
, , 1–44 ()
c© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Diagnosing discrete-event systems: extending the
“diagnoser approach” to deal with
telecommunication networks

LAURENCE ROZÉ roze@irisa.fr

MARIE-ODILE CORDIER cordier@irisa.fr

IRISA
Campus de Beaulieu
35042 Rennes Cédex, FRANCE

Abstract. Detection and isolation of failures in large and complex systems such as telecom-
munication networks are crucial and challenging tasks. The problem considered here is that of
diagnosing the largest French packet switching network. The challenge is to be as efficient as the
existing expert system while providing greater generality and flexibility with respect to techno-
logical and reconfiguration changes in the network. The network is made up of interconnected
components each of which can send, receive and transmit messages via its ports. The problem we
are faced with is to follow the evolution of the network on the basis of the stream of time-stamped
alarms which arrive at the supervision center. We have decided to use model-based techniques
which are recognized to be more adapted to evolutive systems than expertise-based approaches
are.

This paper starts with a description of how we model the global behavior of this discrete-event
system by using communicating finite state machines. It goes on to explain how this model is
used for analyzing the stream of alarms and diagnosing the network. Our work is based on the
diagnoser approach proposed by[20]. Starting from a model of the network adapted to simulate
faults, this approach transforms it into a finite state automaton, called a diagnoser, in order to
analyze the stream of alarms. The approach described in [20, 21] proved to be grounded on certain
basic hypotheses which were too restrictive for our application. This paper extends [21]’s proposal
to communicating finite state machines. The difficulties we had to cope with are outlined and the
way we overcome them is presented. A major difficulty is the huge size of the global model of the
system. To solve this problem we take advantage of the hierarchical structure of the network and
rely on a generic model of the system for building a generic diagnoser.

Keywords: model based approach, real-time monitoring, telecommunication networks, commu-
nicating finite state machine, generic model

Introduction

Detection and isolation of failures in large and complex systems such as telecommu-
nication networks are crucial and challenging tasks. The problem considered here is
that of diagnosing the largest French packet switching network1. An expert system
currently helps operators to analyze streams of time-stamped events (or alarms)
and identify problems on the network. Every day around one hundred thousand
alarms are received and analyzed by the supervision center. Our challenge is to
be as efficient as the existing expert system while providing greater generality and
flexibility with respect to technological and reconfiguration changes in the network.

2

Two classical approaches in monitoring such systems are knowledge-based tech-
niques that directly associate a diagnosis to a set of symptoms (for example ex-
pert systems [14] or scenario recognition systems [12]), and model-based techniques
which reason abductively directly on the model of the system ([17]). The main
weakness of the first approach is the lack of genericity, as the network changes,
a new expertise has to be acquired. We therefore decided to use model-based
techniques which are recognized to be more adapted to evolutive systems than
expertise-based approaches are.

The approach we have used for monitoring the network is based on the method-
ology proposed in [20, 21] known as “the diagnoser approach”. It consists in trans-
forming the discrete event model of the system to be diagnosed into a finite state
automaton, called a diagnoser. The transitions of this automaton are the observ-
able events, and the states of the automaton contain information on the state of the
system and on the failure(s) that must have occurred in order to be in this state.

The diagnoser approach is attractive for two reasons. First, it is efficient, since
diagnosing consists in updating the current state of the finite state machine accord-
ing to observables. Second, it is adaptative; if the system changes (structural or
functional changes), the model is consequently updated and the diagnoser derived
automatically. However, when trying to apply this diagnoser approach as described
in [21], it rapidly becomes clear that it was grounded on basic hypotheses which
were too restrictive for our application; since it relied on a classical finite-state ma-
chine formalism, it was first necessary to extend it to cope with a communicating
finite-state machine formalism which is particularly well suited for the modeling of
telecommunication networks. Other specificities also had to be taken into account,
including the existence of intermittent faults, the importance of temporal informa-
tion and, finally, the untractable size of the global model of the system. This paper
analyzes these difficulties and explains how we overcame them.

Section 1 describes the application. Section 2 shows how we model the network
to be diagnosed by using two kinds of models at two levels of abstraction: a struc-
tural model represented by a labeled graph and a behavioral model represented
by temporal communicating finite-state machines. Section 3 recalls the diagnoser
approach as originally presented in [21]. Section 4 explains how it was extended
to cope with the specificities of our application. Section 5 focuses on the problem-
atic size of the model and explains how we have solved it by taking advantage of
the hierarchical structure of the network and using a “generic” model. The imple-
mentation and the results we obtain with the diagnoser approach are presented in
section 6. Section 7 compares our work to related work and section 8 concludes
with the current state of this work and future perspectives.

1. The application

1.1. The network

The network considered in this paper is the largest French packet switching network.
This network is made up of about ten technical centers (TC) and about three

3

hundred switches (SW), hierarchically structured (cf figure 1). SC is the supervision
center. The switches route data through the network. They are made up of stations
(hardware) on which roles (software) run. There are two kinds of roles and stations:
UE and USG. The UE role is the operating system of the switch. If a breakdown
occurs on the UE station (which is the station on which the UE role runs), the
switch is no longer working. For safety, an SW includes two UE stations and roles;
one is active and the other will become active if and only if the active UE station
breaks down. The USG stations and roles are in charge of data transmission. A
rescue station is associated to a group of USG stations. When a USG station breaks
down, its role will run on its rescue station, provided it is not busy.

TC

SC

TC............................

.............SW SW SW SW

UE2UE1UE1 UE2 USG1USGn USG1 USGnresc resc

Figure 1. Hierarchical structure of the network

1.2. The supervision problem

Each time an event occurs in the network, messages are sent by components either
to other components or to the supervision center itself. In this last case they are
called alarms. Alarms are forwarded from one component to another up to the
supervision center (SC). For example, an alarm emitted by an SW is transmitted
by a TC before arriving at the SC. The supervision problem consists in analyzing
the stream of alarms arriving at the supervision center (about 100,000 alarms can
be received in a day) in order to follow the evolution of the network and to help
the operator who is in charge of the supervision. In particular, the occurring faulty
situations have to be identified. The failures we take into account are listed below:

• TC cut, which corresponds to the breaking of the link between a technical center
and the supervision center.

• TC break, which corresponds to the breakdown of a technical center. The
consequence of this breakdown is the rebooting of all the switches depending
on it.

• SW cut, which corresponds to the breaking of the link between a switch and
the technical center it depends on.

• SW break, which corresponds to the breakdown of a switch. The consequence
of this breakdown is the rebooting of all the stations depending on it.

4

• USG shift, which corresponds to the breakdown of a USG station. As a con-
sequence, the role running on it shifts to the rescue station (provided it is not
already busy).

• USG reconfiguration, when a USG role returns from the rescue station to its
nominal station.

• USG rescue break, which corresponds to the breakdown of a rescue station.

• USG break, which corresponds to the breakdown of a USG station when the
rescue station is not free.

• UE shift, which corresponds to the breakdown of the active UE station. As a
consequence, the UE role shifts to the other UE station.

• UE break, where the active UE station breaks down whereas the other UE
station has already broken down;

• UE rescue break, which corresponds to the breakdown of the UE station which
is not currently in charge of the switch.

These failures are not permanent failures; they disappear after a while either due
to automatic recovery procedures or due to repair actions. In the first case, the time
taken by the recovery procedure is approximatively known. In the second case, the
“comeback” to a normal state corresponds to an external event. For example:

• TC SC back denotes an external event corresponding to the comeback to a
normal state of a technical center after the occurrence of a TC cut or of a
TC break. In the following, it will be also designed by TC back.

• SW TC back denotes an external event corresponding to the comeback of a
switch after the occurrence of a SW cut or of a SW break.

• TC SW back signals the end of the rebooting of a switch which is an automatic
recovery procedure triggered by a TC break.

Note that the supervision center is limited to the supervising of the components
of the network and it is not in charge of supervising the data transmission itself.

1.3. Difficulties

The supervision center receives about 100,000 alarms a day. Analyzing this se-
quence of alarms is a difficult task, made harder by two phenomena: the masking
phenomenon and the necessity of taking into account temporal information.

When a component sends an alarm, this alarm has to be transmitted by compo-
nents before arriving at the SC. If one of the components in the transmission path
is not in a transmitting state, the alarm will not be received by the supervision
center. For example, if an SW sends an alarm and if the TC just above is in a non-
transmitting state, the alarm will not be received by the supervision center. One

5

of the main difficulties is thus the incompleteness of the stream of events arriving
at the SC.

The second difficulty is the necessity of taking into account temporal information.
It can be the case that two faults cannot be discriminated without using temporal
constraints. It is especially so in the case of masking. According to the time
taken by a component to return to a normal state, an alarm resulting from a fault
will or will not reach the supervisor. Moreover, this temporal information is often
imprecise; for example, when a TC break occurs, a TC SW back is an automatic
recovery, corresponding to the SW reboot, whose time is approximatively known
and fluctuates.

Let us take an example including both masking and temporal constraints. When
a TC break occurs, both the technical center TC and the switches SW depending
on it are going to break down (each SW reboots). When a technical center breaks
down, it sends a cvhs alarm to the supervisor; when it returns to a normal state, it
sends a cves alarm. When an SW breaks down, it sends an n003 alarm and when it
returns to a normal state, it sends an n004 alarm to the supervision center. These
alarms have to be transmitted through the technical center before arriving at the
supervision center (see figure 1) and this technical center has to be in a normal
state to be able to transmit them. In the case of a TC break, the n003 alarms have
no chance of reaching the supervisor, they are going to be masked. Concerning the
n004 alarms, it depends on the respective dates of the return to a normal state of
the technical center and of the switch. If the switch comes back to a normal state
before the technical center does, the n004 alarm will be masked; in the other case,
it will reach the supervisor.

Let us suppose two switches SW1 and SW2 under the technical center TC. Ac-
cording to the respective times of the SW1, SW2 and TC “comebacks”, the alarm
sequences for a TC break can be one of the following ones:
– cvhs(TC), cves(TC), n004(SW1), n004(SW2)
– cvhs(TC), cves(TC), n004(SW2), n004(SW1)
– cvhs(TC), cves(TC), n004(SW1)
– cvhs(TC), cves(TC), n004(SW2)
– cvhs(TC), cves(TC)
In the third sequence, SW2 completed its rebooting before the technical center
comebacks in a normal state: its n004 alarm is masked; it is not the case for SW1
and its n004 alarm is received by the supervision center. In the last sequence, the
two switches completed their rebooting before the technical center comebacks to a
normal state. In the network, where about 30 SWs depend on one TC, more than
30! alarm sequences are possible for a TC break corresponding to the 1 to 30 n004
alarms reaching the supervisor.

The last problem is that the system is not diagnosable as defined in [19], or to
be more precise, taking this definition will lead us to get only one class containing
all the faulty situations. This is mainly due to the masking problem discussed
above and to the uncertainty of temporal information. Distinct faults can result
in the same sequence of alarms. For example one of the possible alarm sequences
for a TC break is cvhs(TC), cves(TC). But a TC cut (where the link between

6

the supervision center and the technical center is cut), results in exactly the same
sequence of alarms. In the same way, one of the possible sequences for a TC break
is cvhs(TC), cves(TC), n004(SW). But when a TC cut and an SW break occur
at the same time, it can result in exactly the same sequence of alarms.

Accepting this fact means building a diagnoser able to detect a faulty situation
but unable to propose more informative diagnoses. In most of the case, however,
it is possible to have a more precise idea of what happened: by chance, the worse
case is not the most current one and it is often possible to take profit of received
alarms to discriminate between candidates.

1.4. The expert system

The problem is to analyze the stream of alarms reaching the supervision center
(SC), in order to follow the evolution of the network and identify the main abnormal
situations. In fact, such a system currently exists, its function being to assist the
operator in charge of the supervision. It is an expert system which relies on about
two hundred production rules.

