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ABSTRACT
To maintain high availability in the face of changing network condi-
tions, network operators must quickly detect, identify, and react to
events that cause network disruptions. One way to accomplish this
goal is to monitor routing dynamics, by analyzing routing update
streams collected from routers. Existing monitoring approaches
typically treat streams of routing updates from different routers as
independent signals, and report only the “loud” events (i.e., events
that involve large volume of routing messages). In this paper, we
examine BGP routing data from all routers in the Abilene backbone
for six months and correlate them with a catalog of all known dis-
ruptions to its nodes and links. We find that many important events
are not loud enough to be detected from a single stream. Instead,
they become detectable only when multiple BGP update streams
are simultaneously examined. This is because routing updates ex-
hibit network-widedependencies.

This paper proposes using network-wide analysis of routingin-
formation to diagnose (i.e., detect and identify) network disrup-
tions. To detect network disruptions, we apply a multivariate anal-
ysis technique on dynamic routing information, (i.e., update traffic
from all the Abilene routers) and find that this technique candetect
every reported disruption to nodes and links within the network
with a low rate of false alarms. To identify the type of disruption,
we jointly analyze both the network-wide static configuration and
details in the dynamic routing updates; we find that our method can
correctly explain the scenario that caused the disruption.Although
much work remains to make network-wide analysis of routing data
operationally practical, our results illustrate the importance and po-
tential of such an approach.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Internetworking;
C.2.3 [Computer Communication Networks]: Network opera-
tions – network management

General Terms
Algorithms, Management, Reliability, Security
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anomaly detection, network management, statistical inference
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Figure 1: Both internal and external network disruptions cause corre-
lated routing changes at groups of routers within a single network.

1. Introduction
To achieve acceptable end-to-end performance in the face ofdy-

namic network conditions (e.g., traffic shifts, link failures, security
incidents, etc.), network operators must keep constant watch over
the status of their networks. Network disruptions—changesin net-
work conditions that are caused by underlying failures of routing
protocols or network equipment—have a significant impact onnet-
work performance and availability. Operators today have myriad
datasets (e.g., NetFlow, SNMP, “syslogs”) at their disposal to mon-
itor for network disruptions, all of which have proven difficult to
use for extracting actionable events from “background noise”. Op-
erators have had particular trouble usingrouting datato detect and
pinpoint network disruptions, even though analyzing routing data
holds promise for exposing many important network reachability
failures. This missed opportunity results from the fact that routing
data is voluminous, complex and noisy, which makes the mining of
network disruptions challenging.

Existing approaches for inspecting routing dynamics in a single
network (e.g., [25, 30]) primarily analyze each routing stream with-
out considering the dependencies across multiple routing streams
that arise from the network configuration and topology. Thisap-
proach leaves much room for improvement, because any informa-
tion about network disruptions that exists in a single routing update
stream is obscured by a massive amount of noise. Furthermore, no
network model can explain the temporal relationships amongup-
dates in a single routing stream, since the updates have little (and
often no) temporal dependency. As such, these techniques are un-
able to capture typical network conditions to recognize disruptions,
and therefore rely on fixed thresholds to detect only those events
that cause a large number of updates. But, as we will see in this pa-
per, many important operational events donot necessarily generate
a large number of updates at a single router. To detect such opera-
tional events, it is necessary to first continuously monitorandlearn
the typical routing dynamics of the network; deviations from this
typical behavior indicate a routing incident worth investigating.

This paper proposes a new approach to learning typical routing



dynamics by explicitly harnessing thenetwork-wide dependencies
that are inherent to the routing updates seen by routers in a single
network. Groups of updates from different routers, when analyzed
together, reflect dependencies arising from the network topology
and static routing configuration: routers’ locations in thenetwork
topology relative to each other, how they are connected to one an-
other, the neighboring networks they share in common, etc. For ex-
ample, Teixeiraet al. observed that the failure of a single link inside
a network may result inmultiple routers simultaneously switching
“egress routers” (i.e., the router used to exit the network) [28] (Fig-
ure 1(a)); similarly, the failure of a single BGP peering session
results in similar correlated disruptions across the network (Fig-
ure 1(b)). Because of these dependencies, network disruptions can
appear significant when the effect of the event is viewed across all
of the routers in the network, even if the number of updates seen by
any single router is small.

This paper presents the first known study of network-wide corre-
lation of routing updates in a single network, demonstratesthat de-
tection schemes should incorporate network-wide analysisof rout-
ing dynamics, and explores the extent to which multivariateanal-
ysis could expose these events. Table 1 summarizes the major
findings of this paper, which presents the following contributions:

First, we study how actual, documented network disruptions
are reflected in routing data. Several previous studies examine
how BGP routing updates correlate with poor path performance [5,
13, 29], but these studies do not correlate BGP instability with
“ground truth”, known disruptions (e.g., node and link failures) in
an operational network. Our work examines howknown, docu-
mented network disruptionsare reflected in the BGP routing data
within that network. We perform a joint analysis of documented
network component failures in the Abilene network and Abilene
BGP routing data for six months in 2006 and find that most net-
work disruptions are reflected in BGP data in some way, though
often not via high-volume network events.

Second, we explore how network-wide analysis can expose
classes of network disruptions that are not detectable withex-
isting techniques. After studying how known disruptions appear
in BGP routing data, we explore how applying multivariate analy-
sis techniques, which are specifically designed to analyze multiple
statistical variables in parallel, could better detect these disruptions.
We explore how applying a specific multivariate analysis technique,
Principal Component Analysis (PCA), to routing message streams
across the routers in a single network can extract network events
that existing techniques would fail to detect.

