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Abstract: Monitoring centers in the smart grid exchange the collected data by sensors and smart
meters to monitor the current conditions and performance of electric power components. Distribution
Power Transformers (DPTs) have a key role in maintaining the integrity of power flow in the smart
grid. Online monitoring of DPTs to detect possible faults can potentially increase the reliability of
modern power systems. Mechanical defects of DPTs are the major issues in their proper operation that
must be detected in their early stage of occurrence. One of the most effective solutions for diagnosing
mechanical defects in DPTs is Frequency Response Analysis (FRA). In this study, an appropriate
condition monitoring scheme for DPTs is developed to identify even minor winding defects. Disk-
Space Variation (DSV), a common DPT windings fault, is applied to the 20 kV-winding of a 1.6 MVA
DPT in various locations and with different severity. Their corresponding frequency responses are
then computed, and all four components of the frequency responses, i.e., amplitude, argument, and
real and imaginary parts, are evaluated. Different data-driven-based indices are implemented to
extract appropriate feature vectors in the preprocessing stage. Group Method of Data Handling
(GMDH) Artificial Neural Networks is proposed to assist monitoring centers in interpreting FRA
signatures and identifying DPT defects at primary stages. GMDH has a data-dependent structure,
which gives high flexibility to modeling nonlinear characteristics of FRA test results with different
data sizes. It is demonstrated that the proposed approach is capable of accurately determining the
fault location and fault severity. The proposed Artificial Intelligence (AI)-based approach is used to
extract essential features from frequency response traces in order to detect the position and degree of
Disk-Space Variation (DSV) in the DPT windings. The experimental results verify the effectiveness of
the proposed methods in determining the severity and location of DSV defects.

Keywords: smart grid; online monitoring; distribution power transformer (DPT); disk-space variation
(DSV); data mining

1. Introduction

Distribution Power Transformers (DPTs) are considered as indispensable elements
for the power delivery process in modern power systems. DPTs are vulnerable to various
faults, including mechanical winding deformations, the second highest rate among all DPT
faults. Disk-Space Variation (DSV), Radial Deformation (RD), and Axial Displacement (AD)
are the three mechanical winding deformations in DPTs. Discriminating DPT defects at the
preliminary stages is of great importance to maintain the integrity and reliability of modern
power grids [1–4]. Operational data centers gather the measured datasets of DPTs on a
daylong basis to monitor the state of health condition of DPTs. The Frequency Response
Analysis (FRA) method, which is also known as the Transfer Function (TF) technique, can
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be utilized in the monitoring process, providing an efficient way of condition assessment [5].
The specialized operators do not have access to a reliable and standardized code to interpret
the TF test results. In this regard, enormous research studies have been conducted in recent
years to deal with interpreting the TF test results. Equivalent RLC circuit modeling [5–7],
utilizing Numerical Indicators (NIns) [8–11], and machine learning methods [12–20] are the
three main approaches to interpret TF test results. Because of the nonlinear nature of the
TF results, Artificial Intelligence (AI) techniques can result in more accurate interpretations
to identify the location(s) of faults and their impacts.

In [6], a high-frequency three-winding model of an actual DPT is considered, which has
repetitive RLC sections and mutual inductances. The TF signature of the DPT is measured,
and model parameters are estimated to have the same TF signature. The motivation of this
method is that the TF of a DPT reflects its physical characteristics. Parameter adjustments
are made based on the individual impacts on the simulated TF. In [7], different mechanical
and electrical faults affecting the TF traces are checked. The defects are simulated with
the 3D finite integration analysis. The amplitude part of the TF and four connection
schemes of the TF test are considered. The impacts of the mechanical faults on different
frequency sub-bands are investigated. The standard deviation of differences between
intact and faulty signatures is used to extract features with the windowing method. The
minimum numerical value of the extracted features in each sub-band is used for sensitivity
analysis. In [8], the occurrence, type, and severity of common DPT faults, including AD,
RD, DSV, core deformation, and Short Circuit (SC), are investigated. The amplitude part
of the TFs of the faults is measured at different severity. The Interval Maximum of the
Global Maximum (IMGM) index and Grasshopper Optimization Algorithm (GOA)-based
K-means are applied to detect the type of faults. Finally, fault severity is defined based on
different indices’ variations. In [9], the type of faults in the DPT windings is detected. FRA
regression analysis, based on the measured TF, defines the condition of the DPT considering
the Correlation Coefficient (CC) index. The output of the regression analysis is a single
number that is compared with the coefficient of determination, and accordingly, the type of
fault is detected. Features are extracted from low, medium, and high-frequency sub-bands
of the TF signatures using the CC and Absolute Sum of Logarithmic Error (ASLE) indices.
The defining boundary for NIns output for detection applications is a major issue, and NIns
can be used along with the other methods to assist in precise fault detection. Applying
NIns to the entire frequency range of the TF results can lead to a wrong FRA interpretation.
In [10], a moving window approach is proposed to extract features from the data in the
window using four NIns named CC, Spectrum Deviation (SD), Minimum Squared Error
(MSE), and ASLE. Different widths of the window are selected for scanning the TF traces
and extracting features. It is found that the window’s width affects the sensitivity of the
extracted features with respect to deformations. Hence, the proper width of the window
can be defined. However, in [10], the suitable window width is needed to be defined
for other TF results again. Besides, the value of fault detection criteria must be defined,
possibly inaccurate. By employing the windowing method, the dimension of the extracted
features is high, and if feature reduction techniques reduce such a dimension, it may be
easier to interpret. However, there is no standard to define the window width size. Three
appropriate NIns, called Cross-Correlation Factor (CCF), Sum of Errors (SE), and Lin’s
Concordance Coefficient (LCC), are introduced in [11] as monotonic, and the most reliable
indices among all of the NIns are applied to interpret TF test results. In [12], an Empirical
Wavelet Transform (EWT) is applied to extract a set of Empirical Wavelet Functions (EWFs)
from vibration signals. The Kernel Extreme Learning Machine (KELM) optimized with the
Salp Swarm Algorithm (SSA) is used to determine a DPT’s abnormal functions and the type
of the identified fault. Using SSA led to a longer training time, but it is necessary for effective
tuning of the parameters. Moreover, training high-dimensional features is time-consuming,
mainly when an optimization algorithm is used. A Multi-layer Perceptron (MLP) Neural
Networks is trained with the obtained features related to LCC index in [13]. The proposed
MLP using TF results is employed to discriminate AD and DSV faults. In [14], TF traces are
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analyzed for online monitoring of DPTs to detect SC, RD, and DSV faults. The DSV fault
detection accuracy is lower compared with SC and RD. The Support Vector Machine (SVM)
classifier using the extracted features by the MSE indicator could detect fault types with an
accuracy of 83.3%. A DPT is simulated with the lumped parameter-based model in [15].
In this model, six faults with different levels are simulated, and corresponding frequency
responses are achieved. Image processing methods (grayscale, image enhancement, image
sampling, and projection) are utilized to extract high-dimensional features. The Decision
Tree (DT) model and a fully-connected Artificial Neural Networks (ANN) are trained with
such features. Training a model with high-dimensional features is also time-consuming [16].
Feature extraction and dimension reduction methods can be applied to have fewer features
to be considered as the main inputs of the models [17,18]. The adaptive frequency slicing
algorithm is implemented in [19] to define frequency sub-bands for the TF results of DPTs.
The Comparative Standard Deviation (CSD), SD, CCF, LCC, and SE are the NIns utilized
to extract features from sub-bands. In addition, only the amplitude part of the TF is used
to detect the existence of winding deformations, but it cannot determine the location and
severity of mechanical winding deformations. In [20], an unsupervised isometric mapping
approach is employed to identify SC faults. In all aforementioned research studies, only
the TF’s amplitude part is considered, and fault types are detected using different AI-based
approaches. However, determining both location and severity of winding deformations
requires more investigation.