For example, the rule given in figure 2 means that if a cvhs alarm is received at
time t1, a cves alarm at time t2 with t2 > t1 and more than three n004 alarms
are received in [t2, t2 + 30] then it is probable that a TC break occurred. This
rule is clearly based on the experience of users. Another possibility explaining this
sequence of alarms in theory would be the occurrence of a TC cut on a technical
center and of three SW breaks of the switches which depend on this technical
center. But this alternative has been considered unlikely by the experts, who use
their experience to discard it. They have an idea of the respective delays before a
technical center and a switch return to a normal state; they know that a technical
center usually has between ten and thirty switches depending on it, which explains
that a TC break will generally manifest itself by more than three non-masked n004
alarms.

This expert system is efficient (real time) and gives satisfactory results. But the
problem with such a system relying on expertise is that as soon as a new type of
component is used to replace an old one, or as soon as the network structure is
modified, there is no guarantee that the expertise fits any longer. For example, if
the network suddenly had only two switches under a TC, the rule would no longer
fit.

2. The network model

The challenge therefore was to be as efficient as the existing expert system but to
provide greater generality and flexibility to be able to adapt to technological and
reconfiguration changes in the network. We decided to use model-based techniques
which are recognized to be more adapted to evolutive systems than expertise-based
approaches are. This section describes the formalism we used to model the network.
Finally, section 2.4 shows how this model can be built by composing elementary

7

As soon as:
a cvhs alarm, emitted by TC, is received at time t1

and
a cves alarm, emitted by TC, is received at time t2

with t1<t2
and
more than three n004 alarms emitted by the SWs
under TC, are received, during [t2, t2+30]

do
write "TC broke down between t1 and t2"

Figure 2. Rule of the expert system

models (in fact communicating finite state machines) stored in a library. The
composition operation is based on the cross-product of finite state machines.

From a supervision point of view, the network is made up of a set of interconnected
components, each of which can emit or receive messages via its ports. It was
therefore very natural to choose communicating finite state machines to model this
discrete-event system. In fact, when a component receives a message two cases can
be distinguished: the message can affect the component state or the message is
only transmitted by the component to another component. In order to take this
fact into account, we have introduced two different models:

• a structural model, which represents the components of the network, their con-
nections and their (non-)transmitting states;

• a behavioral model, which represents how each component behaves and, more
precisely, how it reacts to incoming messages by changing its state and emitting
messages to other components.

In the following we describe each model and how they interact.

2.1. Structural model

The structural model represents the propagation of the messages between the com-
ponents of the network. The network is represented by a graph whose nodes are
components and edges are the connections between these components. In our ap-
plication this graph is a tree as the network is hierarchical. At this level, only
the transmitting and non-transmitting states of the components matter. Edges are
labeled by temporal constraints representing the time needed for a message to go
from one component to another.

In order to formally describe this model we introduce the following notations:

• SET OF COMPONENTS is the set of the network components.

• SET OF PORTS is the set of ports of the network.

8

• DELAY is the set of time intervals [tmin, tmax].

• port is a function from SET OF COMPONENTS to P(SET OF PORTS).
It relates each component to its set of ports.

• connection is a function from SET OF COMPONENTS×SET OF PORTS
to SET OF COMPONENTS × SET OF PORTS ×DELAY .
connection(c1, p1) = (c2, p2, d) means that port p1 of component c1 is connect-
ed to port p2 of component c2. Moreover if a message is emitted at time t on
port p1, it will be received on port p2 at time t′ where t′ belongs to [t+d1, t+d2]
where d = [d1, d2].

• transmitter is a boolean function from SET OF COMPONENTS to
{true, false} indicating whether the component is in a transmitting state or
not.

With these notations, a structural model is a 5-tuple:
(SET OF COMPONENTS, SET OF PORTS, port, connection, transmitter)

2.2. The behavioral model

The behavioral model represents the state of the components and how they react to
failures. The behavioral model of each component is described by a communicating
finite state machine [6, 1]. This formalism has proved to be well suited to modeling
dynamic systems [17]. Each transition of the finite state machine is triggered by
the reception of exactly one message and is represented by figure 3.

state1 state2
-(mr,pr)

+((me,pe),d1,d2))

Figure 3. Transition

It means that when the component c receives the message mr on port pr at time t,
it switches from state1 to state2 and sends the message me on port pe at time t+d
where d ∈ [d1, d2]. d therefore represents an emission delay for the message me.
The component c′ which will receive the message is linked to the receiving port
pe by the connection function. The message will be received by the component
c′ at time t + d + d′ where d′ is the connection delay between c and c′ (we have
connection(c, pe) = (c′, pe′, d′)).

Formally a communicating finite state machine is a 4-tuple (Q, Σ, δ, x0)2 where
Q is a finite set of states, x0 ∈ Q is the initial state, Σ is a set of events. In our
application Σ = Σe ∪Σr, where Σe are emitted events and Σr are received events.

An event is represented by a pair (m, p) where m is the type of message and p
belongs to SET OF PORTS.

δ is the transition function mapping:

δ : Q× Σr → Q× (Σe ×DELAY)∗

9

Definition 1. internal message / external message
A message emitted from a component c to itself is an internal message; a message
emitted from a component c to another component c′ or an exogenous message
(coming from the outside as failure events) is an external message.

Definition 2. active message/passive message
A message m received on port p of component c is active for this componen-
t if and only if ∃s ∈ Q | δ(s, (m, p)) = (s′,−) with s′ 6= s or δ(s, (m, p)) =
(s, {(m1, p1, d1) · · · (mn, pn, dn)}) such that ∃i with mi 6= m. It means that the
message, when received by the component, either changes its state or triggers the
emission of at least one new message.

A message m received on port p is passive for a component c if and only if it is
not active. Such a message can only be transmitted by the component to another
one. A passive message is a message which is passive for all the components of the
network.

Definition 3. alarm
An external message emitted by any component directly to the supervisor or to the
supervisor by way of other components which only transmit it (without emission
delay and without changing its type) is referred to as an alarm. An alarm is
therefore a passive message. Conversely, a passive message is generally an alarm.

2.3. Links between the two models

• A function cs associates to each node of the transmission graph an automaton
which describes how the component behaves.

• A function f : Q → {true, false} is defined for each automaton, where Q is
the set of automaton states. It indicates whether the state Q is a transmitting
state or not.

• Given the current state cs of a component c, the link between the structural
model and the behavioral model is made by the following constraint: ∀c ∈
SET OF COMPONENTS, f(cs(c)) = transmitter(c).

• The structural model is sufficient to model the propagation of the alarms (and
the passive messages) through the network. The finite state machine represent-
ing the behavioral model of a component can thus be simplified by not taking
into account its transmission role, which means that transitions triggered by the
reception of passive messages will not be considered. Remember that, by defi-
nition, a passive message cannot have any effect on the component (no change
of state, no emission of new messages).

10

2.4. Building the model by composing elementary models

To be more efficient and to make the modeling stage easier, a composition operation
is provided to build the model. It is based on the cross product of the correspond-
ing communicating finite state machines and includes the deletion of all internal
messages which are useless for the supervision process.

The composition techniques used here are inspired by the synchronous compo-
sition of automata described in [19]; in addition, simplification rules are used to
obtain an abstract representation of the components where some internal messages
are removed. In the following the synchronous composition and the composition of
communicating automata are described.

2.4.1. Definition of the synchronous product In this section the system is as-
sumed to consist of several distinct physical components, each of which is repre-
sented by a finite state machine Gi = (Qi, Σi, δi, s0i). Qi is the state space, Σi is
the set of events, δi is the transition function, with no temporal constraints, and s0i

is the initial state of Gi.The joint operation of two or more automata corresponds
to the synchronous composition procedure. Consider two discrete event systems
G1 and G2. We denote ei(x) the active event set of Gi at state x, i.e. the set
of all transitions of Gi at state x. Let G = (Q, Σ, δ, s0) denote the synchronous
composition of G1 and G2. Then

Σ = Σ1 ∪ Σ2

Q = Q1×Q2

δ((s1, s2), σ) =




(δ1(s1, σ), δ2(s2, σ) if σ ∈ e1(s1) ∩ e2(s2)
(δ1(s2, σ, s1)) if σ ∈ e1(s1)− Σ2

(s1, δ2(s2, σ)) if σ ∈ e2(s2)− Σ1




In the following subsections, the composition of communicating automata, with-
out delay, is presented. Two parts are distinguished : the composition of the
structural models and the composition the behavioral models.

2.4.2. Composition of the structural models
Let a structural model be described by a 5-tuple:

(SET OF COMPONENTS, SET OF PORTS, port, connection, transmitter)
where :

SET OF COMPONENTS = {C1, C2}
SET OF PORTS = P1 ∪ P2

port(C1) = P1 = P1,ext ∪ P1,int

port(C2) = P2 = P2,ext ∪ P2,int

connection ∈ (C1 × P1,int)→ (C2 × P2,int) ∪ (C2 × P2,int)→ (C1 × P1,int)
transmitter ∈ SET OF COMPONENTS → {true, false}

11

P1,int (resp. P2,int) is the set of ports of C1 (resp C2) which are connected to C2

(resp. C1), P1,ext = P1 − P1,int and P2,ext = P2 − P2,int.
After composition of C1 and C2 in C, the model is the following 5-tuple :

(SET OF COMPONENTS′, SET OF PORTS′, port′, connection′, transmitter′)
where all the connections joining C1 to C2 have been taken off (with all the asso-
ciated ports).

SET OF COMPONENTS′ = {C}
SET OF PORTS′ = P1,ext ∪ P2,ext

port′(C) = SET OF PORTS′

connection′ = ∅
transmitter′(C) = transmitter(C1) ∧ transmitter(C2)

p1’
p2

C2

C1

p1

p2’

a) Structural model
before composition

b) Structural model
after composition

p2’

p1

C
..

Figure 4. Structural model and composition

Let consider the model given by figure 4. Before composition, the 5-tuple is given
by :

SET OF COMPONENTS = {C1, C2}
SET OF PORTS = {p1, p2, p1′, p2′}
port(C1) = {p1, p2} with P1,int = {p2} P1,ext = {p1}
port(C2) = {p1′, p2′} with P2,int = {p1′} P2,ext = {p2′}
connection = {p1′ → p2, p2→ p1′}
transmitter ∈ SET OF COMPONENTS → {true, false}

After composition, the ports p2, p1′ and the connections between p2 to p1′ are
taken off. The resulting structural model is :

SET OF COMPONENTS′ = {C}
SET OF PORTS′ = {p1, p2′}
port′(C) = {p1, p2′}
connection′ = ∅
transmitter′ = transmitter(C1) ∧ transmitter(C2)

12

2.4.3. Composition of the behavioral models without delay
Let the behavioral models of component C1 and C2 be given by:

C1 = (Q1, Σ1, δ1, s0,1)
C2 = (Q2, Σ2, δ2, s0,2)

where for i = 1, 2 Σi = Σi,e ∪ Σi,r

Σi,e = Σi,e,int ∪ Σi,e,ext

Σi,r = Σi,r,int ∪ Σi,r,ext

Σi,e,int is the set of emitted internal messages. We have m = (name, port) ∈
Σi,e,int ⇔ m ∈ Σi,e ∧ port ∈ Pi,int. Σi,e,ext, Σi,r,int and Σi,r,ext are respectively the
set of emitted external messages, received internal messages and received external
messages and are defined in the same way as Σi,e,int.