Third, we present new techniques for combining analysis of
routing dynamics with static configuration analysis to localize
network disruptions. In addition to detecting failures, we develop
algorithms to help network operators identify likely failure scenar-
ios. Our framework helps network operators explain the source of
routing faults by examining the semantics of the routing messages
involved in a group of routing updates in conjunction with a model
of the network, derived from static configuration analysis.This
hybrid analysisapproach is the first known framework for using a
combination of routing dynamics and static routing configuration to
help operators detect and isolate the source of network disruptions.

Previous work has taken on the audacious goal of Internet-wide
“root cause analysis” [3, 8, 31], but all of these techniqueshave
faced two fundamental limitations: lack of information in any
single routing stream and poor knowledge of global router-level
topology. In this work, we recommend revisiting the use of BGP
routing data within a single network using multiple data streams,
where correlationsacrossstreams can provide additional informa-
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Many network disruptions cause only low vol-
umes of routing messages at any single router.

§3.2, Fig. 5

About 90% of local network disruptions are vis-
ible in BGP routing streams.
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The number of updates resulting from a disrup-
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About 75% of network disruptions result in near-
simultaneous BGP routing messages at two or
more routers.
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The PCA-based subspace method detects 100%
of node and link disruptions and about 60% of
disruptions to peering links, with a low rate of
false alarms.
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The identification algorithm based on hybrid
static and dynamic analysis correctly identifies
100% of node disruptions, 74% of link disrup-
tions, and 93% of peer disruptions.
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Table 1: Summary of major results.

tion about the nature of a failure, and access to network configura-
tions can provide valuable information about the network topology
(e.g., the routers that have connections to a particular neighbor-
ing network). Our goal is not primarily to evaluate or optimize
a specific multivariate analysis technique (e.g., PCA), but rather
(1) to explore the nature of how disruptions in a single network
are reflected network-wide and temporally in BGP routing data,
(2) to argue in general for the utility of using network-wideanaly-
sis techniques for improving detection of network disruptions and
(3) to demonstrate how, once detected, network models basedon
static routing configurations can help operators detect andisolate
the cause of these disruptions.

Many hurdles must be surmounted to make our methods practi-
cal, such as (1) building a system to collect and process distributed
routing streams in real time; and (2) determining the features in
each signal that are most indicative of high-impact disruptions (we
use number of updates, as most existing methods do, but we be-
lieve that more useful features may exist). Rather than providing
the last word on analysis of routing dynamics, this paper opens
a new general direction for analyzing routing data based on the
following observation:The structure and configuration of the net-
work gives rise to dependencies across routers, and any analysis
of these streams should be cognizant of these dependencies,rather
than treating each routing stream as an independent signal.In ad-
dition, we believe that our combined use of static and dynamic anal-
ysis for helping network operators identify the cause and severity
of network disruptions represents an important first step inbridg-
ing the gap between static configuration analysis and monitoring of
routing dynamics.

2. Background
We now present necessary background material. We first de-

scribe the general problems involved in using routing dynamics
to detect and identify network disruptions. Then, we explain how
changes to conditions within a single network can give rise to rout-
ing dynamics that exhibit network-wide correlations across multi-
ple routing streams.

2.1 Problem Overview and Approach
Diagnosis entails two complementary approaches:proactivetech-
niques, which analyze the network configuration (either stati-
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Figure 2: Overview of the approach to detection and identification of
network disruptions.

cally [6] or with a simulator [26]) before it is deployed; andreactive
techniques, which observe the behavior of a running network(e.g.,
through traffic data or routing data) and alert operators to actionable
problems. Proactive analysis allows a network operator to analyze
the network configurations offline and determine the effectsof a set
of configurations before running them on a live network [6], but it
provides no mechanism for helping operators detect and identify
problems in running network. To effectively detect, identify, and
eradicate faults on a running network, operators must use a com-
bination of proactive and reactive detection techniques. This paper
focuses on how routing data can be used forreactive detection and
identification ofnetwork disruptions as summarized in Figure 2.

Detection with network-wide analysis of routing dynamics.We
first collect the set of routing updates from every router in asingle
domain and perform a multivariate analysis on this set of timeseries
data to identify disruptions. We show in Sections 4 and 5 thatmany
network disruptions cause events that exhibit network-wide corre-
lations in BGP routing streams; multivariate analysis helps identify
the events that appear simultaneously in many routing streams but
do not appear significant from any single routing stream.

Identification with network-wide hybrid analysis. After detect-
ing failures in groups of routing streams, we analyze the nature of
these changes by examining the semantics of the routing messages
in the context of the model of the network configuration. Thispro-
cess allows us to extract information from the network aboutthe
BGP-level connectivity both inside the network and betweenthe
local network and its neighbors (e.g., which routers in the network
connect to a given neighboring AS).

As we describe in more detail in Section 2, previous efforts to an-
alyze routing dynamics have typically conflated these two tasks by
assuming that noise in routing data always implies the existence of
a network disruption and applying inference techniques to groups
of routing messages to help localize failure causes. In contrast, we
address these two problems separately.

2.2 Detection with BGP Routing Data
Both traffic and routing data provide information to networkop-

erators about the performance of a running network. Although
traffic data often provides more direct information about the per-
formance of individual traffic flows as they traverse the network,
routing data can both provide information about systemic network
disruptions that affect many traffic flows and offer clues as to whya
particular disruption is occurring. In other words, routing can assist
operators in both detection and identification.

Routing data in ISP networks typically comprises both BGP and
Interior Gateway Protocols (IGP) (e.g., OSPF [21], IS-IS [24]) data.
Although both types of routing protocols offer informationabout
how network conditions change, IGP routing data typically only
contains information about internal topology changes; BGProut-
ing data, on the other hand, typically reflects both internalnetwork

changes and changes on the network periphery (which exhibits
more instability, as we will describe in more detail in Section 3.1).