In this paper, an AI-based method using the Group Method of Data Handling (GMDH)
algorithm is proposed to determine DSV faults’ location and severities in DPTs. The
proposed method can be utilized in power systems’ data centers to identify defected
signals related to DPTs; therefore, the monitoring and maintenance of the apparatus can
be efficiently performed. In addition, complicated computations and non-standardized
lookup tables using NIns to determine only the existence of faults can be replaced with
the proposed method to have more accurate automatic decisions; not only to detect the
occurrence of faults but also to determine their location and severity.

The significant contributions of this paper can be determined as follows:

• A new AI-based interpreter of the TF test results has been proposed. A GMDH artificial
neural network has been employed to determine the severity and location of DSV
faults. The results of classification using GMDH have been compared to the results
of the MLP neural network. In order to assess the performance of the intelligent
classifiers, a well-known method called k-fold cross validation has been utilized;

• At the feature extraction stage, ten appropriate NIns used to extract feature groups to
feed the proposed intelligent fault detectors;

• Sensitivity analysis considering all TF parts (imaginary, real, magnitude, and phase)
has been carried out.

The structure of the rest of the study can be described as follows: Section 2 describes
the experimental study and process of collecting TF test results. Detailed information about
the proposed intelligent fault identifier is explained in Section 3. The results of classifying
the location and severity of DSV deformations are explored in Section 4. Sensitivity analysis
of TF components considering various NIns is investigated in Section 5. Finally, Section 6
concludes this paper.

2. Experimental Study and Data Preparation
2.1. Experimental Setup

The descriptions related to how the DSV defects are applied to the DPT windings and
detailed information about the practical setup utilized in this paper are provided in this
section. Windings of one phase of a three-phase DPT are investigated. The nominal power
capacity and voltage of the understudy DPT are 1.6 MVA and 20 kV/400 V, respectively. A
total number of 38 individual disks, including 782 turns, exists in high voltage windings,
and two layers containing 27 turns are in low voltage windings. The total height of the high
voltage windings is 494 mm; therefore, displacements with an amount of 5 mm are roughly
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1% of the full height. The radius of 176.5 mm and 118.5 mm are related to the outside
and inside parts of the high voltage windings, respectively. Similarly, the outer and inner
sides of the low voltage windings are 106 mm and 93 mm, respectively. The core’s radius
is 90 mm. The dimension measurements associated with high voltage and low voltage
windings are 8.5 × 2.12 mm and 11.8 × 3.35 mm, respectively. A cylindrical aluminum
represents the DPT core’s equipotential outer surface in the case study. Furthermore, at
frequencies above 5 kHz, the cylinder is considered in order to indicate the capacitive
interaction between the core and windings because of the fact that the windings’ behavior
can only be reliably represented by the core’s external surface. The TF is obtained via
impedance measurement conducted on the primary high voltage windings while leaving
the secondary windings disconnected. The impedance analyzer, called WAYN KERR 6500B,
is employed to collect the results. While executing the DSV test, the space between Double
Disks (DDs) altered from 8 to 40 mm in six various severities, and for each of which, the
related TF is collected and measured. The DSV deformation is implemented on the whole
upper section of the high voltage winding, and these deformations are localized at ten
different locations. Therefore, 6 × 10 specific cases existed, and the measurements are
performed to have access to input impedance for each case. The whole practical device
is demonstrated in Figure 1a. The High Voltage (HV) and Low Voltage (LV) windings
employed in this study are depicted. Figure 1b–d respectively represent the low, medium,
and high severities of applied DSV defects to DDs in the high voltage windings.

Energies 2022, 15, x FOR PEER REVIEW 5 of 34 
 

 

. 

Figure 1. Experimental setup, (a) DPT windings and impedance analyzer; (b) low severity of DSV 

deformation; (c) average severity of DSV deformation; and (d) high severity DSV deformation. 

2.2. Data Collection 

TF test results are obtained from Equation (1): 

𝑇𝐹 = 20 log (|
𝑉𝑖𝑛(𝑓)

𝐼𝑜𝑢𝑡(𝑓)
|) (1) 

where TF is the transfer function signature, 𝐼𝑜𝑢𝑡(𝑓)  denotes the ground current, and 

𝑉𝑖𝑛(𝑓) represents the input voltage. 