The behavioral model of the composed model is given by :

C = (Q, Σr ∪ Σe, δ, (s0,1, s0,2))
Q = Q1 ×Q2

Σr = Σ1,r,ext ∪Σ2,r,ext

Σe = Σ1,e,ext ∪ Σ2,e,ext

δ : Q1 ×Q2 × Σr → Q1 ×Q2 × (Σe)∗

Before defining formally δ, let us explain intuitively how it works. When an ex-
ternal message is received by C1, an internal message can be sent from C1 to C2.
Receiving an internal message, C2 can now send another internal message to C1
and so on. In the following definition, σ1,2, . . . , σ1,n (resp. σ2,1, . . . , σ2,m) are the
internal messages sent by C1 to C2 (resp. C2 to C1). As the components alterna-
tively send messages and as C1 begins, we have m = n or m = n − 1. Moreover
s1,1, . . . , s1,n (resp. s2,1, . . . , s2,m) denote the states of C1 (resp. C2) after each
internal message reception. To simplify, we also use the predicate connect1 and
connect2 defined as follows : connect1 ∈ Σ1,e,int → Σ2,r,int with connect1(m, p) =
(m, p′) ssi connection(c1, p) = (c2, p

′) and connect2 ∈ Σ2,e,int → Σ1,r,int with
connect2(m, p) = (m, p′) ssi connection(c2, p) = (c1, p

′). In order to define δ two
projections are introduced : PQ and PE which respectively projects Q× (Σ∗

e) into
Q and Q× (Σ∗

e) into (Σ∗
e).

In the following, the definition is given for the case where an external event is
received by C1; the case where an external event is received by C2 could be defined
in an analogeous way.

13

For all σ1,1 ∈ Σ1,r, δ = δ((s1,1, s2,1), σ1,1) is defined by

δ = (PQ(δ1(s1,1, σ1,1), s2,1), PE(δ1(s1,1, σ1,1)))
iff PE(δ1(s1,1, σ1,1)) ⊆ Σ1,e

δ = ((s1,n, s2,m), em)
iff ∃(s1,1, . . . , s1,n) ∈ (Q1)n ∃(s2,1, . . . , s2,m) ∈ (Q2)m

with m = n or m = n− 1
∃(σ1,2, . . . , σ1,n) ∈ (Σ1,r,int)n−1 ∃(σ2,1, . . . , σ2,m) ∈ Σm

2,r,int

such that
∀i ∈ [1, n] PQ(δ1(s1,i), σ1,i) = s1,i+1

∀i ∈ [1, n] if i 6= n or m = n

PE(δ1(s1,i, σ1,i)) ∩ Σ1,e,int = {σ} and connect1(σ) = σ2,i

∀j ∈ [1, m] PQ(δ1(s2,j , σ2,j)) = s2,j+1

∀j ∈ [1, m] if j 6= m or m = n− 1
PE(δ1(s2,j), σ2,j) ∩Σ2,e,int = {σ} and connect2(σ) = σ1,j+1

if m = n PE(δ2(s2,m), σ2,m) ∩ Σ2,e,int = ∅
if m = n− 1 PE(δ1(s1,n)σ1,m) ∩ Σ1,e,int = ∅

In this definition, em = (
⋃n

i=1 PE(δ1(s1,i, σ1,i))−Σ1,e,int)∪(
⋃m

i=1 PE(δ2(s2,i, σ2,i))−
Σ2,e,int).

�
�
�

�
�
�

-(m’,p’1)

+((m",p’2),d)
s’1

s’2

p’2

p’1

-(m,p1)p1

p’2s1,s’1

s2,s’2

+((m",p’2),d)

-(m,p1)

+((m’,p2),0)

s2

s1

p1

p2

Caption :
 = port
 = connection

= component

Figure 5. Composition

Let us consider an example of two components c1 and c2, whose structural and
behavioral models are given by figure 5. A single external event can be received:
(m, p1). Therefore the composed model has a single transition : δ((s1, s1′), (m, p1)) =
((s2, s2′), {(m′′, p2′)}) as δ1(s1, (m, p1)) = (s2, {(m′, p2)}) and {(m′, p2)}∩Σ1,e,int =
{(m′, p2)} and connect{(m′, p2)} = {(m′, p1′)} and δ2(s1′, (m′, p1′)) = (s2′, {(m′′, p2′)})
and {(m′′, p2′)} ∩ Σ2,e,int = ∅.

14

s2,s’1

s1,s’2

s1,s’1

s2,s’2

�
�
�

�
�
�

-(m’,p’1)

+((m",p’2),d)
s’1

s’2

p’2

p’1
-(m,p1)

+((m’,p2),0)

s2

s1

p1

p2

-(m,p1)

+((m’,p2),0)
-(m’,p’1)p1 p’2

+((m",p’2),d)

Caption:
 = port
 = connection

= component

Figure 6. Composition with delay

2.4.4. Composition with delay
Let us consider the case where messages (for instance m′ in our example) are sent

with delays and illustrate what happens on the example. Concerning the structural
model, if the message m′ was sent with a delay, p2 and p′1 would be kept as internal
ports of c1 ∪ c2. Concerning the behavioral model, the message m′ can no longer
be removed as it was the case in 5. The message is then kept as shown by figure 6.

1

-TC_SC_back
+cves-TC_cut

+cvhs

-TC_break
+cvhs
+TC_SW_back (d1,d2)

2

a) Model of a TC b) Model of an SW

-TC_SW_back -SW_TC_back

-TC_SW_back
+n004

-TC_break

-SW_break-TC_break

-SW_break

1

3

4

2

-SW_TC_back
+n004

+n003

Figure 7. Elementary models of a TC and an SW

The last problem is to know which components have to be composed. Following
[20], we rely on a global model of the system; the composition then goes on until
model of the system has been obtained; the structural model contains a single
component. In section 5, we rely on a generic model of the system which results
from the composition of all the components of a branch of the network.

Let us illustrate this section by giving the model corresponding to a technical
center TC connected to a switch SW . Their elementary structural and behavioral
models are given in figure 7. The global model is obtained by composition and
is given in figure 8. For sake of clarity, ports are not specified in the behavioral
model. The following table associates the messages and the ports where they are

15

SW_data_sup
TC_data_inf

TC_reset

SW_reset

TC_back

SW_back

SW_data_inf

TC_data_sup

a) Structural model

b) Behavioural model

45

1 2

-TC_cut + cvhs

- TC_SW_back

-SW_break

TC_cut + cvhs
7

8

-TC_SW_back+n004

-TC_SW_back

-TC_break + cvhs

-TC_cut + cvhs

-SW_break

-TC_SC_back + cves

-SW_TC_back

-TC_SC_back +cves

-TC_SC_back +cves

-SW_break + n003

-SW_TC_back + n004

-SW_break
-SW_TC_back

-TC_SW_back

+ (TC_SW_back,d1,d2)

-TC_break + cvhs

-TC_SC_back + cves

+ (TC_SW_back,d1,d2)
-TC_break + cvhs

-SW_TC_back

3

6

+ (TC_SW_back,d1,d2)

 -TC_cut + cvhs

-TC_break + cvhs
+ (TC_SW_back,d1,d2)

Figure 8. Model resulting from the composition of a TC and an SW (to simplify, SW cut is not
represented)

emitted or received. The only internal message, TC SW back, is emitted on port
TC data inf with the delay (d1, d2).

TC reset TC cut, TC break
SW reset SW break
TC back TC SC back
SW back SW TC back
SW data sup TC SW back
TC data inf TC SW back
TC data sup cvhs, cves, n004, n003

3. Diagnoser

3.1. Reasons for a diagnoser approach

Using model-based reasoning techniques allows the supervision knowledge to be
acquired in a more systematic, robust and evolutive way than expertise. Never-
theless, the combinatorial cost of the model-based techniques, when used on-line,
rarely satisfies the real-time constraints of supervision systems. For this reason we
decided to use the model off-line and to adopt the diagnoser approach as proposed
by [21, 20]. In this approach, the discrete event model of the system to be diagnosed
is transformed into a finite state automaton, called a diagnoser. The transition of
the automaton corresponds to observable events; the state of this automaton con-
tains information on the system state and on the failures that have occurred; the
current state of the diagnoser changes according to occurring observable events.
This approach verifies both efficiency and genericity. The expensive combinatorial

16

part is the building of the diagnoser which is done off-line. The genericity comes
from the use of a model from which the diagnoser is built automatically.

This section continues with a presentation of the original diagnoser approach.
The following section explains the difficulties that were specific to our application
and which forced us to extend it. As it relied on a classical finite-state machine
formalism, we had first to extend it to communicating finite-state machines. We
had also to cope with other specificities, including the existence of intermittent
faults and the importance of temporal information. Section 5 continues with a
discussion of model size for a system such as a telecommunication network and
presents what we called the generic diagnoser to solve this problem.

3.2. The original diagnoser approach

In the diagnoser approach as described in [21], the system is assumed to consist of
several distinct physical components, each of which is represented by a finite state
machine Gi = (Qi, Σi, δi, x0i). Qi is the state space, Σi is the set of events, δi is
the transition function, with no temporal constraints, and x0i is the initial state of
Gi. In the first step, a model G = (Q, Σ, δ, x0) of the whole system is built using a
composition operation on automata.

Some of the events in Σ are observable (Σo), their occurrence can be observed.
The rest, which are unobservable (Σuo), includes failures. The hypotheses are that
no Gi has an unobservable cycle (i.e. a cycle with only unobservable events) and
that failures are permanent. The set of failure events (Σf ⊂ Σuo) is also partitioned
into disjoint sets corresponding to different failure types:

Σf = F1 ∪ F2 ∪ . . . ∪ Fm

The aim of the diagnosis is to make inferences about past occurrences of failure
types on the basis of the observed events. In order to solve this problem the system
model is directly converted into a “diagnoser”.

The diagnoser, as defined in [21], is a deterministic finite state machine D =
(Qd, Σd, δd, x0d) where the set of events Σd is the set of observable events of the
system Σo (Σd = Σo). Each state of the diagnoser contains the possible states
of the system and, for each state, a label includes all the failures that must have
occurred in order to reach this state. For example, when the diagnoser is in the
state qd = {(x1, l1), (x2, l2), . . . , (xn, ln)} it means that the system is in one of the
states x1, x2, . . . , xn. Moreover, if the system is in the state xi, the failures included
in li must have occurred. A label l is as follows:

• l = {N}: no failure what so ever occurred.

• l = {A}: some failures may or may not have occurred. If so, none can be
identified (A means ambiguous).

• l = {Fi1 , Fi2 , . . . , Fik
}: at least one failure for each of the Fi1 , Fi2 , . . . , Fik

has
occurred.

17

The system is assumed to be normal to start with and hence the initial state of
the diagnoser is (x0, {N}).

Let us briefly see how to build δd, for details see [21]. It is a recursive process.
Considering a state of the diagnoser q1, for each possible observed event σ a new
state of the diagnoser q2 = δ(q1, σ) is computed following a three step process:

• For each possible state of the system x in q1, get all the states of the system
which can be reached from x, having observed σ, by S(x, σ) = {δ(x, sσ)} where
s ∈ Σ∗

uo. Σ∗
uo denotes the Kleene closure of the set Σuo. It contains all the

words built from Σuo.

• Let x′ ∈ S(x, σ) with δ(x, sσ) = x′. Propagate the label l associated with x to
the label l′ associated with x′ according to the following rules3:

– if l = {N} and s contains no failure events, the label l′ = {N}
– if l = {A} and s contains no failure events, the label l′ = {A}
– if l = {N} or l = {A} and s contains failure events from {Fi1 , . . . , Fim}

then l′ = {Fi1 , . . . , Fim}
– if l = {Fi1 , . . . , Fim} and s contains failure events from{Fj1 , . . . , Fjk

} then
l′ = {Fi1 , . . . , Fim} ∪ {Fj1 , . . . , Fjk

}

• Let q2 be the set of all (x′, l′) pairs computed following steps 1 and 2 above, for
each (x, l) in q1 and with a given σ. Replace all (x′, l′), (x′, l′′) ∈ q2 by (x′, l′∩l′′)
if l′ ∩ l′′ 6= ∅ or by (x′, A) otherwise. That is to say, if the same estimated state
x′ appears more than once in q2 with different labels, we associate all common
components of these labels with x′. If there is no common components we
attach the ambiguous label A to x.

1 13

2 3 4 5

6

7 8 9 10

11 12

F1

o1

o3

o3

F3

o1 o2 F2

F2o2F2

o3o3

o2

Figure 9. The finite state machine describing the system behavior

For example, consider the system whose finite state machine is given in figure 9.
The events oi are observable events, whereas Fi are failures. The diagnoser of such
a system is given in figure 10. Other examples of diagnosers can be found in [21].