Unfortunately, routing data—and, in particular, data fromthe
BGP—is notoriously difficult to use for these purposes because
(1) it is noisy (i.e., many routing messages reflect changes in net-
work conditions but not actualactionablenetwork events), and
(2) the routing messages themselves carry little or no information
about the source of a problem. Internet-wide root cause analysis
has proven difficult (if not impossible), as we discuss in Section 8.3.

2.3 Single-Network BGP Routing Dynamics
This section provides an overview of single-network routing dy-

namics. We offer the reader intuition for why routing data should
exhibit network-wide correlations upon changes in networkcondi-
tions such as link, node, or protocol session failures. We consider
three types of disruptions that are local to a single network:

1. Link. A link disruption that is internal to the network, as
shown in Figure 1(a), can result from the physical failure ofa
link (or a component on either end of the link), maintenance or
re-provisioning, or the disruption of the routing protocols running
over that link (i.e., the internal routing protocol or internal BGP ses-
sion). These failure modes can cause different types of correlated
events to occur. For example, Teixeiraet al. observed that changes
to the internal topology due to either link failures or changes in link
weights may cause BGP routers to some destinations to changethe
router that they use to exit the network to one or more destinations
(i.e., the egress) [28]. Thenumberof routing updates caused by a
link disruption will vary depending on the session that is disrupted
and the number of destinations (i.e., IP prefixes) being routed over
that session. However, link disruptions will typically cause cor-
relatedevents, because they cause many routers in the network to
change egress routers.

2. Periphery (“peer”). Disruptions that occur at the edge of the
network (i.e., on sessions or links that connect the local network
to neighboring networks) can affect how routers inside the net-
work route traffic to external destinations. For example, Figure 1(b)
shows an example involving a single link failure that causesmul-
tiple routers in the local network to change the egress router that
they select en route to some destination. As with link failures, this
type of session failure causes correlated routing events across the
network, although, again, the absolute size of events may vary.

3. Node.As with link failures or disruptions, node disruptions can
cause many other routers in the network to re-route traffic both to
internal destinations and to external destinations (i.e., via different
egress routers). These disruptions are usually visible across mul-
tiple streams of BGP routing data. As we describe in Section 3,
unplanned outright node failures are relatively uncommon in the
Abilene backbone; we expect that node failures are relatively un-
common in general.

3. Data and Preliminary Statistics
This section describes the datasets we used for our study: (1) The

Abilene operational mailing list,abilene-ops-l, which docu-
ments known failures that have occurred on the network and isused
as “ground truth” to study how failures show up in BGP and later
for validation; (2) BGP updates from all but one of the routers in
the Abilene network, which we use to for detection; and (3) routing
configurations from the Abilene network, which we use for identifi-
cation. For the remainder of the paper, we limit our analysisto data
collected from the Abilene network because it is the only network
where we have access to all three of these data sets.



Figure 3: Classes of problems documented on the Abilene network op-
erations mailing list from January 1, 2006 to June 30, 2006 [1].

instability unavailability maintenance total
node 1 1 22 24
link 0 20 65 85
peer 14 82 77 173
total 14 104 164 282

Table 2: Classes of problems documented on the Abilene network op-
erations mailing list from January 1, 2006 to June 30, 2006.

3.1 Mailing List: Documented Failures
We analyzed documented network disruptions over a six-month

period, from January 1, 2006 to June 30, 2006. These documented
network disruptions affect three types of network elements—nodes
(“node”), internal links (“link”), and peripheral sessions to neigh-
boring networks (“peer”)—and can be further classified intothree
types: instability, unavailability and maintenance. Figure 3 shows
the distribution of different events reported via email to the Abi-
lene operational mailing list [1]; the reported events comprise both
customer-generated complaints and disruptions detected by the net-
work’s automated monitoring system. The mailing list contains
multiple emails referring to the same event (e.g., updating the sta-
tus of a previously reported event) and some other emails regarding
network policy. For each actual event, the start time and theend
time field in the email are manually entered into the tickets and
then reported to the mailing list. We count each event only once
and classify all duplicate emails into a class called “others”. 97
such events in the six-month period are in this category, which ac-
count for 26% of all emails sent to the list.

Table 2 illustrates how many disruptions of each class appeared
in our analysis.Instability describes problems where network ele-
ments go down and come up repeatedly in a short time period.Un-
availability means that the some network elements are completely
offline for some time period.Maintenancerefers to planned events.
In this case, operators send email before the event and perform the
action in the reserved time window. Because the time window re-
served for maintenance is always longer than the actual event, and
because these planned events are likely to be less disruptive, we
exclude maintenance problems from our analysis for much of the
remainder of the paper (except in Section 6.3, where we attempt to
explain various types of “false alarms”).

3.2 BGP Updates: Routing Dynamics
Abilene has 11 backbone routers. Each router maintains an in-

ternal BGP (iBGP) monitoring session to a collection machine. Be-
cause the updates are collected in this fashion, we cannot observe
every BGP update received at each router; rather, we only seethe
instances when a routerchangesits selected route to a destination.
This collection mode is a common way to collect BGP updates in
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Figure 5: BGP update timeseries data from January 2006 for4 Abilene
routers, with three examples of network disruptions circled.

many large ISPs and has been used to analyze BGP routing updates
in a single network in other studies [7, 28, 30].

We analyzed the ensemble of BGP update streams from Abi-
lene’s routers over six months in 2006, as summarized in Figure 4.
We analyzed data from all 11 Abilene backbone routers, with the
exception of the router in New York, NY, whose local BGP update
monitor failed on February 20, 2006 at 17:39:23 GMT and was not
restored for the remainder of our analysis. After collecting BGP
update streams for each router shown in Figure 4, we discretize the
updates into timebins of 10 minutes; this binsize is a small enough
time interval for us to manually inspect the detected events, and it
also reduces the likelihood that a BGP pathology resulting from a
single network disruption is spread across multiple timebins (pre-
vious work observed that most BGP routing pathologies resulting
from a single disruption do not last longer than 5 minutes) [14].