The measured TF traces related to the intact and deformed conditions of the windings 

are illustrated in Figure 2. Both amplitude and phase parts of the TF considering DSV 

deformations in various locations and severity are shown in the figure. 

  

(a) (b) 

Figure 1. Experimental setup, (a) DPT windings and impedance analyzer; (b) low severity of DSV
deformation; (c) average severity of DSV deformation; and (d) high severity DSV deformation.

2.2. Data Collection

TF test results are obtained from Equation (1):

TF = 20 log
(∣∣∣∣ Vin( f )

Iout( f )

∣∣∣∣) (1)

where TF is the transfer function signature, Iout( f ) denotes the ground current, and Vin( f )
represents the input voltage.
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The measured TF traces related to the intact and deformed conditions of the windings
are illustrated in Figure 2. Both amplitude and phase parts of the TF considering DSV
deformations in various locations and severity are shown in the figure.
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Figure 2. TF signatures illustrating intact and deformed traces, (a) the amplitude part of the TF for
intact and DSV deformation between DD 11 and 12; (b) with the phase part of the TF for intact and DSV
deformation between DD 11 and 12; (c) the amplitude part of the TF for intact and DSV deformation
between DD 14 and 15; (d) with the phase part of the TF for intact and DSV deformation between
DD 14 and 15; (e) the amplitude part of the TF for intact and DSV deformation between DD 17 and 18;
and (f) with the phase part of the TF for intact and DSV deformation between DD 17 and 18.

Figure 3 illustrates the entire process of the TF results interpretation in order to
distinguish faults while monitoring DPT conditions. In order to gather feature sets, ten
NIns have been employed in this paper. The NIns are implemented on TF signatures
in different frequency ranges. According to the frequencies related to resonance and
anti-resonance points, four intervals in the frequency domain are considered, which are
(5–225 kHz), (225–500 kHz), (500–775 kHz), and (775–1 MHz).



Energies 2022, 15, 8885 6 of 32Energies 2022, 15, x FOR PEER REVIEW 7 of 34 
 

 

Transfer Function 

Traces

Reference Transfer 

Function 

Numerical 

Index

Neural 

Network

Extracted 

Features

Interpretation 

of TF Results

In
je

ct
ed

 S
w

e
ep

 F
re

q
u

en
cy

 S
ig

n
a
l

Response 

Signal Health 

State

Yes

No

Impedance Analyzer

Measured 

Signal

 

Figure 3. Structure of fault diagnosis and TF test results’ interpretation procedure. 

The applied NIns are listed as follows, where, 𝑋 and 𝑌 denote the TF vectors in the 

intact and deformed cases, respectively, and 𝑋̅ and 𝑌̅ are their average values, and 𝑁 

represents the TF’s sample number: 

𝑆𝐷 =
1

𝑁
∑ √[

𝑥𝑖 − 𝐴𝑖

𝐴𝑖
]

2

+ [
𝑦𝑖 − 𝐴𝑖

𝐴𝑖
]

2𝑁

𝑖=1

 (2) 

𝐴𝑖 =
𝑥𝑖 + 𝑦𝑖

2
  

𝐶𝐶𝐹 =  
∑ (𝑥𝑖 − 𝑋̅)(𝑦𝑖 − 𝑌̅)𝑁

𝑖=1

√∑ (𝑥𝑖 − 𝑋̅)2𝑁
𝑖=1 ∑ (𝑦𝑖 − 𝑌̅)2𝑁

𝑖=1

 
(3) 

𝐶𝑆𝐷 = √
∑ [(𝑥𝑖 − 𝑥̅) − (𝑦𝑖 − 𝑦̅)]2𝑁

𝑖=1

𝑁 − 1
 (4) 

𝐿𝐶𝐶 =
2𝑆𝑥𝑦

(𝑌̅ − 𝑋̅)2 + 𝑆𝑥
2 + 𝑆𝑦

2
 

𝑆𝑥
2 =

1

𝑁
∑(𝑥𝑖 − 𝑋̅)2

𝑁

𝑖=1

,  

𝑆𝑦
2 =

1

𝑁
∑(𝑦𝑖 − 𝑌̅)2

𝑁

𝑖=1

,  

𝑆𝑥𝑦 =
1

𝑁
∑(𝑥𝑖 − 𝑋̅)(𝑦𝑖 − 𝑌̅)

𝑁

𝑖=1

 

(5) 

Figure 3. Structure of fault diagnosis and TF test results’ interpretation procedure.

It should be noted that DDs 8 up to 11 are labeled as the bottom section, DDs 12 up to
15 are considered as the middle part, and DDs 16 up to 19 are labeled as the top section.
Regarding the severity of DSV faults, fault severities between 8 mm and 12 mm are labeled
as low, severities between 16 mm up to 20 mm are considered average, and DSV faults with
severity greater than 20 mm are labeled as severe. Therefore, there are four feature sets
according to the above-mentioned frequency sub-bands as input of the proposed classifier,
and three classes are allocated for the classifier’s output, indicating the fault’s severity
or location.

The applied NIns are listed as follows, where, X and Y denote the TF vectors in
the intact and deformed cases, respectively, and X and Y are their average values, and
N represents the TF’s sample number:

SD =
1
N

N

∑
i=1

√[
xi − Ai

Ai

]2
+

[
yi − Ai

Ai

]2
(2)

Ai =
xi + yi

2

CCF =
∑N

i=1
(
xi − X

)(
yi −Y

)√
∑N

i=1
(

xi − X
)2

∑N
i=1
(
yi −Y

)2
(3)

CSD =

√
∑N

i=1[(xi − x)− (yi − y)]2

N − 1
(4)

LCC =
2Sxy

(Y−X)
2
+S2

x+S2
y

S2
x = 1

N

N
∑

i=1

(
xi − X

)2,

S2
y = 1

N

N
∑

i=1

(
yi −Y

)2,

Sxy = 1
N

N
∑

i=1

(
xi − X

)(
yi −Y

)
(5)
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FP% = [1−

√√√√ ∑N
i=1|(xi − yi)|2

∑N
i=1
∣∣(xi − X

)∣∣2 ]× 100 (6)

NRMSD =

√
∑N

i=1(xi − yi)
2

N
/Y (7)

SE =
∑N

i=1(yi − xi)

N
(8)

SSE =
∑N

i=1(yi − xi)
2

N
(9)

SSMMRE =
∑N

i=1

(
max(yi ,xi)
min(yi ,xi)

− 1
)2

N
(10)

SSRE =

√√√√∑N
i=1

(
yi
xi
− 1
)2

N − 1
(11)

3. Materials and Methods

In this section, the description of the proposed intelligent interpreter of the TF test
results has been prepared.