The diagnoser is exploited on line as follows. Given a sequence of observable
events and a current state, the state which can be reached by transiting along the
path of observables gives the set of all the possible states of the system associated to
a set of failures explaining the observations. Being in the initial state (1, {N}) and
observing the sequence o1, o3, the diagnoser reaches the state (13, {F1}). Therefore

18

(1,{N})
o1 o2

o3

(13,{F1})

o3
(6,{F2})

(12,{F2,F3})

o3

(3,{F1}) (7,{N}) (4,{F1}) (9,{A})

Figure 10. The diagnoser

we know that the system is in state 13 and that one of the failures of type F1 has
occurred.

In order to deal with multiple failures, [20] proposes a new definition in which the
ambigous symbol is taken off. A state of the diagnoser can include a same model
state many times with different labels. On the example, we can go from state 7
to state 9 by two ways which are both kept instead of merging them within the
ambigous symbol. The transition of the diagnoser labeled by o2 and starting from
state ((3, {F1})(7, {N})) goes now in state ((4, {F1})(9, {N})(9, {F2})) instead of
((4, {F1})(9, {A})) as before. The new diagnoser is given by figure 11. This new
definition of diagnoser has been introduced to determine, in the case of multiple
failures, if the system is diagnosable. The formal definition of the new diagnoser is
given in [20].

(4,{F1}) (9,{F2}) (9,{})

o3

(13,{F1})

o1 o2

o3

o3

(6,{F1,F2}) (9,{F2}) (9,{})

(6,{F1,F2,F3}) (9,{F2,F3}) (9,{F3})

(1,{N}) (3,{F1}) (7,{N})

Figure 11. The diagnoser without the ambigous symbol

4. Extending the diagnoser approach to deal with our application

The diagnoser approach is attractive for our application for two reasons. The diag-
nostic is realized on-line by following the state of a finite state machine according
to observed events. Therefore it is efficient. The diagnoser is built off line from
the global model of the system which is itself built from models of elementary
components. When the system is modified, the elementary models are updated;
consequently a new model and a new diagnoser are built, which gives this approach
genericity. Unfortunately, the diagnoser approach as proposed by [21] concerns syn-
chronous finite state machines. In our application we have chosen to use temporal
communicating finite state machines. This formalism is well suited to modeling
telecommunication networks or protocols [17], where components exchange mes-
sages. Moreover we need to be able to express temporal constraints on the delays

19

(emission and transmission delays of messages). It was thus richer formalism as
well as some specificities of our application which forced us to extend the diagnoser
approach.

As in [20], we rely on the global model of the system to be surveyed4. This global
model may have been built by composing elementary models, as explained in sub-
section 2.4. In this model, three kinds of messages exist: internal messages, alarms
and failure messages. The failure messages include the messages corresponding to
the occurrence of a failure but also the comeback messages. Internal messages and
failure messages are not observable. Emitted events can therefore be internal events
or alarms. Received events are failure or internal events. The model of the system
is a 4-tuple (Q, Σ, δ, x0) where Σ = Σe ∪ Σr, Σr = Σir ∪ Σf , Σe = Σie ∪ Σa with
Σir the set of received internal events, Σf the set of failures, Σie the set of emitted
internal events, Σa the set of emitted alarms. The set of observables Σo is defined
by Σo = Σa and the set of unobservables Σuo as Σie ∪ Σir ∪ Σf . The supervision
problem consists in finding events of Σf explaining some observable events of Σo.

In the following, we first informally introduce the extension of the diagnoser we
have proposed. Each difficulty is given and the proposed solution is explained and
illustrated. This is followed by a formal definition of the extended diagnoser5 the
algorithm used to build it from the model of the system (see 4.5 and 4.6).

The main extensions described in the following subsections are as follows:

• The diagnoser has to deal with a communicating finite state machine, so we
have to deal with exchanged messages.

• We need to take into account the emitted events especially when they are emit-
ted with delays. This is why conditions on these internal events have been
added to the states of the extended diagnoser.

• We need to keep information about failures that may have occurred. It is the
reason why we have discarded the ambiguous symbol A from the state label,
which becomes a list of possible failures.

• We need to take into account non-permanent failures. The model can therefore
contain cycles, which is why we have added output messages to the transitions.

• We need to take into account temporal constraints. It is the reason why we
have associated a date to each event and why we have associated temporal
constraints to the dates of the possible faults.

4.1. Dealing with a communicating finite state machine (CFSM)

In the following two sections, for reasons of clarity, we suppose that the model of
the system does not include temporal constraints; they will be introduced in 4.4.

4.1.1. A simplified case
Let us first consider the case where there are no internal messages. In this case,

20

messages can only be alarms and failure messages. Alarms are emitted events and
failure messages are received events. A state of the diagnoser is q = (x, {l}) where
x is a single state of the behavioral model of the system and l a set of failures.
To build the transitions leaving state q = (x, {l}) we look for all words so where
s = s1 . . . sn, si ∈ Σuo and o ∈ Σo, which allow the automaton of the system to go
from x to x′ by receiving s and then sending o. For each word so the transition
δ((x, {l}), o) = (x′, {l, s1, . . . , sn}) is added.

1 2 3
-f2-f1
+o

a) System model
b) Extended diagnoser

1,{}

3,{f1,f2}

-o

Figure 12. Building the extended diagnoser from a CFSM

For example, let us consider the system whose model is given in figure 12.a. From
state 1, the only observable event is o. o can lead to state 3 on condition of failures
f1 and f2. A transition is thus moving from (1, {}) to (3, {f1, f2}), as shown in
figure 12.b.

4.1.2. Dealing with internal events
If we now consider internal events, both received and emitted events can be

internal events. As internal events are not observable events, when we look for all
received words so leaving x, with s ∈ Σ∗

uo, s can include internal events. But an
internal event should not be received if it has not been emitted. Therefore we store
all internal events which have been emitted and not yet received, which make it
possible to check received messages against expected ones and to eliminate some of
the impossible alternatives. We add to each state of the extended diagnoser a list of
such internal events. A state of the extended diagnoser is now {(x, l, i)} where i is
a list of internal events. To build the extended diagnoser from state q = {(x, l, i)},
we look in the model of the system for all words s1 . . . sno enabling a transition
from x to x′ and where

• si ∈ Σf (it is a received message),

• or si ∈ Σir and si ∈ i (si is an internal event which was expected and has now
been received),

• or si ∈ Σie: si is added as an expected event,

• and the observable o ∈ Σo is emitted by the last transition.

The new state is q′ = {(x′, l′, i′)} with l′ = l ∪ {si|si ∈ Σf} and i′ = i− {si|si ∈
Σir ∧ si ∈ i}∪{si|si ∈ Σie ∧ si 6∈ i}. The list of expected internal events is updated
by deleting the received ones and adding the emitted ones.

21

1 2 3 4
−f1 −i −f2
+o1
+i

+o2

a) System model

2,{f1},{i}

4,{f1,f2},{}

−o1

−o2

b) Extended diagnos

1,{},{}

Figure 13. The extended diagnoser with internal events

For example, let us consider the system model in figure 13. o1 enables a transition
from state 1 to state 2 but with the emission of an internal event i. Therefore we
add to the diagnoser the state (2, {f1}, {i}), meaning that i has been sent but has
not been received. From the extended diagnoser state (2, {f1}, {i}), we can go
to state (4, {f1, f2}, {}), where i is taken out of the internal list as it has been
received.

In the following, we will consider that all internal events are emitted concurrently
to observable events. This is the case in our application and a simpler algorithm is
therefore possible.

4.2. Keeping information about failures that may have occurred

Diagnosability of a system with respect to a disjoint set of failure types is usually
defined as the fact that the occurence of any failure types can be identified using a
bounded number of observations following the occurence of that failure. A formal
definition can be found in [20] which corresponds to the following : let s be any trace
generated by the system that ends in a failure state of type Fi (let us recall that the
set of failures Σf is partitioned in a set of disjoint types of failures F1∪F2∪. . .∪Fm)
and let t be any sufficiently long continuation of s. The condition requires that every
trace belonging to the language of G and having the same observable trace than st
should contain the occurrence of a failure of the type Fi with a finite delay. It then
means that every failure type event leads to a sequence of observations distinct
enough to enable unique identification of the failure type with a finite delay.

Due to the masking process, the system we have considered is clearly not diag-
nosable as defined in [20] or, to be more precise, taking this definition will force us
to consider only one type of fault containing all the faults.

To illustrate this, consider the figure 14 which gives, for each set of failures possi-
bly occurring on a TC and its two SWs, the set of alarm sequences possibly received
by the supervision center. The TC comeback and the SW comebacks can happen in
any order due to the uncertainty of temporal delays. Each sequence corresponds to
the way these failure events interleave. It is easy to see that there are no sequence
of alarms discriminating these failures.

Another way of illustrating this fact is by looking at the automata given in figure
8. For the two faults TC break and TC cut, two traces can easily be exhibited

22

corresponding to the same sequence of alarms {cvhs, cves}: the one going from
state 1 to state 1 though the states 8 and 2 and the one going from state 1 to state
1 though the state 2. Consequently, following [19], TC break and TC cut should
belong to the same type of failures. In fact, for our system, using this definition
means the existence of exactly one class containing all the failures.

Accepting this fact means building a diagnoser able to detect a faulty situation
but unable to propose more informative diagnoses. In most of the case, however,
it is possible to have a more precise idea of what happened: by chance, the worse
case is not the most current one and it is often possible to take profit of received
alarms to discriminate between candidates. In our specific case, due to the masking
effect, the same observable sequence can often be explained by two distinct failures,
but it indicates the occurence of interacting faults which are interesting to identify.
For example, the sequence cvhs, cves, n004(SW1) does not discriminate between
a TC break or a TC cut (both can produce this sequence of alarms); however, it
indicates that the TC cut has to be followed by a SW break(SW1) occurred before
the TC come back which masked the n003 alarm. In a monitoring context, we are
interested in tracking all the possible histories of the system, even if we know that
some failures cannot be identified for sure.

We propose then to use a weak definition of diagnosability which is the following :
A system is said to be weakly diagnosable with respect to a given partition of Σf ,
Σf = F1 ∪F2 ∪ . . .∪Fm, iff the following condition is satisfied. Let s1 be any trace
generated by the system that ends in a faulty state f1 of type Fi and let t1 be any
continuation of s1. The condition requires that, for any fault f2 belonging to the
same class Fi, there exists a trace s2 ending in the faulty state f2 and a continuation
t2 such that s1t1 and s2t2 have the same observable trace and correspond exactly
to the same occurrences of failures : same types in the same order. It then means
that it is impossible to discriminate the failures of a same type even by looking at
the failure histories explaining a sequence of observations. This weak diagnosability
defines then equivalence classes with respect to what is observable. As soon as two
failures do not belong to the same class, it is worthy to differentiate them for they
can correspond to different failure histories of the system.

The main consequence of keeping information about all the possible failures ex-
plaining the observations is that the use of the ambiguous symbol as proposed in
the basic diagnoser by [20] has to be given up. We use a solution similar to the one
proposed in [20] to deal with multiple faults (see figure11 in section 3.2) where each
possible faults explaining a state are kept in the diagnoser state. The only differ-
ence is that, instead of having a deterministic automaton, the extended diagnoser
is a non deterministic automaton where each diagnoser state corresponds to one of
the alternative.

