represented at the coarser level.
because It falls entirely L~lihln one unit of time at that level. and
hence IS never “seen”.

Figure 3c shows the behavior at the coarsest level of
granularity. representing TBH’S external signals only at those
Instants when the cloth makes a positive-going transition.

143

This hrdt?s the details of the CLK signal: we can see the
changes that occur when thy clock makes Its transItIon. but
have no Idea of how long It IS between transltlons. We
represent this behavior as:

QI at time t •f 7 is the AND of DI at I and NOT(DO at t)).

Candidate Generation Applied to A
Circuit With State

We can combine the candidate generation technique
reviewed above IwIth this reprcsentatlon of circuits with state
as a first step in dragnosing those circuits.

Consider for example a J-btt sequential multlplier MULT

shown in Figure 4. MULT has P.-Jo Input registers A and B, and
an B-bit accumulator register Q When the lrJ!T signal is high,
the A and B inputs are loaded into the A and B registers and
the a register IS cleared. On each clock pulse. the A register
shifts down, the B register shifts up. and the Q register
accumulates the product. After four clock cycles the Q
register contains the product A ‘6.

If we load the inputs 6 and 9 into the A and B registers on
the first clock cycle, we expect to see 54 in register Q four
clock cycles later. Suppose. however. we observe 58. We
want to find out which components could have failed in such a
way as to produce this symptom.

To illustrate how constraint suspension can be used to find
the consistent candidates in the circuit, we use a standard
technique of replicating the multiplier over five clock cycles
(as in Figure 5), producing a snapshot of the circuit behavior
at each cycle. The ovals in the diagram represent signal
values. Each signal is replicated five times in the diagram:
each of these ovals represents the value of the signal at each
of five clock pulses. The snapshots are linked by connections
that suggest the transmission of register values from one time
period to the next. The diagram shows that we expect the
successive values of Q to be 0, 0. 18. 54. and 54. The CLK

signal is implicit, just as in the layered temporal representation
described above. The INIT signal is not shown for simplicity’s
sake; it makes no contribution to the following analysis.

Suppose we observe only the final contents of a, which is
58 instead of the expected 5-I. Tracing back from the
expected value of Q. we find that all five components of MULT
were supposed to contrlbute to that output. Thus all five
components are potential candidates. To check whether
these modules are consistent candidates under the single
point of failure assumption, we suspend each of their
behaviors in turn, by removing the constraint that each
component imposes in all time sttces, and check to see
whether its removal is consistent with the incorrect output.
Doing this, we find that register A is not a consistent
candidate, since there is no sequence of l’s and O’s that we
can asstgn to the least significant bit of register A that could
explain the result of 58.

But all four of the other devices are consistent candidates.
Worse. we are not able to deduce any speclflc misbehavior for
them. The reason for this can be seen by looking at the
constraint graph In Figure 5. If we know only the inputs at the
top and the single output at the bottom then suspending the
constraint for the drover or the adder &connects the graph

and the inputs become irrelevant. Suspending the B register
constraint leaves an almost-disconnected graph. In this case
the values of the E? register at I? and 13 can be any pair that
sums to 58.

The candidate generator has become indiscriminate: four
of five modules in the multipller are candidates. This is
significant. because this example is not a pathological one,
The problem is intrinsic to devices with state: hypothesizing a
failure in a part means renlot’/rrg constrainfs in many
time-.s//ces. This in turn tends to leave large gaps in which it is
lmposslble to deduce what actually happened.

Intuition tells us that circuits with state are hard to diagnose;
this intuition now has firm computational ground: circuits with
state are hard to diagnose in part because the problem is often
inherently underconstrained.

Introducing More Visibility

lntultion also tells us that single-stepping state clrcults and
observing the IntermedIate results vastly reduces the problem.
LZle can now see why.

Suppose we are able to cbserve the contents of Q at each of
the five clock cycles. and we observe that It contains 0. 1. 20.
57 and 58 Instead of 0. 0. 18. 5-t and 5-1 3s expected. This
provides two important sources of poj.ver. First. we have in
each slice a strictly combmatorlal device. Since the
subproblem of generatlng candidates in comblnatorlal circuits
is typically sufficiently constrained. we expect to generate a
more restricted set of candlaates in each slice. Second. we
have four t/O pairs. HI effect four tests of the device. Since we
are assuming a single point of failure. to be a candidate a
component must be consistent with the observations in all four
slices. This too will help to restrict the number of candidates
generated.