GMDH Artificial Neural Networks

The GMDH Artificial Neural Networks algorithm was used to find a nonlinear rela-
tionship between data inputs and outputs [21]. GMDH is a self-organizing map in which,
based on its algorithm, the number of neurons in each layer and the number of layers are
defined automatically. An input relates to the output with the Volterra series as formulated
in Equation (12.) In this equation, xi is the ith feature of the input and a0, aij, aijk, . . . , are
equation variables estimated in the training process:

yn = a0 +
M

∑
i=1

aixi +
M

∑
i=1

M

∑
j=1

aijxixj +
M

∑
i=1

M

∑
j=1

M

∑
k=1

aijkxixjxk + . . . (12)

GMDH is a feed-forward network. It has an input, middle, and output layer with
one neuron that can be used for binary classification. The number of neurons in the first

layer is
(

n
2

)
in which n is the number of input features. Two features of data input are

fed to each neuron. In Figure 4, the first and second data input features fed the neuron.
The Volterra series can be rewritten as a series of second-order equations that pairs of data
features input to each of them, and G(x1, x2) equation is one of them [22,23].
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Equation (12) can be re-written for two inputs as follows:

G(x1, x2) = a0 + a1x1 + a2x2 + a3x1x2 + a4x2
1 + a5x2

2 (13)

Coefficients including a0 to a5 are estimated in the training process. The output of
G(x1, x2) equation is between zero and one, and a0 to a5 are initialized. The output of the
data is compared with the G(x1, x2) output, and the squared error is calculated. Based on
the principle of having the minimum error, equation variables are estimated.

In order to minimize the differences between pridicted values and actual ones,
Equations (14) and (15) can be derived:

ŷn = a0 + a1xin + a2xjn + a3xinxjn + a4x2
in + a5x2

jn (14)

e =
N

∑
n=1

(ŷn − yn)
2 (15)

where xin and xjn are the ith and jth features of the nth data. Moreover, ŷn is the output of
one random neuron whose inputs are xin and xjn in Equation (14).

Coefficients including a0 to a5 are initialized; and ŷn is calculated for n = 1 to N for
which N is the number of training data. In addition, yn is the actual label of the nth data.
Then, ŷn is compared with yn, and the neuron squared error denoted with e is calculated.

There is an aim to minimize the e value. Therefore, the ∂e
∂ai

= 0 equation should be
solved. The neuron variables are denoted with A = [a0, a1, a2, a3, a4, a5] and variables
coefficients are shown as the Y vector, where Y =

[
1, xin, xjn, x2

in, x2
jn

]
. The A vector is

estimated by calculating Equation (16). This equation is the result of Ordinary Least Squares
fitting. In this equation, X = YTY and B = (ynY)T . The obtained equation is calculated by
a computer, and all the neuron variables are estimated. The whole processes are repeated
for all neurons of the first layer. Each pair of features is the input of each neuron. Therefore,(

N f
2

)
neurons are located in the first layer and N f is the number of features:

N

∑
n=1

AX =
N

∑
n=1

B (16)

From
(

N f
2

)
neurons in the first layer, N f neurons remain, and others are removed.

Neurons validation loss is calculated with the validation dataset. Selected neurons have
the minimum validation losses. The average or top of validation losses of selected neurons
is considered the layer validation loss. In addition, layer training loss is calculated with the
training dataset. The next layer is created with the same process by regarding the previous
layer’s neurons’ outputs as the inputs. The creation of new layers is then continued.

Suppose the training loss of a new layer reaches a threshold value, or validation loss of
it does not decrease. In that case, the training process ends up selecting one neuron of the
last layer with the minimum validation loss. This process is shown in Figure 5. GMDH does
not need optimization of hyper-parameters and can find a nonlinear relationship between
inputs and outputs [24,25]. GMDH Artificial Neural Networks can solve regression or
classification problems. In this paper, GMDHs solve several multi-class classification
problems, and the results are presented. It should be noted that the One Hot Encoding
method has been employed to indicate the output class number, and therefore, the output
is not just zero or one; it is a vector of zeros and ones.
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4. Results

In this section, results of GMDH and MLP Neural Networks for interpreting FRA
results have been presented. The MLP Neural Networks has been widely used for medium
and large-scale applications. Due to the many applications of this method, its implemen-
tation has been carried out completely by the Google Brain Team and provided to users
by the Tensor-Flow framework. Selecting the number of layers, determining the num-
ber of neurons in each layer, the optimizer, the activation function, the learning rate, the
value of Momentum, the number of iterations of the training process, and many other
hyper-parameters must be set correctly. By correctly tuning such hyper-parameters, an
acceptable and suitable output can be obtained. However, the GMDH model has a different
performance, and by automatically calculating the number of neurons and determining the
number of layers to the optimal level, there is no need to select the learning rate and the
number of training iterations. However, if there are too many input features, it will take a
long time to train this network.

The accuracy of the MLP Neural Networks has been high in the DPT fault detection,
severity determination, and localization of the apparatus in different research studies.
Therefore, MLP Neural Networks can be tuned correctly to determine the severity and
location of the DSV fault with high accuracy. In addition, the results must be reproducible
to show the impact of selecting different datasets for testing the model. In this paper, 20% of
the dataset is selected randomly as the test data, and the rest is used to train the model
properly. In order to obtain more reliable accuracy results with appropriate variance among
the classification results, this process is repeated with thirty random state values, and, at the
end, a box plot of training, validation, and test accuracies is plotted. In addition, average
training, validation and test accuracy, corresponding confusion matrix, and ROC curve
are provided.