Let us consider the system whose model is given in figure 15.a (using the finite
state machine formalism) and in figure 15.c (using the communicating finite state
machine formalism). From state 1, the only observable event is o1. o1 can lead
to state 2 with the failure f1 or with the failure f2. With the diagnoser approach
without ambiguous symbol the label of the new state is ((2, {f1})(2, {f2})) as

23

Failures having happened Sequences of received alarms

TC break (and its TC SC back) cvhs, cves
cvhs, cves, n004(SW1)
cvhs, cves, n004(SW2)
cvhs, cves, n004(SW1), n004(SW2)
cvhs, cves, n004(SW2), n004(SW1)

TC cut (and its TC SC back) cvhs, cves

TC cut followed by SW break(SW1)(*) cvhs, cves
cvhs, cves, n004(SW1)

TC cut followed by SW break(SW2)(*) cvhs, cves
cvhs, cves, n004(SW2)

TC cut followed by SW break(SW1) cvhs, cves
and by SW break(SW2)(*) cvhs, cves, n004(SW1)

cvhs, cves, n004(SW2)
cvhs, cves, n004(SW1), n004(SW2)
cvhs, cves, n004(SW2), n004(SW1)

Figure 14. Interleaved TC and SW failures and the corresponding alarm sequences - (*) : The
SW breakdowns (SW break) are supposed to happen before the TC comeback (TC SC back)
but the TC comeback and the SW comebacks (SW TC back) can happen in any order.

24

shown in figure 15.b. In our extended diagnoser, (figure 15.d), two transitions are
added, one leading to the state (2, {f1}) and the other to the state (2, {f2}).

o1

f2

f1

o1
+o1

(1,{})

(2,{f1})

−f1

1

(2,{f2})

1

3

2

4

(1,{})

a) Synchronous model

o1

b) Diagnoser

2

−f2
+o1

c) Communicating model d) Extended diagnoser

o1 o1

(2,{F2})
(2,{F1})

Figure 15. Building a non deterministic diagnoser

4.3. Taking into account non-permanent failures

In the initial diagnoser approach, failures are assumed to be permanent and the
finite state machine which models the system is assumed to be without any un-
observable cycles. This is not the case in our application where, due to recovery
procedures, breakdowns are followed by “comebacks” which create cycles in the
model. If this fact is ignored the extended diagnoser as presented above, will grow
indefinitely (a breakdown and its comeback can appear infinitely in a label). To
solve this problem, we have introduced the notion of minimal comeback set and
have added output messages to the extended diagnoser.

Definition 4. Minimal ComeBack Set
When a failure f occurs, the system changes according to this failure. As break-
downs are not permanent, thanks to the existence of recovery procedures, the failure
disappears after a while. The minimal comeback set (MCBS) is the minimal set of
events constituting a cycle; it makes the system come back or return to an already
visited state. An MCBS can be associated to each failure. Examples of failures and
their MCBS are given in the following table.

Failure MCBS

TC break TC break, TC SC back, TC SW back
TC cut TC cut, TC SC back

When building the extended diagnoser, if an MCBS is recognized, it is deleted
from the state label and added to the transition as an output message.

A transition of the extended diagnoser is triggered by the reception of an ob-
servable event but can also output a set of events. The extended diagnoser itself
becomes a communicating finite state machine.

25

(1,{})1

2

-TC_cut
+cvhs

-TC_back
+cves

a) System model

(2,{TC_cut})

-cvhs
-cves

+TC_cut
+TC_back

b) Extended diagnoser

Figure 16. The extended diagnoser with output messages

For example, let us consider the model in figure 16.a and look at the transi-
tion leaving the state (2, {TC cut}) of the extended diagnoser. In the model,
from state 2 the only observable is cves, which is due to the event TC back.
With the initial construction of the extended diagnoser, we should have the state
(1, {TC cut, TC back}) in the extended diagnoser. This state itself could be ex-
panded after a cvhs followed by a cves transition in a (1, {TC cut, TC back, TC cut,
TC back}) state and so on. The set {TC cut, TC back} is recognized to be an M-
CBS. The state (1, {TC cut,TC back}) is considered as equivalent to the state
(1, {}) after having added to the transition going from state (2, TC cut) to (1, {})
the output messages TC cut and TC back, as shown in figure 16.b.

4.4. Taking into account temporal data

The model used in the diagnoser approach, as initially proposed, has no temporal
information. We have seen that it is necessary to integrate temporal constraints in
order to model our network. For example, one of the sequences of events explaining
the sequence of alarms (cvhs, t1)(cves, t2)(n004, t3) is the following one:
(TC break, t1), (TC back, t2), (SW back(SW1), t3). It is a case of TC break: TC
breaks down at time t1, explaining cvhs; TC comes back at time t2, explaining
cves; SW1 and SW2 begin to reboot at the same time t1. SW1 comes back to a
normal state at time t3, explaining n004. SW2 has not come back yet, explaining
that its n004 alarm has not yet been received. As SW2 takes time d ∈ [d1, d2] to
reboot, if at time t1 + d2 no n004 alarm has been received (and no other alarm
indicates that a masking has occurred), this hypothesis can be eliminated.

The diagnoser is then extended by dating the events and keeping temporal con-
straints on these events.

• We associate a date to each observable event. −cvhs(t1) means that the message
cvhs is received at time t1.

• We associate a date and, whenever possible, temporal constraints to each unob-
servable event. (TC cut, t1) means that TC cut occurs at time t1. (TC back, u1)

26

with t1 < u1 < t2 means that TC back occurs at time u1 which verifies the
constraint t1 < u1 < t2.

• In the same way, we associate a date of occurrence to the internal messages of the
internal list and keep the temporal constraints known on them. (SW back, t1, t2)
means that the internal message SW back can only occur in the time interval
[t1, t2].

• We take advantage of the following two rules satisfied by the system model and
add the corresponding temporal constraints:

– Each event on the same transition occurs at the same time.

– Events of two consecutive transitions are subject to a precedence constraint.

Finally, a state of the extended diagnoser is of the form (x, l, i, C) where x is a
system state, l a set of dated failures, i is a list of dated internal messages and C
a set of temporal constraints. A transition is triggered by the reception of a dated
observable event and may output a set of dated events associated with temporal
constraints.

(1,{})

2

3

1

-f2
+o1

-f1

b) Extended diagnoser

-(o1,t1)

a) System model

(3,{(f1,u1),(f2,t1)})
with u1<t1

Figure 17. The extended diagnoser with temporal constraints

For example, let us consider the system shown in figure 17.a. From state 1, the
only possible observable event is o1. Let us suppose that it occurs at time t1.
Therefore f2 also occurs at time t1 and f1 at a time u1 which verifies the con-
straint u1 < t1. The extended diagnoser is given in figure 17.b.

Finally, to build the extended diagnoser from state (x, l, i, C) we look at all the
transitions leaving state x in the system model. Before meeting the observable
event, we can encounter external events and internal events included in i. Let us
suppose that we arrive at state x′ through transitions tr1, tr2, . . . , trn. A transition
from (x, l, i, C) to (x′, l′, i′, C′) is then added to the extended diagnoser, with i′ =
i − i1 + i2, where i1 is the set of internal events received through tr1, tr2, . . . , trn

and i2 the set of internal events emitted through tr1, tr2, . . . , trn. l′ = l + l2 − l1

27

where l2 is the set of all failure messages received through tr1, tr2, . . . , trn and l1 is
the set of MCBSs belonging to l + l2. The transition from (x, l, i, C) to (x′, l′, i′, C′)
is labeled by −(o, t) +l1. Moreover, constraints relative to the date of l1 are added
to C. Figure 18 gives an example of a system with temporal constraints and of its
extended diagnoser. We assume that the MCBS of f1 is {f2}.

.

.

(4,{},{})

1

2

(1,{},{})

3

4

a) System model

−(o1,t1)

−f2

−f1
+o1

+(i,d1,d2)

−i
+o2

−(o2,t2)
+(f1,t1) +(f2,u1)
with t1<u1<t2

{(i,t1+d1,t1+d2)})
(2,{(f1,t1)},

b) Extended diagnoser

Figure 18. The extended diagnoser with internal events

4.5. Definition of the diagnoser

Before defining the extended diagnoser, let us recall the definition of the behavioral
model of the network. It is a deterministic communicating finite state machine
(Q, Σ, δ, x0) where Q is a finite set of states, x0 ∈ Q is the initial state, Σ is a set
of events. In our application Σ = Σe ∪ Σr where Σe are emitted events and Σr

are received events. Moreover Σe = Σie ∪ Σa and Σr = Σir ∪ Σf , where Σie are
emitted internal events, Σir received internal events, Σf failures, and Σa alarms. δ
is a function defined by:

δ : Q× Σr → Q× (Σe ×DELAY)∗

A diagnoser is a non deterministic communicating finite state machine D =
(Qd, Σd, δd, q0d). Σd = Σdr ∪ Σde where Σdr = Σa is the set of alarms. They
are the only observable events of the system, this set is called Σdo in the following
(Σdo=Σdr = Σa). Σde is the set of MCBS.

A state of the diagnoser is qd = (xs, l, i, C) where

• xs ∈ Q is a single state of the behavioral model of the system.

• l = {(f1, tf1) . . . (fm, tfm)} with fi ∈ Σf , l is a label describing the failure events
that have occurred in order to reach the state xs. tfi is the occurrence date of
the failure fi.

28

• i = {(i1, ti11 , ti12)) . . . (in, tin1 , tin2)} with ij ∈ Σie. i is a list of internal messages
including all the internal messages that have been emitted and have not yet been
received. Each internal message ij is associated with two dates tij1 and tij2 ,
meaning that the message must be received between tij1 and tij2 .

• C is a set of temporal constraints; a constraint looks like t1 < t2 and deals with
{tf1 , . . . , tfm , ti11 , ti12 , . . . tin2}.

δd is a relation defined by δd : Qd × Σdr → Qd × (Σde)∗.

4.6. Building the diagnoser

Before building the diagnoser, we first extend δ to a sequence of events.

δ(x, mr1) = (x1, me1)
δ(x1, mr2) = (x2, me2)

}
⇒ δ(x, mr1mr2) = (x2, [me1, me2])

where x, x1, x2 ∈ Q, mr1, mr2 ∈ Σr, me1, me2 ∈ (Σe ×DELAY)∗ and [me1, me2]
denotes a sequence of dated events (the events of me1 must occur before the events
of me2).

With the extended transition, we can now build the diagnoser recursively. The fol-
lowing shows how to build all the transitions δd(q1, σ) for a state q1 = (x1, l1, i1, C1)
with l1 = {(f1, tf1), . . . , (fm, tfm)} and i1 = {(i11, ti11 , ti12), . . . , (i1n, tin1 , tin2)}.
For each possible observed event σ ∈ Σdo received at time t, the new states of the
diagnoser q2 are computed as follows:

• From the model of the system, we compute the set S of 4-tuple (x2, mr, i, C)
where x2 can be reached from x1 by receiving the unobservable events mr
and then emitting the internal events i and the observable event σ, with the
constraints C.
S(q1, σ) = {(x2, mr, i, C) such that

δ(x1, mr1 . . . mru) = (x2, [(i1, di11 , di12), . . . (iv, div1 , div2), σ])}
where
mr = {(mr1, tmr1), . . . , (mru, tmru)} with mri ∈ Σf ∪ {i11, . . . i1n}
i = {(i1, ti11 , ti12), . . . , (iv, tiv1 , tiv2)} with ij ∈ Σie

σ ∈ Σdo and σ and i are emitted on the last transition
C = {tmr1 ≤ . . . ≤ tmru−1 ≤ t, tmru = t, ∀jtij1 = t + dij1 , tij2 = t + dij2}

• For all (x2, mr, i, C) ∈ S(q1, σ) we add to the diagnoser the transition (q1, σ)→
{(x2, l2, i2, C2), me} with

i2 = (i1 −mr) ∪ i

me = MCBS(l1 ∪mr)
l2 = l1 ∪ (mr − Σir)−me

C2 = C1 ∪ C

29

We add to the internal list all the internal messages which have been emitted
on the way from x1 to x2, and we take out all the internal messages which have
been received. l1 ∪ l2 is the set of occurred failures. me is the set of MCBSs
included in l1 ∪ l2; it is added as output messages on the transition. The set of
failure messages kept with the state x2 is the set of received events which are
not internal messages and which are not included in the set of MCBSs emitted.