If we examine Figure 4, we find discrepancies at Q in the
first through fourth time slices. In each slice we trace
backwards from Q. yielding four sets of potential candidates.
We intersect these sets to find the candidates consistent with
the information in all four slices: the a register. A register,
adder, and driver. The B register was eliminated from
consideration because its misbehavior could not explain the
discrepant output of Q at 12. Having determined the potential
candidates by tracing back from discrepancies and enforcing
consistency across time slices. we now determine which of
these mcdules is consistent with the observations.

l As before. register A is not a consistent candidate.
(There is no set of assignments to its least
significant bit over four time slices that yields the
observed contents of Q ?vhen the B input is 9 and
all other constraints are operating.)

l The driver is a consistent candidate, its
misbehavior can be partially described by the
following truth table:

CTL IN I OUT
0 I 1 (should be 0)
1 f8 1 19 (should be 18)
1 36 1 37 (should be36)
0 72 1 1 (should be 0)

Table 1: Truth Table of Misbehaving Driver

l The adder is a consistent candidate. (Note that
removing its constraint in all four time slices
completely disconnects each of the observed
values from the inputs and frorn each other; for

enabling the least significant bit ..- is a consistent
candidate: if this AND gate’s output is always 1 no
matter what its inputs, we get the observations of
Table 1.

this reason a faulty adder would explam arly
observations.) It has the folIowIng rnlsbehavior:

INPUT- 1 INPUT-2 IOIJ TPUT
0 0 I 1 (sllould be 0)
18 1 1 20 (should be 19)
36 20 1 57 (should be 56)
0 57 I 58 (should be 57)

l The adder i=s composed of eight single-bit adder
slices. (Figure 8). The least significant slice is a
consistent candidate: its output. viewed as a 2-bit
integer. is always 1 greater than it should be.

The candidate set has now been reduced to only two
modules: one AND gate in the driver and one bit-slice in the
adder. Given the symptoms available. and excluding the

Table 2: Truth Table of Misbehaving Adder

l The Q register is a consistent candidate. As with
the adder above. removing its constraint
disconnects our observations from the inputs, so
that this device’s failure could explain anything.
Its truth table is:

INPUTatf I OUTPUTatt+ 7
0 I ’ (should be 0)
19 1 20 (should be 19)
56 1 57 (should be 56)
57 1 58 (should be 57)

Table 3: Truth Table of Misbehaving Q Register

possibility of internal probes, it is not possible to distinguish
between the two.

This result illustrates the power of information about
substructure in refining candidate generation. both in the
number of candidates and in their complexity. The single
point of failure assurnption and single-stepping of state
circuits, while reducing the possible candidates considerably,
were still not sufficient to reach a satisfactory diagnosis.

As a fInal note of the power of thts approach. note that the
flrlal candldate set was reached ~VC/I w/tl~vul ns,cu~~~~rq ~haf
ttJt2 fnuit w;1s nO~J,/lter/,l,~te/Jt. The nonlnt?rrnlttency
assiinijltlon says that the faulty module IS falling consistently,
i.e. given the same Inputs. it produces the same (Incorrect)
output. In our terms this amounts to insisting that the
behrtvlors deduced for a candtdate be conststent across all
If!e time slices. 1.e.. the tables IIke those shown In the previous
sectlon have to be self-consistent.

We were able to rule out many of the potential candidates
using a weaker form of consistency Implied by the single point
of failure assumption: we requrred only that sonle behavior of

We have gained important information in the form of truth
tables that describe how each candidate could have failed so
as to produce the observed symptoms. Still. even with
complete visibility of the outputs, under a strong set of
assumptions. we are unable to distinguish among 3 of the 5
components of this device. We need yet more information.

Hierarchic Diagnosis

The only remaining source of Information is the
substructure of the candidates. We can use this information
by zpplytny the candIdate yeneratlon procedure to each of the
remaining consistent candidates. Note that we take this step
with some reluctance, from 3 pract1031 point of vfe1.v. using
structural Information IS expensive because the number of
potential and consrstent candIda& tends to increase
dramatlcally. even though the complexity of the lndlvidual
candidates decreases.

l The a register is built from eight D-flipflops The tenlporal abstraction described and used here is

sharing their clock and clear inputs (Figure 6). llmlted: short events are invlslble at higher levels of

We use the behavior deduced for Q and map down abstraction yt’t often hnrdv/arc failures involve short events.

from our coarse-grained temporal view to the next Consider for example a gate VJhIch Ii& fal!ed by slo!.ving

level of ternporal detail. at which the clock signal down. rather thin f;lllln<j altogether Thrs :vIIJ cause Incorrect

is visible. Applying candidate generation to 0. we results only ivhen this stovi’riezs c‘~uses some sqnal to be
find that there is no single flipflop whose failure sampled too soon bsfor? It h 1 ‘s 3 chance to change to its
could explain the observed misbehavior of Q. correct value. If this nllsbehavlor IS obstzrved at a coarse
That is. there is no single flipflop whose failure temporal granularity. it ina; appear to be Intermittent. Any
could produce the symptoms shown in Table level or kind of abstraction. in fact. falls prey to faults that It
3#(The discrepancies rn Q occurred in the three can represent. but not derive: a coarse gralned model of time
low-order bits. Each of these discrepancies can represent hazards and races as rntermlttent faults. but it
results in a set of potential candidates.
intersection of these sets is null.)