The advantage of the GMDH Artificial Neural Networks is that it does not need
hyper-parameter tuning. Therefore, if the GMDH performance is reasonable and similar to
the MLP, the time of the training process reduces significantly. In this paper, three GMDH
Artificial Neural Networks are used to determine the severity or location of the DSV fault.
Therefore, in the GMDH training process, three training and validation loss curves are
plotted for each GMDH. In the layer where GMDH has the minimum validation loss,
the GMDH variables are saved. MLP variables are saved in the same process based on
minimum validation loss. It is crucial to train both models well. The training, validation,
and test process are shown in Figure 6. The average training, validation, and test accuracies
for the thirty iterations are reported.
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4.1. Localization of DSV Faults

The performance of the MLP and GMDH models with the proposed method in
determining the DSV fault location is shown in Figures 7 and 8. The average test accuracy
of the MLP model in determining the fault location reaches 94.72% using the extracted
features from the real part of the TF with the Normalized Root Mean Square Deviation
(NRMSD) index. The GMDH model also localizes the fault with an average test accuracy
of 87.22% using the same features. These results are the highest average test accuracies
when models are trained with the extracted features. Additionally, the MLP model using
the phase part of the TF (direct FRA data without employing NIns) determines the fault
location with an accuracy of 99.17%, and the GMDH model determines the fault location
with an accuracy of 95.28% using the data of the same part of the TF. When the direct FRA
data are used to train the GMDH model, due to a large number of features and the fact that
training the GMDH model with these features increases the training time significantly, by
applying a dimension reduction method, called the Principal Component Analysis (PCA)
algorithm, the number of features is reduced to eight.



Energies 2022, 15, 8885 11 of 32
Energies 2022, 15, x FOR PEER REVIEW 12 of 34 
 

 

 

 

 

Figure 7. Evaluating the performance of the MLP model in determining the DSV fault location using 

direct data of FRA and the extracted features by statistical indices. 

Amplitude part of TF

Argument part of TF

Real part of TF

Imaginary part of TF

0

50

100

CCF CSD FP LCC

80.28 85.83 85.56 84.72

68.61
78.33 80.83 73.89

90.28 90.28 88.89 89.17

61.67
78.06 80.28 73.89

A
v

er
a

g
e 

te
st

 a
cc

u
ra

cy
(%

)

Index

Amplitude part of TF Argument part of TF Real part of TF Imaginary part of TF

Amplitude part of TF

Argument part of TF

Real part of TF

Imaginary part of TF

0

50

100

85.83 90.28
77.5 84.17

80.83

45.83

85
73.61

94.72

40

87.22 86.39

78.33

48.33

91.39

68.33

A
v

er
a

g
e 

te
st

 a
cc

u
ra

cy
(%

)

Index

Amplitude part of TF Argument part of TF Real part of TF Imaginary part of TF

Amplitude part of TF

Argument part of TF

Real part of TF

Imaginary part of TF

0

50

100

83.06 84.17
98.06

44.44

87.5 99.17

45.28 37.5

98.89

47.22

85 97.5

A
v

er
a

g
e 

te
st

 a
cc

u
ra

cy
(%

)

Index

Amplitude part of TF Argument part of TF Real part of TF Imaginary part of TF

Figure 7. Evaluating the performance of the MLP model in determining the DSV fault location using
direct data of FRA and the extracted features by statistical indices.
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Figure 8. Evaluating the performance of the GMDH model in determining the DSV fault location
using direct data of FRA and the extracted features by statistical indices.
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4.2. Determining the Severity of DSV Faults

The performance of the MLP and GMDH models with the proposed method in the
determination of the DSV fault severity is shown in Figures 9 and 10. The average test
accuracy of the MLP model in determining the fault severity reaches 91.39% using the
extracted features from the phase part of the TF with the NRMSD index. The GMDH model
also determines the severity of the fault with an average test accuracy of 85.56% using the
same features. Such results are the highest average test accuracies when models are trained
with the extracted features. Furthermore, the MLP model using the data of the real part of
the TF (direct FRA data without employing NIns) determines the fault severity with an
accuracy of 78.61%, and the GMDH model determines the fault location with an accuracy
of 77.78% using the data of the same part of the TF. Although MLP and GMDH models in
determining the DSV location had high accuracies when they are trained with raw FRA
data without employing NIns, they cannot determine the severity of DSV faults using the
raw FRA data. In this regard, the models should be trained with the extracted features with
employing NIns to determine the severity of DSV faults with high accuracies.
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Figure 9. Evaluating the performance of the MLP model in the determination of the DSV fault
severity using direct data of FRA and the extracted features by statistical indices.
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Figure 10. Evaluating the performance of the GMDH model in the determination of the DSV fault
severity using direct data of FRA and the extracted features by statistical indices.

5. Discussion

The main aim of this paper is to localize the DSV fault and determine its severity in a
DPT. For that reason, such a fault has been investigated with six severity in ten locations.
Based on the amplitude and phase parts of the frequency responses, it is found that there
are resonance and anti-resonance in 5–250, 250–500, 500–750, and 750–1000 kHz frequency
sub-intervals. Six severity and ten locations of DSV faults are categorized into three severity
and three locations. Using ten statistical indices, which are used in many research studies,
four features are extracted from frequency sub-intervals. The extracted features have
different sensitivities to the DSV faults using different parts of the TF data. The part of the
TF for which each index has the most sensitivity is defined in Table 1. In this regard, the
features are extracted from whole frequency intervals. Usually, the extracted features from
the real part of the TF have the most sensitivity to the occurrence of the DSV fault. Feature
variations based on the severity of the DSV in different locations for the considered indices
are shown in Figures 11–20.

Table 1. The part of the TF whose features extracted from its data are most sensitive to the occurrence
of the DSV fault.