Figure 5 shows an example of BGP update timeseries from dif-
ferent routers in the Abilene network during January 2006. The cir-
cles on each timeseries mark three examples of documented disrup-
tions. These example disruptions illustrate a fundamentalproblem
with detecting network disruptions using BGP update data: Any
single stream of routing updates is extremely noisy; to makemat-
ters worse, the number of updates in any time interval does not
correlate well with the severity of the event (for reasons wediscuss
in Section 4.2). Simple threshold-based detection schemeswill not



detect disruptions accurately. Thus, the task at hand is tomineac-
tionable disruptions from this noisy and complex data.

3.3 Configuration Data: Network Model
Abilene makes its routing configurations publicly available. The

configurations allow us to obtain: (1) the total number of exter-
nal BGP sessions that the local network has with neighboringnet-
works; (2) the next-hop IP addresses and neighbor AS numbersof
the routers on the other side of those sessions; and (3) the number
of eBGP-speaking routers inside the local network and the next-
hop IP addresses of those routers. These configurations allow our
identification algorithm to incorporate information aboutthe net-
work configuration and topology that helps in identifying the type
of network disruptions detected. We describe our identification al-
gorithms in more detail in Section 6.

4. Characterizing Network Disruptions
No detection method that relies on BGP updates will detect

anomalies that are not visible in BGP. We believe that, before we
can even begin to design a method for detecting network disrup-
tions using BGP routing data, we must answer the following ques-
tion: To what extent do known, documented network disruptions
within a network appear in BGP routing data, as observed from
the perspective of that network?Our approach—which first an-
alyzes “ground truth”, documented cases of network disruptions
and then searches for evidence of these disruptions in BGP routing
data—marks a significant departure from previous work on analy-
sis of BGP data, which works in the opposite direction (i.e., first
observing BGP routing data under the assumption that “noise” in
routing data implies network disruptions and then searching for the
cause of the disruption). This study, on the other hand, analyzes the
email list that documents all problems happened in a local network
to determine whether these events are visible in BGP and, when
they are, how they are reflected in routing messages.

4.1 Most disruptions appear in BGP updates
We first attempted to determine whether the known, documented

network events on the Abilene network backbone (summarizedin
Figure 3 and Table 2) appeared in the BGP routing messages mea-
sured on the backbone network. Although this question appears
rather basic (and our results are not particularly surprising), it is
important to verify, because if network disruptions donot appear
in BGP, there is no hope of detecting network disruptions with any
detection mechanism. For example, previous work has noted that
only about half of observed end-to-end path disruptions in the wide-
area are ever reflected in BGP update messages [5], indicating that
wide-area “root cause analysis” of performance problems may miss
many important events. Some examples where wide-area network
disruptions and routing failures are not reflected in BGP arede-
scribed in detail in previous work [27].

In contrast, we wanted to gauge the effectiveness of using BGP
to detect and identify disruptionswithin a single network. To do
so, we analyzed each documented network disruption in the Abi-
lene backbone network on the Abilene operational mailing list [1]
and determined whether the documented event wasvisible in BGP.
We say that an event is visible in the following cases: (1) for“peer”
events, we should see the BGP updates around the time of the re-
ported event included BGP update messages with the neighborAS
of the peer reported to be involved in the disruption; (2) for“node”
events, we should see BGP updates on every other router that re-
place all the old routes through the node that failed; and (3)for
“link” events, we generally expect to see a noticeable increase in
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(a) Internal (i.e., node and link) events
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(b) Peripheral (i.e., peer) events

Figure 6: The number of BGP updates that occurred in any 10-minute
interval for events documented in the Abilene operational mailing
list [1]. Both internal and external events vary in maximum size over
several orders of magnitude, making it difficult to design a general de-
tection scheme based on a single threshold value.

the number of BGP updates at many routers, since these can cause
many routers in the network to change egress routers [28].

We find that both of the 2 node disruptions are visible in BGP;
all but one link event and all but 8 peer disruption events arevisi-
ble in BGP (Table 3 summarizes these statistics, which we revisit in
Section 5 when we discuss the detection of these events). Upon fur-
ther inspection, we found that these events were not visiblein IGP
routing data, either. Several events were also reflected in the BGP
routing data even though no IGP changes were reflected. This high
visibility makes sense, because most internal network disruptions
are likely to affect how traffic is routed to external destinations as
well. We suspect that the small number of events that are not vis-
ible in BGP may even be explainable by factors such as reporting
errors to the mailing list.

4.2 Disruption sizes are highly variable
Various factors can affect the number of routing messages that

result from a network disruption. When the disruption occurs at
the networkperiphery(e.g., when a peering session fails), the size
of the disruption is related to the number of routes being advertised
on that particular session. In the case of a node or link failure, the
number of BGP updates in the event is more indirect: It is related to
the number of routes for which other routers were using the failing
node or link to reach the destination. In both cases, the sizeof the
disruption will vary depending on the router in the network where
the disruption is being observed. For example, in the case ofa



peering session failure, the local router will see a disruption for all
routes on that session. For the same event, a monitor at a different
router will see only BGP updates both for which the border router
actually changed its route to the destination (causing thatrouter
to see updates) and for which that router also changed its route
(causing that router’s monitor to see updates).