4.7. Example

Let us consider a system composed of a technical center TC and a switch SW . Its
model is given in figure 8. We assume that at the beginning the system is in its
initial state with no failure (in the example the initial state is state 1). Therefore
the initial state of the diagnoser is state (1, {}, {}) meaning that the system is in
state 1, that no failure and no internal event have occurred.

According to the model of the system three alarms can be observed after state
1 : n003, cvhs and cvhs. The first one means that the system is in state 4 and
that a SW break has occurred. therefore a transition going from state (1, {}, {})
to state (4, {SW break}, {}) and labeled by n003 is added to the diagnoser. As
SW break and n003 are on the same model transition, their occurrence time are
equal. If n003 is received at time u1, SW break occurs at time u1 : this temporal
information is added to the diagnoser.

Let us look at the cvhs alarm that leads from state 1 to state 2 in the model.
When this alarm is received, the system goes to state 2 and a TC cut occurs.
Therefore a transition from state (1, {}, {}) to state (2, {TC cut}, {}) is added to
the diagnoser. The date associated to TC cut is the date of the alarm cvhs.

The alarm cvhs leads from state 1 to state 8 in the model. When this alar-
m is received, the system is in state 8, a TC break has occurred and an inter-
nal event has been emitted. Therefore a transition from state (1, {}, {}) to state
(8, {SW break}, {TC SW back}) is added to the diagnoser. If cvhs is received at
time u1 then SW break has occurred at time u1 and TC SW back has to occur
between u1 + d1 and u2 + d2.

All the possible transitions going out of the initial state have been added to the di-
agnoser. Three new states have been built : (4, {SW break}, {}), (2, {TC cut}, {})
and (8, {SW break}, {TC SW back}). The same work has to be done for each of
these states and so on. Finally we obtain the diagnoser given by figure 19.

The way the diagnoser is used on-line will be presented at the end of the next
section devoted to the generic diagnoser.

5. A generic diagnoser

5.1. Motivations

In [21], the diagnoser is built from a model of the whole system. Starting from
discrete event models of the individual components, a systematic procedure for
generating the global model is presented. It is based on the standard synchronous

30

Notations :

[d1,d2], [d’1, d’2], [d"1,d"2] denote the time intervals corresponding respectively to the SW rebooting delay,
the TC repairing delay, the SW repairing delay.

cvhs(t)

t->u1

t->u2

u3<t’<t
n004(t)

s1(u1,u2) = ((TC_cut,u1), (TC_SC_back,u2)) with d’1 < u2-u1 < d’2

s3(u2,t’,u3)
s2(u1,t)

with d’1 < u3 - u1 < d’2 and d1 < u2 - u1 < d2
tm(u) = (TC_SW_back,u+d1,u+d2)

s3(u1,u2,u3) = ((TC_break,u1), (TC_SW_back,u2), (TC_SC_back,u3))

s2(u1,u2) = ((SW_break,u1), (SW_TC_back,u2)) with d’’1 < u2-u1 < d’’2

n003(t)

cvhs(t)
t->u1

cvhs(t)
t->u1

l={(SW_break,u1)}

cves(t)

cves(t)

s1(u1,t)

u1<t’<t
s1(u1,t)

t’->u1

n004(t)
s2(u1,t)

cves(t)
u1<t’<t’’<t

cves(t)
u2<t’<t’’<t

s3(u1,t’,t)
t’’->u1

s3(u2,t’’,t)
s1(u1,t’)

cvhs(t)
t->u2

cves(t)
u2<t’<t

s3(u2,t’,t)

l={(TC_break,u1)

cvhs(t)
u2<t’<t

t’->u1
t->u2

u2<t’’<t’<t
s3(u1,t’,u2)

t->u2
t’’->u1cves(t)

u2<t’<t

s2(u1,t’)
u2->u1
t->u2

cves(t) t->u2

n004(t)

s3(u1,t’,t)

cves(t)
u1<t’<t

l={(SW_break,u1)
(TC_cut,u2)}

cvhs(t)

s3(u1,t’,u2)
u2<t’’<t’<t

t’’->u1
t->u2

l={(SW_break,u1)

(TC_SC_back,u3)}

cves(t)
u1<t’<t
t->u3
u1->u2
t’->u1

cvhs(t)
u1<t’<t

s2(u1,t’)
t->u1

cvhs(t)
u3<t’<t

s3(u2,t’,u3)
t->u2

t->u3
cves(t)

cvhs(t)
t->u2

cvhs(t)
u3<t’<t

s3(u2,t’,u3)
t->u2

n004(t)
u3<t’<t

s2(u1,t’)
s3(u2,t,u3)

cves(t)
u2<t’<t

s1(u2,t)

cves(t) s1(u2,t)

(TC_break,u2)}
l={(SW_break,u1)

7

5
l={(TC_cut,u1)}
2

l={} i={} 1

 i={}

3 i={}

4 i={}

8

6

l={(TC_break,u1)}

(TC_break,u2)

(TC_SC_back,u2)}

s3(u1,t,u2)

or

or u2<t’’<t’<t

or u1<t’’<t’<t

cvhs(t)

i={tm(u1)}

i={tm(u1)}

i={tm(u2)}

i={tm(u1)}

Figure 19. Extended diagnoser of a system composed of a technical center TC and a switch SW

31

composition operation. The model captures the interaction between the compo-
nents and represents the whole system to be diagnosed.

In our case the system also consists of individual components. Starting from
the automaton of each of these components we can generate a model of the whole
network, using the composition operation described in [18, 5]. But even when
considering only TCs and SWs, the model of the whole network has 2104300 states.
It is clearly impossible to use such a model.

To solve this problem, we take advantage of the specific structure of the network,
in our case a hierarchical structure. Instead of dealing with the model of the whole
network, we make use of the model of a generic component of the system, in our
case a branch of the network. This generic model is obtained, as explained in 2.4,
by composing the models of the components of the branch. For example, for the
network shown in figure 20 which has two technical centers and five switches, the
generic model results from the composition of the models of the supervision center,
one technical center and one switch. This model is generic as it can be used to
model each branch of the network. In this example, the generic model can be used
to model b1, b2, . . . and b5. The state of the network is fully described by the state
of its branches.

A generic component is a component which appears many times in the network,
with the same behavioral model. The use of generic models is then not restricted to
hierarchically structured systems but can be extended to other structured systems.

We explain in the following how the state of a branch can be economically rep-
resented by using adequate primitives and operators (section 5.2) and then how
the generic diagnoser will compute the current states of the network according to
received alarms (section 5.4).

5.2. Economical representation of the state of the network

From a generic model, it is easy to build a generic diagnoser as explained in the
previous section. Before explaining the use of this generic diagnoser to monitor
the whole network, an important point is to focus on the way the states of the
branches of the network are economically represented. Since the effects of an
alarm depend on the state of the branches from which it has been emitted, we
have to store all possible states of the network branches. Dealing with branch-
es does not make the combinatorial problem associated to the number of possi-
ble states disappear; for one technical center and thirty switches, more than 430

states are possible. It is then crucial to have an economical and generic repre-
sentation of the network, relying on a partition of the network’s branches. All
the branches which share the same set of possible states will be represented on-
ly once, being described by one partition. Moreover, to prevent enumerating the
branches, they will be represented on a relational form. For example, branch of as-
sociates to a component all the branches passing through the component. In figure
20, branch of (TC2) is {b3, b4, b5}. The state of the network can be described by
{(branch of (TC1), setofstate1), (branch of (TC2), setofstate2)} where setofstate
describes diagnoser states; it means that b1 and b2 are in setofstate1 and that b3,

32

b4 and b5 are in setofstate26. The supervision problem will consist in updating
this state on the reception of new alarms.

5.3. Definitions

Some definitions required for describing more formally the use of the generic diag-
noser are given in this section. Each definition is illustrated with an example using
the network described by figure 20.

b1 b2 b3 b4 b5

SC

TC1 TC2

SW1 SW2 SW3 SW4 SW5

Figure 20. Structure of an illustrative network

Definition 5. SET OF COMPONENTS
SET OF COMPONENTS is the set of components of the network. In the exam-
ple, SET OF COMPONENTS is {SC, TC1, TC2, SW1, SW2, SW3, SW4, SW5}.

Definition 6. son of
son of ∈ SET OF COMPONENTS → P(SET OF COMPONENTS)
son of is used to describe the hierarchical structure of the network. For the network
described by figure 20, son of is given by:

son of (SC) = {TC1, TC2},
son of (TC1) = {SW1, SW2},
son of (TC2) = {SW3, SW4, SW5},
∀i ∈ [1..5] son of (SWi) = ∅

Definition 7. branch
A branch of the network is a set b = {SC, c1, c2, . . . , cn} where c1 ∈ son of (SC),
ci ∈ son of (ci−1) and son of (cn) = ∅. In the example b1 = {SC, TC1, SW1} is a
branch of the network shown by figure 20.

Definition 8. Ω
Ω is the set of all the network’s branches. In the example Ω is {b1, b2, b3, b4, b5}.

Definition 9. branch of
branch of ∈ SET OF COMPONENTS → P(Ω)
branch of associates to a component c all the branches that include c.
branch of (c) = {b ∈ Ω/c ∈ b}.

33

The relation branch of prevents of enumerating all the branches. For example,
when all the branches under TC1 (in the real network there are 30 branches if we
only consider TCs and SWs) are in a same set of states, we do not enumerate the
set of branches but we just use branch of (TC1).

Definition 10. Set of dated events
A set of dated events is a set of pairs including an event and a time. The set
{(ev1, t1), (ev2, t2), . . . , (evn, tn)} means that the events evi occur at time ti.

Definition 11. Historical record
An historical record looks like [h1, h2, . . . , hn] and describes a set of alternative
histories; each history hi is a set of temporally constrained events.

For example, [{(ev1, t1), (ev2, t2)C12}, {(ev3, t3)C3}] means that ev1 occurred at
time t1 and ev2 at time t2 with t1 and t2 satisfying the constraints C12 or that ev3

occurred at time t3 with t3 satisfying the constraints C3.

Definition 12. State of the network
The state of the network is described by a set E = {(P1, E1), . . . , (Pn, En)} where
Pi is a set of branches and Ei = {(ei1, hi1), . . . , (ein, hin)} is a set of pairs (state of
the generic diagnoser, historical record). Each branch of Pi is in one of the possible
states described by Ei, i.e in one of the state eij with the history hij .

For example, let us consider the network given in figure 20, the generic diagnoser
of a branch of this network is given by figure 19. This diagnoser has been computed
by composing the model of a TC and an SW . As the supervision center has only
one state, the model used is also the model of an SC, a TC, and an SW . Let us
assume that each component of the system is in a normal state: each branch of the
network is in the initial state of the diagnoser (state 1)7. Therefore the state of the
network is given by E = {(branch of (SC), {(1, [])})}.

Let us now explain how the state of the network is updated by the generic diag-
noser on the occurrence of an alarm.

5.4. Updating the current state of the network

The supervision problem is to update the current state of the network according
to the flow of received alarms. In this subsection, the network is assumed to be
in state E = {(P1, E1), . . . , (Pn, En)} with Ei = {(ei1, hi1), . . . , (ein, hin)}. We
present how the new state E′ of the network is computed when an alarm a, emitted
by a component co, is received.

The fact that the component co emitted an alarm means that it detected a prob-
lem referred in the following as a failure. Let B(a) be the set of generic components
that may be affected by this failure and B(a) the set of components which are surely
not affected by it. In our application, the only components hierarchically under co
can have been affected by the failure. Therefore B(a) = branch of (co) which is the

34

set of all branches including co. In the network represented by figure 20, if TC2
emits an alarm cvhs, B(cvhs(TC2)) = branch of (TC2) = {b3, b4, b5}.

When updating the state of the network on the reception of an alarm a, each
element Pi of E will be differently considered, according to its belonging to B(a)
or to B(a).