Index Part of the TF

CCF real
CSD imaginary
FP real

LCC real
NRMSD real

SD cannot be defined
SE phase

SSE imaginary
SSMMRE real

SSRE real
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MLP and GMDH models have the maximum average accuracies in localization of
the DSV fault when trained with the extracted features from the real part of the TF by the
NRMSD index. Figures 21 and 22 show the training, validation, and test confusion matrices
and ROC curves. The confusion matrix provides accuracy, precision, recall, and F1-score
values. A box plot of the training, validation, and test accuracies in the thirty iterations is
also provided.
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Figure 21. MLP performance in localization of the DSV fault using the extracted features from the
real part of the TF using NRMSD index: (a) training confusion matrix; (b) training ROC curve;
(c) validation confusion matrix; (d) validation ROC curve; (e) test confusion matrix; (f) test ROC
curve; (g) box plot of the training, validation, and test accuracies in thirty iterations.
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Figure 22. GMDH performance in localization of the DSV fault using the extracted features from
the real part of the TF using NRMSD index: (a) training confusion matrix; (b) training ROC curve;
(c) validation confusion matrix; (d) validation ROC curve; (e) test confusion matrix; (f) test ROC
curve; (g) box plot of the training, validation, and test accuracies in thirty iterations.
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The MLP model is trained with an average accuracy of 100%. The average validation
and test accuracies are 100% and 94.72%, respectively. In the box plot of the test accuracies,
the maximum value is 100%, and the minimum value is close to 80%. The lower and
upper quartiles are close to 90% and 100%, respectively. The GMDH model is trained with
an average accuracy of 98.01%. The average validation and test accuracies are 100% and
87.22%, respectively. In the box plot of the test accuracies, the maximum value is 100%, and
the minimum value is close to 70%. The lower and upper quartiles are close to 80% and
90%, respectively. Therefore, both GMDH and MLP models can localize the DSV fault with
a maximum test accuracy of 100%. In the box plot of test accuracies, minimum, lower, and
upper quartile values of the MLP model are 10% above the GMDH results. It is shown that,
if the MLP and GMDH models are trained with the phase part of the TF data, they can
localize the DSV fault with high average test accuracies. Therefore, training, validation,
and test confusion matrices and box plots when models are trained with the phase part
of the TF are shown in Figures 23 and 24, respectively. It must be noted that the training
process time is doubled, leading to higher average test accuracies.
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Figure 23. MLP performance in localization of the DSV fault using data of phase part of the TF:
(a) training confusion matrix; (b) training ROC curve; (c) validation confusion matrix; (d) validation
ROC curve; (e) test confusion matrix; (f) test ROC curve; (g) box plot of the training, validation, and
test accuracies in thirty iterations.
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Figure 24. GMDH performance in localization of the DSV fault using data of phase part of the TF:
(a) training confusion matrix; (b) training ROC curve; (c) validation confusion matrix; (d) validation
ROC curve; (e) test confusion matrix; (f) test ROC curve; (g) box plot of the training, validation, and
test accuracies in thirty iterations.

The results of training models with the data of the phase part of the TF reveal that the
MLP model is trained with an average accuracy of 100%. The average validation and test
accuracies are also 100% and 99.17%, respectively. The minimum test accuracy in the box
plot of the test accuracies is close to 92%. The lower quartile, upper quartile, and maximum
values are 100%. The GMDH model is trained with an average accuracy of 99.39%. The
average validation and test accuracies are 100% and 95.28%, respectively. In the box plot of
the test accuracies, the minimum test accuracy is close to 85%. The lower quartile is above
90%, and the upper quartile and maximum values are 100%. Therefore, both GMDH and
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MLP models can localize the DSV fault with a maximum test accuracy of 100%. In the box
plot of test accuracies, it is evident that the GMDH model can track MLP results very well
in localization of the DSV fault.

It is also found that that, if the NRMSD index is used to extract features from data of
the real part of the TF and models are trained with the features, the location of the DSV
fault is determined with a higher accuracy. Additionally, in the box plots, it is shown that,
if the data of the phase part of the TF is used to train models, the minimum lower quartile
of test accuracies increases, but the time of the training process is doubled. The GMDH
localize the fault with high accuracies near the MLP results with no need for parameter
tuning. Therefore, GMDH can reach the MLP results faster.

Figures 7 and 8 show the extracted features from data of different parts of the TF using
different NIns. The MLP and GMDH models are trained with such features and localize
the DSV fault with varying test accuracies. The best results are chosen and their confusion
matrices, ROC curves, and box plots are shown. The test accuracies for each model, data
of part of the TF, and index are also averaged. The results are shown in Figure 25. It is
evident that the average accuracy of the MLP and GMDH models in localization of DSV
fault is close to 75%. The average performances of models when they are trained with the
extracted features by the NRMSD index and raw FRA data are 83.64% and 95.66%, which
is better than using other NIns. In addition, considering the extracted features from the
data of the amplitude part of the TF, the average performance of models is 83.32%, which is
higher than using the data of other parts of the TF.
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Figure 25. Average performance of models, using indices and parts of the TF in localization of the
DSV fault: (a) average performance of the GMDH and MLP models; (b) average performance when
models are trained with the extracted features by different indices; (c) average performance of models
when the extracted features are from different parts of the TF.