We quantify the distribution of the BGP update bursts that re-
sult from network disruptions. Figure 6 shows, for each network
disruption, the maximum, median, and minimum number of up-
dates (quantized in 10-minute bins) received across the routers for
each documented disruption; each sub-figure shows this distribu-
tion for internal and external events, respectively.1 One point on
each of the lines (i.e., minimum, median, maximum) on a CDF rep-
resents a single network disruption, which may span multiple 10-
minute intervals. For example, for internal network eventsshown in
Figure 6(a), the “smallest” disruption (reading the “bottom” three
points from Figure 6(a)) triggered zero BGP updates at one ormore
of the routers, and a burst of 100 updates in some 10-minute inter-
val at one or more routers; the median burst size across routers for
that event in any 10-minute interval was 11 updates.

Figure 6 reveals interesting characteristics of how internal net-
work disruptions are reflected in BGP updates. First and foremost,
we note that network disruptions can be reflected in BGP update
“spikes” of sizes that span several orders of magnitude. Second,
for internal events, the maximum number of updates is much larger
than the median and minimum number of updates; this makes
sense: internal events are likely to cause many updates in a few
routers, but destinations for which routers are not using the failed
node or link will not be affected. For example, in the case of ex-
ternal events, 80% of network disruptions have a maximum burst
size of less than 1,000 updates at any single router; furthermore,
the maximum burst size at some router in the Abilene network for
any external network event spans about four orders of magnitude
(from 10 updates to more than 10,000 updates).

This wide variation in the size of a network disruption under-
scores the difficulty in detecting network disruptions solely on their
sizes. Fortunately, as the next section illustrates, thesenetwork dis-
ruptions typically exhibitnetwork-wide correlation—i.e., simulta-
neous disruptions at more than one router—regardless of their size.

4.3 Disruptions have spatial correlation
Network disruptions of all types almost always elicit some rout-

ing updates at more than one router across the network. Figure 7
shows examples of each of the three types of network disruptions
we study and how they appear in the BGP routing data. In each
case, as we show in the previous section, the actual number ofrout-
ing updates induced varies widely both across events (some events
cause thousands of updates, while others cause tens or hundreds),
and also across routers for any single event. In all three examples,
though,all routers experience some disruption at nearly the same
time. For the reasons described in Section 4.2, a single network
disruption may affect not only the routers that are directlyinvolved
but also other routers in the network.

We first study three specific examples of network disruptionsand
the resulting routing messages seen across the network:

Node disruption. Figure 7(a) shows the BGP updates that result at
each router in Abilene when the Abilene backbone router in Hous-
ton became unavailable on May 19, 2006 from 11:01 p.m. to 11:08
p.m.. The monitor at the router that experienced the failure, R3

1Because the number of node disruptions is so small (only two events oc-
curred over the six-month period of our analysis), we classify both node and
link disruptions internal events.
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Figure 8: Distribution of number of routers experiencing BGP updates
associated with a single network disruption.

(Houston), sees an abnormally large number of BGP messages;
other routers do not see such large spikes at this time, but all routers
witnesssomedisruption.

Link disruption. Figure 7(b) shows a disruption on the link be-
tween routers in Denver and Seattle, which became unavailable
from 4:56 p.m. to 5:03 p.m. on April 11, 2006. In this case, three
routers—R2 (Denver),R6 (Los Angeles) andR7 (Indianapolis)—
see about 600 routing changes, while the rest of the routers in Abi-
lene experience far fewer updates.

Peer disruption. Figure 7(c) shows a network disruption where
various peers connecting to the Abilene router in Sunnyvalelost
connectivity from 8:28 PM to 8:43PM on February 9, 2006. In
this case, three routers—R2 (Denver), R6 (Los Angeles) and
R7 (Indianapolis)—see two update spikes of about 400 updates
each and other routers see two small spikes of about 100 updates
each.We have shown three specific example network disruptions
where disruptions give rise to routing updates that are correlated
across routers; we find that the correlation of routing updates across
the routers in a single network holds in general. Figure 8 shows a
CDF of the number of routers at which any particular network dis-
ruption was “BGP visible” (as we defined in Section 4.1). When
we say a network disruption reported is not visible in BGP, then this
is equivalent to cases where the disruption is visible at zero routers.
Strikingly, more than 75% of network events are visible in BGP at
more than one router in the network. This high occurrence of corre-
lationacrossrouters suggests that performing multivariate analysis
over collections of routing streams in a single network may be ef-
fective for detecting network disruptions; we explore the feasibility
of this approach in the next section.

5. Detecting Network Disruptions
The previous section demonstrated that network disruptions typ-

ically exhibit network-wide correlation across streams ofBGP up-
date messages, even though individual streams of update messages
can vary in size depending on the actual network element affected
by the disruption and the number of destinations (i.e., IP prefixes)
being routed through that network element.

5.1 Network-Wide Analysis
The results from Section 4 indicate that known network disrup-

tions do appear in routing data as correlated update streams. Many
multivariate analysis techniques can be used to extract such depen-
dencies from the ensemble of update timeseries. One such tech-
nique is thesubspace method. The subspace method draws on ideas
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Figure 7: Examples of how three types of network disruptionsappear across 10 Abilene routers. The index on they-axis indicates the router’s ID from
Figure 4; for example,1 is router R1 (Atlanta). These examples illustrate that, though the magnitude of updates that may induce a variable number
of updates (thus making threshold-based detection difficult), multiple routers in the network will often witness some evidence of the disruption.

from multivariate statistical process control [4], and hasbeen previ-
ously used to detect anomalies in timeseries of network-wide traffic
counts [16, 17]. We first introduce notation and then briefly review
the main ideas of the subspace method from [16], in the context of
network-wide feeds of BGP updates from multiple routers.