5.4.1. Elements of Pi∩B(a): A generic component which belongs to B(a), with
B(a) = Ω−B(a), is not affected by the failure. Therefore it stays in the same set of
possible states Ei. For example, let us suppose that the state of the network shown
in figure 20 is E = {(branch of (SC), {(1, [])})}. When the alarm cvhs emitted by
TC2 is received, the set of possible states of all the branches which do not belong
to branch of (TC2) does not change. It means that the new set of possible states
of the branches denoted by branch of (TC1) are {(1, [])}.

5.4.2. Elements of Pi∩B(a): Let b ∈ Pi∩B(a). The component b may have been
affected by the failure. Therefore the diagnoser is used to compute the new pos-
sible states of b. Let E′

i =
⋃

j∈[1..n]

⋃
k∈[1..m](δdk(eij , a), add(hij , new emissionjk))

where δdk(eij , a) denotes one of the m diagnoser states reachable from eij by a,
new emissionjk denotes the set of dated events emitted by this transition and
add(hij , new emissionjk) adds to each history of hij the set new emissionjk. The
set E′

i corresponds to all the new possible states of b. It can be empty when there
is no state reachable from any eij by a. In the example, the concerned branches are
those belonging to branch of (SC) ∩ branch of (TC2), i.e the branches denoted by
branch of (TC2). The accessible states from 1 by cvhs, δd(1, cvhs), are the states
2 and 8. There are no emitted events on these transitions. The new set of possible
states for branch of (TC2) is {(2, []), (8, [])}.

5.4.3. Computing the new state: Let the state be E = {(P1, E1), . . . , (Pn, En)}
and the received alarm a. A first step consists in evaluating all E′

1, E
′
2, . . . , E′

n as ex-
plained in 5.4.1 and 5.4.2. Let then ST be {(P1∩B(a), E′

1), (P1∩B(a), E1), . . . , (Pn∩
B(a), E′

n), (Pn ∩ B(a), En)}. In the cases where either Pi ∩ B(a) or Pi ∩ B(a) is
empty, the corresponding pairs are deleted from the set ST . In the case where E′

i

is empty, the corresponding pairs are also deleted from ST . Lastly, the tempo-
ral constraints associated to the events are checked and the inconsistent pairs are
deleted.

5.4.4. Extracting histories detected as diagnostic candidates: The pairs (state,
historicalrecord) give for each branch, and then for each component of the branch,
the possible sequences of events currently explaining all the observations. It can
then be seen as the current diagnostic candidates for the branch. Under some condi-
tions, it can be guaranteed that no future observation will question this current set
of diagnostic candidates. Each history can definitively be considered as one possible
candidate explaining the alarms received at this date. To get a more economical

35

representation of the network state, these candidates are stored in a dedicated data
structure HIST which collects 4-tuple (P, t, e, [h1, h2, . . . , hn]) where P describes
a set of branches , t is the current date, e is a diagnoser state and [h1, h2, . . . , hn]
the corresponding historical record. The network state is consequently updated by
reinitializing the stored historical records. The conditions under which such a stor-
age operation can be performed are not, in general, easy to determine. The branch
must be associated to a unique diagnoser state; this state must be a stable state, i.e
a state with no internal events and no temporal constraints. In our application, it is
the case for the diagnoser state which corresponds to the normal state of the system
and contains neither expected internal events nor temporal constraints (diagnoser
state 1 in Figure 19).

5.4.5. The join operation: The next step is to examine ST in order to identify
whether two sets of branches can be joined into one. The idea is to merge the sets
of branches which have the same set of possible states and identical histories. To
simplify, we apply the join operation only to the case where the historical records
are empty sets.

Let (BR1, E1) and (BR2, E2) be two elements of ST . BR1 and BR2 are sets of
branches. E1 = {(e11, []), . . . , (e1n, [])} and E2 = {(e21, []), . . . , (e2n[])} are sets of
pairs (diagnoser state, empty historical record). BR1 and BR2 can be joined if and
only if ∀i ∈ [1..n]∃j ∈ [1..n]e1i = e2j . We get (BR1 ∪BR2, {(e11, []), . . . , (e1n, [])}).

5.4.6. Summary When an alarm a is received, the following algorithm is used
to update the state E = {(P1, E1), . . . , (Pn, En)} into the new state E′.

1. Compute B(a)
2. For all i ∈ [1..n] compute E′

i (see 5.4.1 and 5.4.2)
3. ST={(P1∩B(a), E′

1), (P1∩B(a), E1), . . . , (Pn∩B(a), E′
n), (Pn∩B(a), En)}

4. For all i ∈ [1..n]
5. if (emptyset(Pi ∩B(a))) then ST = ST − (Pi ∩B(a), E′

i)
6. if (emptyset(Pi ∩B(a)) then ST = ST − (Pi ∩B(a), Ei)
7. Update E′

i by deleting the temporally inconsistent states
8. if (emptyset(E′

i)) then ST = ST − (Pi ∩B(a), E′
i)

9. Apply the store operation with update of HIST and ST (see 5.4.4)
10. Apply the join operation on ST (see 5.4.5)
11. E′ := ST

5.5. Example

We consider the network given by figure 20 and the extended diagnoser of figure
19 and show how the network state evolves when the following sequence of alarms
is received: (cvhs(TC2), 10), (cves(TC2), 20) (n004(SW4), 25), (n003(SW1), 140).

36

The delay dmax corresponds to the maximal delay for any component before it is
repaired after a breakdown (dmax = d′2 = d′′2; d′1 = d′2 = 0). This delay is much
greater than the maximal delay associated to internal events. In the following
example, we suppose that dmax = 100 and that the delay taken by the switch
number 4 to reboot belongs to [5..10]. These temporal constraints are not explicitly
stated in the following example but are checked according to the above algorithm.

For sake of simplification, we use the shortened notation of figure 19.

• The initial state of the network is E = {(Ω, {(1, [])})} and HIST = ∅.
• Reception of the alarm a = (cvhs(TC2), 10)

We have B(a) = branch of (TC2).

– Ω ∩B(a) = branch of (TC1)
All the branches of branch of (TC1) keep the same set of possible states
and histories. We get then {(1, [])}.

– Ω ∩B(a) = branch of (TC2)
The new candidates for the branches of branch of (TC2) correspond to the
diagnoser states 2 or 8 with empty historical records. We get {(2, []), (8, [])}

– No storage operation; no join operation.

The updated state of the network at time 10 is then:
E′ = {(branch of (TC1), {(1, [])}), (branch of (TC2), {(2, []), (8, [])})}

• Reception of the alarm a = (cves(TC2), 20)
We have B(a) = branch of (TC2).

– branch of (TC1) ∩B(a) = branch of (TC1)
All the branches of branch of (TC1) keep the same set of possible states
and histories. We get then {(1, [])}.

– branch of (TC1) ∩B(a) = ∅
– branch of (TC2) ∩B(a) = ∅.
– branch of (TC2) ∩B(a) = branch of (TC2)

The new candidates for these branches are:
{(1, [{s1(10, 20)}]), (4, [{s1(10, 20)}]), (4, [{s3(10, t, 20)(10<t<20)}]),

(6, []), (7, []), (1, [{s3(10, t, 20)(10<t<20)}])}
= {(1, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]),

(4, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]), (6, []), (7, [])}
– No storage operation; no join operation.

The new updated state of the network at time 20 is then:
E′ = {(branch of (TC1), {(1, [])}),

(branch of (TC2), {(1, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]),
(4, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]), (6, []), (7, [])})}

37

• Reception of the alarm a = (n004(SW4), 25)
We have B(a) = branch of (SW4).

– branch of (TC1) ∩B(a) = branch of (TC1)
All the branches of branch of (TC1) keep the same set of possible states
and histories. We get then {(1, [])}.

– branch of (TC1) ∩B(a) = ∅
– branch of (TC2) ∩ B(a) = branch of (SW3) ∪ branch of (SW5). All these

branches keep the same set of possible states with the same historical record-
s. We get then:
{(1, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]),

(4, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]), (6, []), (7, [])}
– branch of (TC2) ∩B(a) = branch of (SW4)

For these branches the new diagnostic candidates are: {(1, H)} where
H = [{s1(10, 20), s2(t, 25)(10<t<20)},
{s2(t, t′)(10<t<20<t′<25), s3(10, 25, 20)},
{s3(10, t, 20)(10<t<20), s2(t′, 25)(t<t′<20∨10<t′<t)},
{s3(10, t′, 20)(20<t′<25), s2(t, 25)(10<t<20)},
{s3(10, 25, 20)}]

– The diagnostic candidates {(1, H)} of the branches branch of (SW4) can
be stored in HIST : HIST ← HIST ∪ {(branch of (SW4), 25, 1, H)}. The
historical records are reinitialized and the new candidates are then {(1, [])}.

– branch of (TC1) and branch of (SW4) can be joined as their candidates
satisfy the conditions: their diagnoser states are the same and the historical
records are empty. We get:
{(branch of (TC1), {(1, [])}), (branch of (SW4), {(1, [])})} join−−−→{(branch of (TC1)∪ branch of (SW4), {(1, [])})}

The updated state of the network at time 25 is then:
E′ = {(branch of (TC1) ∪ branch of (SW4), {(1, [])}),

(branch of (SW3) ∪ branch of (SW5),
{(1, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]),
(4, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]), (6, []), (7, [])}

• Reception of the alarm a = (n003(SW1), 140)
We have B(a) = branch of (SW1).

– (branch of (TC1) ∪ branch of (SW4)) ∩B(a) =
branch of (SW2) ∪ branch of (SW4)

Their new candidates are {(1, [])}.
– (branch of (TC1) ∪ branch of (SW4)) ∩B(a) = branch of (SW1)

Their new candidates are {(4, [])}.
– (branch of (SW3) ∪ branch of (SW5)) ∩B(a) = branch of (SW3)∪

branch of (SW5). The set of their past possible states is:

38

{(1, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}]), (4, [{(s1, 10, 20)},
{s3(10, t, 20)(10<t<20)}]), (6, []), (7, [])})}.

Some of these states are no longer consistent with the delay constraints and
can therefore be eliminated. States 6 and 7 are ruled out on account of the
internal delay: the internal events, TC SW back, corresponding to the end
of SW3 and SW5 rebootings were expected to occur before 40. State 4 is
ruled out on account of the maximal delay dmax: the repair events were
expected to occur before 120. Therefore the new diagnostic candidates of
this set of branches are {(1, [{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}])}.

– (branch of (SW3) ∪ branch of (SW5)) ∩B(a) = ∅
– The diagnostic candidates of branch of (SW3) ∪ branch of (SW5) can be

stored in HIST :
HIST ← HIST ∪ {(branch of (SW3) ∪ branch of (SW5), 140, 1,

[{s1(10, 20)}, {s3(10, t, 20)(10<t<20)}])}.
Their historical records are reinitialized and we get {(1, [])}.

– branch of (SW2)∪branch of (SW4) and branch of (SW3)∪branch of (SW5)
can be joined for their diagnostic candidates satisfy the conditions:
{(branch of (SW2) ∪ branch of (SW4), {(1, [])}),

(branch of (SW3) ∪ branch of (SW5){(1, [])})} join−−−→{(branch of (SC)− branch of (SW1), {(1, [])})}

The updated state of the network at time 140 is then:
E′ = {(branch of (SC)−branch of (SW1), {(1, [])}), (branch of (SW1), {(4, [])})}.

6. Implementation and results

6.1. Implementation

The implementation task was carried out step by step. In a first step, the modelling
part was implemented. The model itself was tuned up by using a simulation tool and
validated on a test file, as explained in 6.2. In a second step, the Dyp prototype was
developed. Dyp implements the extended diagnoser approach without taking into
account temporal delays. From the description of the structure of the network and
from the model of each component, it builds the global model of the network and
its global diagnoser. The diagnoser state can be tracked as it analyses a stream
of alarms. The diagnostic candidates are stored in an historical file and can be
displayed. Figure 21 shows the main window of Dyp. In a third step, the generic
diagnoser, Gen, has been implemented. Gen is based on Dyp but relies on a generic
model of the network. It allows to track the state of the whole network as alarms are
received. The diagnostic candidates (set of branches, historical record) are stored
in a file and can be displayed. It was also experimented on the test file. We are
currently implementing the temporal version of the generic diagnoser.