MLP and GMDH models have the maximum average accuracies in determining the
severity of the DSV fault when trained with the extracted features from the phase part
of the TF by the NRMSD index. Figures 26 and 27 demonstrate the training, validation,
and test confusion matrices and ROC curves. A box plot of the training, validation, and
accuracies in the thirty iterations is also provided.
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Figure 26. MLP performance in determining the severity of the DSV fault using the extracted fea-
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Figure 26. MLP performance in determining the severity of the DSV fault using the extracted features
from the phase part of the TF using the NRMSD index: (a) training confusion matrix; (b) training
ROC curve; (c) validation confusion matrix; (d) validation ROC curve; (e) test confusion matrix;
(f) test ROC curve; (g) box plot of the training, validation, and test accuracies in thirty iterations.
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Figure 27. GMDH performance in determining the severity of the DSV fault using the extracted
features from the phase part of the TF using NRMSD index: (a) training confusion matrix; (b) training
ROC curve; (c) validation confusion matrix; (d) validation ROC curve; (e) test confusion matrix;
(f) test ROC curve; (g) box plot of the training, validation, and test accuracies in thirty iterations With
regard to determining DSV severity, the MLP model is trained with an average accuracy of 99.14%.
The average validation and test accuracies are 98.23% and 91.39%, respectively. In the box plot of the
test accuracies, the maximum value is 100%, and the minimum value is close to 85%. The lower and
upper quartiles are close to 90% and 100%, respectively. The GMDH model is trained with an average
accuracy of 93.17%. The average validation and test accuracies are 99.65% and 85.56%, respectively.
In the box plot of the test accuracies, the maximum value is 100%, and the minimum value is close to
75%. The lower and upper quartiles are close to 80% and 90%, respectively. Therefore, both GMDH
and MLP models can determine the severity of the DSV fault with a maximum test accuracy of 100%.
In the box plot of test accuracies, minimum, lower, and upper quartile values of the MLP model are
10% above the GMDH results.
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It is also noted that, if the NRMSD index is used to extract the features from data of
the phase part of the TF and models are trained with the obtained features, the severity
of the DSV fault is determined with high accuracy. The GMDH determines the severity
of the fault with high accuracies near the MLP result with no need for parameter tuning.
Therefore, GMDH can reach the MLP results faster. The accuracy of models in localization
of the DSV fault is higher than determining the severity.

Figures 9 and 10 show the extracted features from the data of different TF parts using
different NIns. The MLP and GMDH models are trained with these features and determine
the severity of the DSV fault with varying test accuracies. The best results are selected and
their confusion matrices, ROC curves, and box plots are shown. The test accuracies for
each model, the data of part of the TF, and index are all averaged. The results are shown in
Figure 28. The results reveal that the average accuracy of the MLP and GMDH models in
determining the severity of DSV fault is close to 75% and 70%, respectively. The average
performance of models when they are trained with the extracted features by the NRMSD
index is 83.65%, which is better than using other NIns. Furthermore, when the extracted
features from the data of amplitude part of the TF, the average performance of models is
78.3%, which is higher than using the data of other parts of the TF.

Energies 2022, 15, x FOR PEER REVIEW 30 of 34 
 

 

85.56%, respectively. In the box plot of the test accuracies, the maximum value is 100%, and the 

minimum value is close to 75%. The lower and upper quartiles are close to 80% and 90%, respec-

tively. Therefore, both GMDH and MLP models can determine the severity of the DSV fault with a 

maximum test accuracy of 100%. In the box plot of test accuracies, minimum, lower, and upper 

quartile values of the MLP model are 10% above the GMDH results. 

It is also noted that, if the NRMSD index is used to extract the features from data of 

the phase part of the TF and models are trained with the obtained features, the severity of 

the DSV fault is determined with high accuracy. The GMDH determines the severity of 

the fault with high accuracies near the MLP result with no need for parameter tuning. 

Therefore, GMDH can reach the MLP results faster. The accuracy of models in localization 

of the DSV fault is higher than determining the severity. 

Figures 9 and 10 show the extracted features from the data of different TF parts using 

different NIns. The MLP and GMDH models are trained with these features and deter-

mine the severity of the DSV fault with varying test accuracies. The best results are se-

lected and their confusion matrices, ROC curves, and box plots are shown. The test accu-

racies for each model, the data of part of the TF, and index are all averaged. The results 

are shown in Figure 28. The results reveal that the average accuracy of the MLP and 

GMDH models in determining the severity of DSV fault is close to 75% and 70%, respec-

tively. The average performance of models when they are trained with the extracted fea-

tures by the NRMSD index is 83.65%, which is better than using other NIns. Furthermore, 

when the extracted features from the data of amplitude part of the TF, the average perfor-

mance of models is 78.3%, which is higher than using the data of other parts of the TF. 

 

(a) 

 

(b) 

75.2

69.74

66

68

70

72

74

76

MLP GMDHA
v

er
a

g
e 

T
es

t 
A

cc
u

ra
cy

 (
%

)

Model

71.04
76.6

80.21
73.82

83.65

68.02 67.26

78.3

51.98

72.47 73.78

0

10

20

30

40

50

60

70

80

90

A
v

er
ag

e 
T

es
t 

A
cc

u
ra

cy
 (

%
)

Index

Figure 28. Cont.



Energies 2022, 15, 8885 29 of 32

Energies 2022, 15, x FOR PEER REVIEW 31 of 34 
 

 

 

(c) 

Figure 28. Average performance of models, using indices and parts of the TF in determining the 

severity of the DSV fault: (a) average performance of the GMDH and MLP models; (b) average per-

formance when models are trained when the extracted features are from different indices; (c) aver-

age performance of models when the extracted features are from different parts of the TF. 

Some additional information for further consideration of the model is provided in 

Table 2. The average time of training features and raw FRA data to determine the severity 

of the DSV fault is less than localization. In addition, tuning the hyper-parameters of the 

MLP is more time-consuming than the tuning of the hyper-parameters of the GMDH. The 

stop factor of training condition (epsilon value) for the GMDH is set to 0.001. The MLP 

model has two hidden layers with six and four neurons, respectively. The activation func-

tion of neurons is the tangent hyperbolic. The learning rate, momentum, and decay values 

of the SGD optimizer are set to 0.015, 0.9, and 0.005, respectively. 

Table 2. Average time of training models with extracted features and raw FRA data. 

Models 
Determination of 

Location OR Severity 

Average Time of Train-

ing Process Using NIns 

Average Time of Train-

ing Process Using Raw 

FRA Data 

GMDH 
Location 19.56 s 50.62 s 

Severity 7.9 s 29.62 s 

MLP 
Location 11.22 s 28.89 s 

Severity 9.85 s 11.02 s 

It should be noted that, while comparing other machine learning methods, such as 

SVM utilized to identify DSV faults in [26], with the results of ANNs in this paper, the 

MLP outperforms. It can be concluded that utilizing the NRMSD indicator to feed MLP 

results in the highest accuracy values in localizing and detecting the intensity of DSV 

faults. 