Let X denote at × r matrix (t ≫ r), wheret is the number
of time bins andr is the number of routers. Each element of this
matrix,xij denotes the number of BGP updates in routerj at time
i. Each columnj of this matrix is the timeseries of the number of
BGP updates seen at routerj.

The subspace method performs a transformation of basis to sep-
arate the multivariate timeseries into normal and anomalous tem-
poral patterns. Normal patterns are those that are most common
temporal trends inX: together they capture a dominant fraction
of variance ofX. These common patterns are extracted by decom-
posingX via Principal Component Analysis (PCA); previous work
has performed similar analysis on network traffic [18]. PCA de-
composes the collection of update timeseries into their constituent
temporal patterns, such that these trends are ranked according to
the amount of variance they capture in the original data. Dueto the
strong network-wide dependency in the BGP update streams across
the routers in the network, we find that the top 2-4 temporal patterns
capture the vast majority of the variance (90%) in the updatetime-
series. The subspace method uses this ordering to designatethe
temporal patterns that account for a large fraction of the total vari-
ance as constituting thenormal subspace, and all remaining trends
as being theanomalous subspace.

After the subspace method computes normal and anomalous sub-
spaces, each router’s timeseries can be expressed as a linear com-
bination of normal and abnormal components, by projecting each
router’s timeseries onto each of the two subspaces. Specifically,
we can express the number of updates seen by all the routers ata
particular point in time (x), as the sum of normal and residual com-
ponents,i.e., x = x̂ + x̃. Here,x̂ is the reconstruction ofx with
only the normal temporal patterns, andx̃ contains the remaining
temporal patterns. Anomalies by the subspace method are detected
by inspecting the size of residual vector (‖x̃‖2) across time for un-
usually large values. In particular, an anomaly is triggered when
‖x̃‖2 > δα whereδα denotes the Q-statistic at the 1-α confidence
level, as given in [10] and used for traffic analysis in [16]. We set
α to be 0.001, which puts detection at the 99.9% confidence level.

5.2 Design and Implementation
Our detection system is implemented in three phases: collection

and database insertion, post-processing, and analysis. Although

our detection system currently performs only offline analysis, we
believe that it could be extended to perform online analysiswithout
fundamental modifications to the architecture. Our system period-
ically collects Abilene BGP update data that is logged by theAbi-
lene BGP monitors, as described in Section 3.2; we then process
these files and insert them into an SQL database, which also con-
tains the network representation from the network’s routing con-
figurations that we use for identification (described in Section 6).
Insertion of one day’s worth of Abilene routing data (the granular-
ity at which we were inserting batches of routing messages) takes
less than 5 minutes, including building the database indexes for that
data. The collection and data processing modules are implemented
in about 800 lines of Perl and Ruby.

We have implemented a BGP update post-processor that groups
BGP update timeseries data into timebins of arbitrary size outputs
matrixes for input to our implementation of the subspace method.
The update post-processor is implemented in about 550 linesof
Ruby, and our implementation of the subspace method is about
70 lines of Matlab and processes a200 × 11 BGP update time-
series matrix (i.e., the number of routers, times about 1.5 day’s
worth of 10-minute timebins) in an average of 22.7 milliseconds
on a 2.80GHz processor with 4GB of RAM. (We show in the next
section that this amount of routing data is reasonable for detecting
network disruptions using the subspace method.)

5.3 Results
In this section, we quantify the effectiveness of using multivari-

ate, network-wide analysis of routing updates to detect network
disruptions that might otherwise be missed. In particular,we find
the following: (1) the subspace method detects every documented
link and node failure on the Abilene backbone network and nearly
two-thirds of documented failures on Abilene peering links; (2) the
amount of routing data that must be processed to successfully iden-
tify network disruptions are reasonable, suggesting that our tech-
niques could ultimately be incorporated into an online detection
system; and (3) though specific parameters in the subspace method
are tunable, the technique works well for a wide range of settings.
Our evaluation should not be read as the last word on tuning a spe-
cific algorithm (i.e., PCA) to detect network events; indeed, there
are many other angles to explore in terms of network-wide analy-
sis (i.e., different multivariate analysis algorithms, different input
timeseries, etc.), which we discuss further in Section 9.

In this section, we quantify how well the subspace method de-
tects the network disruptions that are visible in BGP, and how well
it detects events of various magnitudes. Based on our characteriza-



Instability Visible in BGP Detected Rate
and Unavailability by PCA

node 1 + 1 = 2 2 2 100%
link 0 + 20 = 20 19 19 100%
peer 14 + 82 = 96 89 54 60.67%

Table 3: Number and fraction of network disruptions of each type de-
tected by the subspace method.

tions of how network disruptions are reflected in BGP update mes-
sages in Section 4, we hypothesized that a multivariate, network-
wide detection scheme would be effective at detecting network
disruptions, (because these disruptions exhibit correlations across
routers) and, further, that such a scheme could even do well at de-
tecting network disruptions that did not generate a large number of
updates. We find that, over the duration of the six months of our
study, the subspace method detects all documented node and link
disruptions on the Abilene backbone and about two-thirds ofdoc-
umented failures on peering sessions. Furthermore, we find that
the subspace method detects many network disruptions that do not
generate a large volume of updates at any single router; thisfinding
highlights the strength of the subspace method, which can detect
events that exhibit correlation across routers, even if they do not
generate a large “spike” in any single routing stream.

Detection rate. Table 3 illustrates the number of documented dis-
ruptions that are visible in BGP and, among those, the numberand
percentage of disruptions that the subspace method captures. The
subspace method detects every disruption to an internal node or
link and about 60% of disruptions to peering links, at a cost of a
reasonable rate of “false alarms”: our method generates an average
of no more than three false alarms per day.2 Figure 9 shows the
maximum, median, and minimum number of updates received in a
ten-minute interval by any router in the Abilene backbone network
for all internal and external events detected by the subspace method
and demonstrates that the subspace method can detect network dis-
ruptions even when these disruptions do not induce a large number
of routing updates.