But the

l The driver is composed of eight AND gates
sharing a control input (Figure 7). Proceeding as
above, we find that one AND gate --- the one

each candidate be able to account for the dlscrepancles in all
the tlrne slices. It might. for example. have been the case that
the adder could be a candldate only if it added 0 and 0 to get 1
in time slice 1. and added 0 and 0 to get 0 in time slice 4. Even
with this weaker form of consistency. we were able to
constrain the candidates we generated simply because they
could not account for the discrepancies in all four tirne slices
under any behavior, intermittent or not.

Limitations and Future Work

can t distinquish betLS!een devices that have slowed down and
ones that are genuIneI\ unpredictable. This fact puts a
premium on careful deflnltlon of the m apptngs between layers
of temporal granularities. On5 goal of this research is to
further Investigate the nature of hierarchic diagnosis
these temporal hierarchies in addition to structural ones.

using

145

Conclusion

Combinatorial circuits can be modeled in a natural way
using constraints and this reprcsentatlon can be used for
generating candidate components. Circuits with state can
also be modeled by constrnlnts if the representation is
extended to use mtrltlple levels of time granularity. Intuition
tells us that clrcutts with sta., +Q are more dlfftcult to diagnose
than combtnatorlal ones. and we have shovln a computational
reason for this: when /es than complete state v~srb~trty is
ava,/ab/e. candfdate generatIon IS /nherenrly underconstrained
and therefore /ndrscr/minnfe. lntultlon also tells us that single-
stepping a suspect state clrcult is a good way to localize
faults: we showed that this intuition too turns out to have firm
computatlonal grounds: single stepping allows us to view the
problem as a more constrained problem. that of diagnosing a
combinatorial circuit. FInally. by using InformatIon about
devices’ internal structure and vlewmg devices at a fine
temporal granularity, specific diagnoses can be obtained even
for devices with state.

Acknowledgments

Howard Shrobe. Ramesh PatIt. Thomas Knqht. and all the
members of the MIT Al Lab’s Hardware Troubleshooter group
contributed to the content and presentation of this research.

References

VI

[PI

[31

PI

151

R. Davis.
Diagnosis Via Ca.usal Reasoning: Paths of Interaction

and the Locality Principle.
In Proceed!ngb of AAAI-83, pages 88-94. AAAI,

August, 1983.

R. Davis.
Reasoning from Structure and Behavior.
1984.
To appear in ArtificiaI intelligence.

R. Davis and H. Shrobe.
Representing the Structure and Behavior of Hardware.
/EEE Computer 16(lo):7582, October, 1983.

DeKleer, J., and G. J. Sussman.
Propagation of Constraints Applied to Circuit

Synthesis.
international Journal of Circuit Theory 8(2):127-144,

April, 1980.

G. L. Steele.
The Definition and implementation of a Computer

Programming Language Based on Constraints.
Technical Report AI-TR-595, MIT, 1980.

(3) A >
MULP- 1

(3) B ADD-1 ---+ F (5)

(I) C -’ MULT.2 --

(1) D ADD-2 ---Y G (6)

(3) E ------+
MULT-3

Figure 1: Combina?orial Circuit Example

/

-- ----- __- .----

r----- -01 1

Figure 2: Self-clearing Two-bit Register

Ql 7 0 0 1

Dl 0 1 1 0

‘- DO 0 1 0 1

01 7 0 0 1 1

Dl 0 1 1 1 0

b. Do 0 1 0 0 1

CLK +P +P +P 0 +P

a.

Figure 3: a,b,c: Multilevel Timing Diagrams for Device TBR

146

Figure 4: Sequential Multiplier with 8-bit Result Register

llriie
-- -- __-

t1

-- .~ -

t2

-- - -

t3

t4

t5

V

- ~ - _ _ _

- - - -

_ - -

I I -

- -

Figure 5: Multiplier Behavicr Viewed Over Five Clock Cycles

07 a3 a5 c4 03 02 01 cc

Figure 6: Eight-Bit Q Register

cur7 CUld GUI5 cu:.t GUI3 O”12 out1 &IO

Figure 7: Eigllt-Bit Driver

Figure 8: Eight-Bit Adder

147