6. Conclusions 

Data analysis is a vital step in monitoring the condition of electric power components 

in modern power systems. Distribution Power Transformers (DPTs) installed in modern 

networks play a prominent role in delivering electricity to the customers; therefore, their 

health assessment should be considered. The Frequency Response Analysis (FRA) 

method, which is also known as the Transfer Function (TF) technique, is a widely accepted 

technique in the maintenance and monitoring of DPTs. Nevertheless, the operators cannot 

access reliable and precise codes to interpret the TF measurements and test results. In this 

paper, the application of Group Method of Data Handling (GMDH)-based intelligent in-

terpreter of the TF test results is investigated. In addition, sensitivity analysis of all TF 

78.3

71.01

74.87

65.68

58
60
62
64
66
68
70
72
74
76
78
80

Amplitude part of

TF

Argument part of

TF

Real part of TF Imaginary part of

TF

A
v

er
a

g
e 

T
es

t 
A

cc
u

ra
cy

 (
%

) 

Data

Figure 28. Average performance of models, using indices and parts of the TF in determining the
severity of the DSV fault: (a) average performance of the GMDH and MLP models; (b) average per-
formance when models are trained when the extracted features are from different indices; (c) average
performance of models when the extracted features are from different parts of the TF.

Some additional information for further consideration of the model is provided in
Table 2. The average time of training features and raw FRA data to determine the severity of
the DSV fault is less than localization. In addition, tuning the hyper-parameters of the MLP
is more time-consuming than the tuning of the hyper-parameters of the GMDH. The stop
factor of training condition (epsilon value) for the GMDH is set to 0.001. The MLP model
has two hidden layers with six and four neurons, respectively. The activation function of
neurons is the tangent hyperbolic. The learning rate, momentum, and decay values of the
SGD optimizer are set to 0.015, 0.9, and 0.005, respectively.

Table 2. Average time of training models with extracted features and raw FRA data.

Models Determination of
Location OR Severity

Average Time of
Training Process

Using NIns

Average Time of
Training Process Using

Raw FRA Data

GMDH
Location 19.56 s 50.62 s
Severity 7.9 s 29.62 s

MLP
Location 11.22 s 28.89 s
Severity 9.85 s 11.02 s

It should be noted that, while comparing other machine learning methods, such as
SVM utilized to identify DSV faults in [26], with the results of ANNs in this paper, the MLP
outperforms. It can be concluded that utilizing the NRMSD indicator to feed MLP results
in the highest accuracy values in localizing and detecting the intensity of DSV faults.

6. Conclusions

Data analysis is a vital step in monitoring the condition of electric power components
in modern power systems. Distribution Power Transformers (DPTs) installed in modern
networks play a prominent role in delivering electricity to the customers; therefore, their
health assessment should be considered. The Frequency Response Analysis (FRA) method,
which is also known as the Transfer Function (TF) technique, is a widely accepted technique
in the maintenance and monitoring of DPTs. Nevertheless, the operators cannot access
reliable and precise codes to interpret the TF measurements and test results. In this
paper, the application of Group Method of Data Handling (GMDH)-based intelligent
interpreter of the TF test results is investigated. In addition, sensitivity analysis of all
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TF parts (real, phase, imaginary, and amplitude components) considering ten suitable
Numerical Indicators (NIns), i.e., Spectrum Deviation (SD), Cross Correlation Factor (CCF),
Comparative Standard Deviation (CSD), Lin’s Concordance Coefficient (LCC), Fitting
Percentage (FP), Normalized Root Mean Square Deviation (NRMSD), Sum of Error (SE),
Sum of Squared Error (SSE), Sum of Squared Max-Min Ratio Error (SSMMRE), and Sum
of Squared Ratio Error (SSRE) indices, is conducted. In the preprocessing stage of the TF
datasets, a feature extraction algorithm that applies NIns to four frequency sub-bands has
been proposed, leading to saving time in determining the severity and location of Disk-
Space Variation (DSV) deformations. On average, using the NRMSD index, in comparison
to the other NIns, leads to having high accuracy of 84.64% in determining the DSV location.
Based on the average test accuracy of the intelligent interpreters utilizing datasets of
various TF components, the amplitude part of the TF with 83.32% accuracy on average has
resulted in obtaining the highest accuracy. In determining the severity of DSV deformations,
utilizing the NRMSD index also made the intelligent identifiers interpret the TF results
with the highest average accuracy of 83.65% considering all ten NIns. It should be noted
that models are trained with extracted features, and all locations are considered, and all
extracted features are simultaneously taken into account. It is noticed that there is no linear
relationship between extracted features and DSV fault intensity or location. As a result,
the role of Neural Networks becomes essential. The MLP and GMDH models can find
such a nonlinear relationship accurately with the use of the NRMSD index. Moreover, MLP
and GMDH outperform the other machine learning methods, such as SVM, in localizing
and identifying the severity of DSV faults. Using the amplitude part of the TF results as
input to identify DSV severity leads to outperforming the other parts with an average test
accuracy of 78.3%. Finally, in order to clarify the future scope of this research study, the
following items can be considered:

â Using AI-based interpreters to identify simultaneous winding faults, such as de-
tecting the simultaneous occurrence of RD and DSV faults with various intensities
and locations;

â Considering the effects of adjacent substation devices, such as Current Transformers
(CTs), Potential Transformers (PTs), and other phases of a three-phase transformer on
the phase in which the FRA test is performed for online monitoring.
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Nomenclature

SD Spectrum Deviation
CCF Cross Correlation Factor
CSD Comparative Standard Deviation
LCC Lin’s Concordance Coefficient
FP Fitting Percentage
NRMSD Normalized Root Mean Square Deviation
SE Sum of Error
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SSE Sum of Squared Error
SSMMRE Sum of Squared Max-Min Ratio Error
SSRE Sum of Squared Ratio Error
DSV Disk-Space Variation
DD Double-Disk
GMDH Group Method of Data Handling
NIns Numerical Indicators
DPT Distribution Power Transformer
FRA Frequency Response Analysis
TF Transfer Function
ANN Artificial Neural Network
SVM Support Vector Machine
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