We wondered why the subspace method was less successful at
detecting disruptions on peering links at the network periphery. We
found that the 35 peering sessions that the subspace method failed
to detect all had two common characteristics. First, these events
only caused a significant number of updates at a single router. Sec-
ond, even the disruption that occurred was very small, oftencaus-
ing far less 100 routing updates at any single router. It makes sense
that multivariate analysis fails to detect events that do not exhibit
network-wide correlation. It is also reasonable that peering events,
which occur outside the network, may not give rise to correlated
events within the network, especially if the sessions do notcarry
many routes or if they do not cause many routers in the networkto
update their selection of routes.

Detection time. Our detection algorithms might also be able re-
duce detection time. To gain some intuition about just how much
our methods could reduce detection time, we study the delay from
when the subspace method detected a network disruptions on the
Abilene network to the time when it was actually reported to the
Abilene operational mailing list. Although much of the Abilene
outage reporting to the operational mailing list is automated, we

2We cannot precisely determine the rate of false alarms because the opera-
tional mailing list is not guaranteed to capture all disruptions to the network;
therefore, an event detected by our techniques that is not reported to the
mailing list may simply represent an undocumented failure.In Section 6.3,
we aim to better understand the alarms raised by the subspacemethod that
do not correspond to documented disruptions.
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(b) Periphery (i.e., peer) events

Figure 9: The number of BGP updates that occurred in any 10-
minute interval for events documented in the Abilene operational mail-
ing list [1], for all events detected by the subspace method. The sub-
space method is capable of detecting a significant fraction of low vol-
ume events, particularly the “BGP-visible” internal events (for which
it has a 100% detection rate, even for low-volume events).4

median minimum
node 43.35 29.17
link 57.87 14.38
peer 96.13 9.25

Table 4: Delay (in minutes) for the time each network disruption was
reported to the Abilene mailing list from the time it actuall y occurred,
for the three types of disruptions.

recognize that there is often inherent delay in reporting events to
mailing lists. Therefore, our study should be considered asan in-
formal indication that there is room for improvement in reducing
detection time. Table 4 shows the results of this experiment; the
shortest delay we observed for any type of network disruption other
than maintenance was 9 minutes, which indicates that even our sim-
ple detection techniques could reduce the time to detection.

Effects of parameter settings.To evaluate how the performance
of the subspace method was affected by various parameter settings,
we evaluated its detection rate for various window sizes. Wese-
lected a window size of 200 10-minute intervals as a default for

4Figure 9(a) considers statistics over only the interval where the subspace
method detected an event, so it differs slightly from Figure6(a), which
considers statistics over the time interval documented on the mailing list.



window size (bins) node link peer
100 1 17 57
200 2 19 54
300 2 18 45
400 2 17 39

Table 5: Number of each type of disruption detected by the subspace
method using different window sizes. In all cases, the size of one time-
bin is 10 minutes, so 100 timebins represent a time interval of just under
17 hours. The rest of our experiments (e.g., the results from Table 3)
use a default window size of 200, but our experiments indicate that the
algorithm is relatively insensitive to this parameter.

our experiments, but we also evaluated our detection methodfor
other window sizes. The results in Table 5 show how the detection
rate for peer events changes for different window sizes; they also
illustrate that the subspace method is effective at detecting network
disruptions for various window size settings and that our method is
relatively insensitive to the exact value of this parameter.

6. Identifying Local Network Disruptions
In the last section, we demonstrated that multivariate analysis

techniques are effective atdetectingnetwork disruptions, but net-
work operators need to know not only that a significant network dis-
ruption occurred but also more information about the likelycause
of that disruption. In this section, we present the design, imple-
mentation, and evaluation of a simple heuristic that identifies the
type of network disruption that occurred. We call our general ap-
proachhybrid analysisbecause it uses a combination of static anal-
ysis of router configuration files and analysis of the routingupdates
to identify the type of failure.

Although our approach bears some similarities to the BGP
anomaly classification in previous work [30], it has severalsignifi-
cant differences. First, this previous work described various disrup-
tion scenarios in terms of their effects (e.g., internal path change)
but did not propose an algorithm for determining the reason for
the changes (e.g., node failure). In contrast, we propose apre-
scriptive algorithmfor identifying the type of network disruption
(i.e., node, link, peripheral, or external) and implement this algo-
rithm to process the static routing configurations and dynamic BGP
routing data. Second, wevalidateour identification algorithm us-
ing “ground truth” information about network disruptions from the
Abilene backbone network to verify that our identification algo-
rithm is correct. classifier correctly identifies every nodeand link
disruption and 93% (28 of 30) of the detected peer disruptions. Fi-
nally, as we describe further in Section 7, our hybrid analysis ap-
proach is general: we explain how it could be used not only for
identifying the type of disruption that occurred but also tohelp
identify the actual location of the disruption within the network.

6.1 Network-Wide Hybrid Analysis
Our identification algorithm builds a network model from the

static router configuration files and uses this model with thenext-
hop attribute in the routing updates to distinguish different network
disruptions. Our current algorithm only differentiates the typeof
network disruption without actually locating the actual network el-
ement that failed; this heuristic only requires the IP addresses of
the routers within the network and the IP addresses of the oppo-
site ends of the external BGP sessions (i.e., the IP addresses of the
routers in neighboring networks with peering BGP sessions to the
local network). Section 7 describes our ongoing work to precisely
locate disruptions within the local network, a task which requires
additional information from the routing configuration files.
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Figure 10: Decision tree for identifying network disruption types.