In parallel, we are currently experimenting another way of dealing with the large
size of the model by designing a decentralized diagnoser approach. The general

39

Figure 21. Main window of Dyp

Figure 22. Windows of Gen

40

idea is to rely on local diagnosers built from component models. A coordinator is in
charge of computing, step by step, the global diagnoses from these local diagnoses.
This decentralized approach is described in [16].

6.2. Test and comparison with the expert system

The work presented above has been experimented on real data. A test file including
2052 alarms emitted by a subpart of the network during 12 hours has been used as a
reference for validating our prototypes. The file was first analysed by the expert sys-
tem which identified the following failures: 1 TC break, 2 SW break, 3 USG shift,
5 USG reconfiguration, 2 USG break, 1 UE shift and 2 UE rescue break. The same
stream of alarms was then analyzed by the generic diagnoser and the results were
compared. All the faults detected by the expert system were also proposed as diag-
nostic candidates by the diagnoser which is quite satisfactory. However, in absence
of temporal constraints, one problem is the size of the historical records associated
to the candidates. It is clear that temporal constraints are a good mean of pruning
a lot of candidates which are no longer temporally valid. The implementation and
the experimentation of the temporal generic diagnoser is in progress.

The intrinsic quality of the results is difficult to access because it requires to
find experts (at least one) accepting to study the alarm files and to qualify the
results with respect to their own analysis of the situation. It is then difficult to
compare these two approaches more precisely on their results. A clear advantage of
our model-based approach on the expert system one is the possibility of taking into
account behavioral and topological changes in the network. As it is well-known, any
change in the network components or any change in the connections between them
makes the expert system obsolete : the expertise has to be updated and in most of
the cases reacquired from scratch. These knowledge-based approaches, attractive
in stable domains as medecine, are not adequate for quickly evolving domains as
telecommunication networks. In model-based approaches, the changes are made on
the elementary structural or behavioral models which is in general much easier and
the diagnoser is automatically updated.

7. Related work

Detection and isolation of failures in large and complex systems such as telecommu-
nication networks are crucial and challenging tasks. The generality, flexibility and
reliability of model-based approaches make them a very desirable way to monitor
these complex systems. In [20] an interesting approach has been proposed, known
as the diagnoser approach. As explained above (see section 3.2), this approach relies
on a discrete-event model of the system to be surveyed and transforms it, off-line,
into a finite state machine that is suitable for analyzing observables and recogniz-
ing the faults. Its initial application was a heating, ventilation and air-conditioning
unit.

[9] extends this approach to systems whose temporal behavior is of great concern.
They propose to combine the timed discrete-event system framework described by

41

[7] with the automata-based diagnoser of [20]. This extension to temporal infor-
mation is interesting but was applied to a relatively simple problem, the factory
conveyor example. They do not provide any solution to the problem raised by the
huge size of the global model as soon as real problems are tackled.

[10] investigates the problem of diagnosing discrete-event systems under decentral-
ized information. They propose a coordinated decentralized architecture consisting
of local sites communicating with a coordinator responsible for the final diagno-
sis. A protocol is defined which specifies the diagnostic information generated at
each local site, the communication rules used by the local sites and the decision
rule employed by the coordinator. Each on-line diagnostic process is carried out
by diagnosers similar to those of [20]. The same restrictive assumptions are made:
no cycles of unobservable events, and perfect reliability of the communications be-
tween the sites and the coordinator (no loss of alarms and arrival in the same order
as they were emitted). Moreover, each site is assumed to have at its disposal the
global model of the system which, in practice, is nearly always impossible due to
the size of this model.

[2] propose a model-based approach for large distributed discrete-event systems
(they call them active systems) and rely, as we do, on communicating automata to
model the behavior of the components. Starting from the remark that the use of a
global model is almost invariably impossible in practice, the main advantage of their
proposal is that they do not need any global diagnoser to be built. Their approach
relies on the on-line and incremental reconstruction of the behavior of the system,
guided by available observations. It consists therefore in generating all the possible
histories that are consistent with a given set of observations. The main problems
remains the possibly huge size of the search space, but focusing techniques can be
used to limit it.

The combinatorial complexity associated with model-based techniques is one of
the main problem when dealing with complex systems. It is why it is often more
realistic to use the model off-line in order to produce some task-oriented data struc-
ture (in our case a diagnosis-oriented structure) which will be used on-line. It is the
main idea supporting the diagnoser approaches. Another way of using the model
off-line is by acquiring expertise rules from the model by simulating faults. For ex-
ample in [8, 15], a fault diagnosis knowledge base is built from a qualitative model
of the device. This is achieved by systematically simulating all component failures
and by learning production rules using an IDL algorithm. A similar approach can
be used to acquire scenarios8, as was done in [4]. In this prototype called GASPAR,
we investigated a twofold architecture. The off-line part was in charge of building a
scenario base by simulating faults and then learning discriminating scenario. The
on-line part uses a scenario recognition system in order to recognize failures on
the basis of the stream of alarms. The GASPAR system was tested on the same
application as the one presented in this paper, i.e supervising telecommunication
networks. A similar approach described in [13] was applied to power distribution
networks.

42

8. Conclusion

This paper proposes a model-based approach for the monitoring of large systems
such as telecommunication networks. Our work is based on the diagnoser approach
proposed by [20]. Starting from a discrete-event model of the network adapted to
simulating faults, this approach consists in transforming the model into a finite
state automaton, called a diagnoser, adapted to analyzing on-line the stream of
alarms. After presenting our application, we outlined the main limitations of the
initial proposal with respect to the difficulties we had to cope with and explained
how we overcame them by extending it.

The first contribution of this paper is to propose an extension of the diagnoser
approach which is able i) to deal with communicating finite state machines, ii)
to take into account temporal information, iii) to overcome the case of masked
alarms. A definition of an extended diagnoser and a schematic algorithm to build
it are given. The second contribution is to show that relying on a global model of
the system is in general impossible when concerned with complex systems such as
telecommunication networks. We have proposed a solution which takes advantage
of the (in our case hierarchical) structure of the system and relies on a generic
model of the system. An adequate representation based on manipulating formal
sets provides an economical representation of the current state of the network. A
generic diagnoser able to deal with such a generic model of the system is then
proposed.

Our approach has been implemented and experimented on the application, i.e.
the largest French packet switching telecommunication network. A current work
consists in adding preferences in order to prune the candidates and to more effi-
ciently track the system. In parallel, we are currently experimenting another way
of dealing with the large size of the model by designing a decentralized diagnoser
approach. The general idea is to rely on local diagnosers built from component
models. A coordinator is in charge of computing, step by step, the global diagnoses
from these local diagnoses. This decentralized approach is described in [16].

Acknowledgments

Thanks to the reviewers for their constructive comments. Special thanks to Yannick
Pencolé for his involvement in the implementation phase and his great help to revise
a first version of this paper.

Notes

1. This research was carried out in a joint project with the CNET France Telecom (Centre
National d’Etudes des Télécommunications), in the CNET/CNRS 93 1B 142 513 project.

2. In [18, 3] this formalism is extended with actions and guard conditions as is often done for
modeling communication protocols [17].

3. The treatment of the ambiguous symbol has been lightly simplified

43

4. This point can be problematic. We are currently working on solutions to solve this problem
such as generic diagnosers presented in section 5 and communicating diagnosers mentioned in
section 8.

5. The term “extended diagnoser” used throughout this paper refers to the extension of the basic
diagnoser ([20]) presented in this paper. It does not refer to the data structure also named
“extended diagnoser” used in [11].

6. For understandability, in the examples we will often give enumerated sets. In the prototype
sets are never enumerated: the relation branch of is always used

7. A diagnoser state is made up of a number, a set of failures and a set of internal events. In
the diagnoser of the figure 19, the number is sufficient to identify the state of the diagnoser.
Therefore in all the examples dealing with this diagnoser we will only use the number.

8. A scenario (or chronicle) as defined for example by [12] is a set of events associated to a set of
temporal constraints. Given a set of scenarios (characteristic of faults), a scenario recognition
system analyze on-line sequence of events and identify corresponding fault situations.

References

1. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedings of I-
CALP’90, LNCS 443, pages 321–335. Springer-Verlag, 1990.

2. P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of active systems. Proceedings
of the European Conference on Artificial Intelligence (ECAI), pages 274–278, 1998.

3. S. Bibas. Simulation à base de modèles pour la supervision de réseaux de télécommunication.
Phd thesis, Université Paris-Nord, 1997.

4. S. Bibas, M.O. Cordier, P. Dague, F. Lévy, and L. Rozé. Gaspar: a model-based system
for diagnosing telecommunication networks. In IMACS-IEEE/SMC International Multicon-
ference of Computational Enfineering in Systems Applications (CESA’96), pages 338–343,
Lille, France, 1996.

5. S. Bibas, M.O. Cordier, P. Dague, F. Lévy, and L. Rozé. Modelling a telecommunication
network for supervision purposes. In Proceedings of the ECAI96 Workshop on Model-Based
Systems and Qualitative Reasoning - Perspectives for Industrial Applications, pages 160–166,
Brighton, UK, 1996.

6. D. Brand and P. Zafiropulo. On communicating finite state machines. Journal of ACM,
30:323–342, 1983.

7. B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete event processes.
Proceedings of the IEEE Transactions on Automatic Control, 39(2):329–342, 1994.

8. I. Bratko, I. Mozetic, and N. Lavrac. Automatic synthesis and compression of cardiological
knowledge. In Machine Intelligence, volume 11, pages 435–454. Ellis Horwood, 1988.

9. Y.L. Chen and G. Provan. Modeling and diagnosis of timed discrete event systems - a factory
automation example. submitted, 1997.

10. R. Debouk, S. Lafortune, and D. Teneketzis. A coordinated decentralized protocol for fail-
ure diagnosis of discrete-event systems. In 4th International Workshop on Discrete-Event
Systems, pages 138–143, Cagliari, Italy, 1998.

11. R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized protocols for failure
diagnosis of discrete event systems. Discrete Event Dynamic Systems: Theory and Applica-
tions, 10:33–79, 2000.

12. C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition: representation and al-
gorithms. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 166–172, Chambéry, 1993.

13. P. Laborie. Automatic generation of chronicles and its application to alarm processing in
power distribution systems. In Proceedings of the International Workshop on Principles of
Diagnosis(DX’97), Mont St Michel, France, 1997.

14. D. Niebur. Expert systems for power system control in western europe. Proceedings of the
IEEE Symposium on Intelligent Control, pages 112–119, 1990.

15. D.A. Pearce. The induction of fault diagnosis systems from qualitative models. In Proceedings
of the AAAI National Conference on Artificial Intelligence, pages 353–357, St Paul, 1988.

44

16. Y. Pencolé. Decentralized diagnoser approach: application to telecommunication networks.
In Proceedings of the International Workshop on Principles of Diagnosis(DX’00), Morelia,
Mexico, 2000.

17. M. Riese. Diagnosis of extended finite automata as a dynamic constraint satisfaction problem.
In Proceedings of the International Workshop on Principles of Diagnosis(DX’93), pages 60–
73, Aberystwyth, UK, 1993.

18. L. Rozé. Supervision de réseaux de télécommunications : une approche à base de modèles.
Phd thesis, Université de Rennes 1, 1997.

19. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. A discrete
event systems approach to failure diagnosis. In Proceedings of the International Workshop
on Principles of Diagnosis(DX’94), pages 269–277, New Paltz,USA, 1994.

20. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnosabil-
ity of discrete event systems. Proceedings of the IEEE Transactions on Automatic Control,
40(9):1555–1575, 1995.

21. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure
diagnosis using discrete event models. Proceedings of the IEEE Transactions on Automatic
Control, 4(2):105–124, 1996.