Figure 10 describes the algorithm we use to identify the typeof
network disruption that occurs on the Abilene network. The identi-
fication algorithm maintains and tracks three features: (1)the total
number of next-hop IP addresses selected by all routers in the net-
work (“global internal BGP (iBGP) next-hops”); (2) at each router,
the distinct number of next-hop IP addresses selected by that router
to other routers within the network (“local iBGP next-hops”); and
(3) at each router, the number of distinct next-hop IP addresses se-
lected by that router to other routers outside the network (“local
external BGP (eBGP) next-hops”). The first feature allows the al-
gorithm to determine how many routers in the network are currently
being selected as the egress router from the network; if thisnumber
decreases universally for all routers, the likely explanation is that
some node in the network has failed. The second feature tracks the
number of other routers within the local network that each router is
selecting as an egress router; if this count decreases at some router,
but does not decrease for the entire network, our algorithm infers
that an internal link has failed. This rule is also fairly intuitive—if
one node becomes unreachable from another, it will often stop se-
lecting that node as an egress router. We apply similar reasoning
for the third phase of identification, which identifies disruptions at
the periphery of the network—which typically affect whether some
router selects some router in a neighboring network (and thus af-
fects the number of eBGP next-hops at that router). Our inference
algorithm does not identify link and peer disruptions perfectly, but
the algorithm is more than 80% accurate for all types of failures,
it is simple to implement, and it is computationally efficient. We
discuss our validation in Section 6.3.

6.2 Design and Implementation
The identification algorithm is implemented in two phases: a

bootstrapping phase, where the algorithm constructs the routing
tables for each router in the network and computes initial values
for the three features that it tracks; and a run-time tracking phase,
where the algorithm maintains the sets of iBGP and eBGP next
hops both for each local router and globally for the network.All
BGP data is maintained in the SQL database described in Sec-
tion 5.2; we use this update data to derive a new table, which keeps
track of changes to the sets of next-hop IP addresses over time; this
derived table will allows the system to issue a query for a specific
time (i.e., the time of the detected event) and determine whether
the cardinality of any of the three next-hop sets changed around
the time of the failure. Additionally, we use the publicly available
rcc tool [6] to parse the routing configurations to glean informa-
tion about which next-hop IP addresses are internal vs. external,
which routers in the network have sessions with which next-hop
IP addresses, etc. The algorithm for deriving this auxiliary data is
implemented in about 100 lines of Perl and can process one day’s
worth of BGP update data in about 5-10 minutes, depending on the
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Figure 11: Results for identification over six months of operation. The
535 detected events (about three per day) may either be “false alarms”
or disruptions that were undocumented on the Abilene mailing list[1].

volume of routing updates for a single day. The tracking phase is
implemented in about 30 lines of Perl.

6.3 Validation Results
In this section, we validate the identification algorithm from Sec-

tion 6.1 (Figure 10). Our goal is two-fold. First and foremost,
we seek to evaluate the correctness of our algorithm by compar-
ing its results against the network disruptions for which wehave
“ground truth” documentation about the type of disruption that oc-
curred (i.e., from the Abilene operational mailing list [1]). Second,
we aim to understand as best we can the network events that the
subspace method detected but were not network disruptions.

To validate our identification algorithm, we applied the algo-
rithm shown in Figure 10 to every network disruption that wasde-
tected by the subspace method. For the 75 disruptions that were
documented as instability or unavailability and we detected with
multivariate analysis, we checked whether the output of ouridenti-
fication algorithm agreed with the type of disruption that was indi-
cated on the mailing list. Of these disruptions, our algorithm suc-
cessfully classified both node disruptions, 14 of 19 link disruptions
(74%), and 28 of the 30 peer disruptions (93%) where we have
BGP update data from all eleven routers.5

We examined in closer detail the 2 peer disruptions and 5 link
disruptions that were mis-identified as external events. Webe-
lieve that it is entirely possible that the two misclassifications for
peer disruptions are due to reporting mistakes to the mailing list:
a close examination of the BGP data shows absolutely no activity
for the neighboring networks listed as being involved in thedisrup-
tion. The reasons for misclassifying the link disruptions appear to
be more subtle and include multiple possibilities. In some cases, it
appears that the duration of the link failure is extremely short; in
these cases, it is possible that the routers did not update their iBGP
next-hops to another router before the link was restored. Webelieve
that refinements to our identification algorithm—perhaps byincor-
porating additional data sources (e.g., internal routing data)—may
help us disambiguate these few ambiguities. Another possibility
is to relax the rules in the existing algorithm: rather than requir-
ing the number of iBGP next-hops to drop to zero to declare a link
failure, identifying a link failure based on a sharp drop in the num-
ber of routers selecting a particular iBGP next-hop may alsohelp
correctly identify these cases.

We also perform identification onall of the events detected by
the subspace method to better understand some of the events that
were detected but not documented on the mailing list. Figure11
summarizes the events detected by the subspace method and their
relationship to the set of known, documented disruptions. The sub-
space method detected a total of 735 events: 75 of which are known

5Recall from Section 3.2 that we are missing BGP update data from the
Abilene router in New York after February 20, 2006 (about four months of
data from that router). Although we detected a total of 54 peer disruptions,
24 of these disruptions occurred that concerned the New Yorkrouter, so we
are missing the data that would help us make those identifications.
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Figure 12: An example where a combination of static and dynamic
analysis can help localize disruptions. Knowledge about internal and
external next-hops, and observations of how they change in an update
burst can differentiate different cases.

instability and unavailability events. An additional 125 events oc-
cur within documented maintenance intervals, suggesting that these
detected events very likely correspond to maintenance-related dis-
ruptions. As previously discussed in Section 5.3 (Table 3),the sub-
space method fails to detect 43 disruptions related to instability and
unavailability, most of which are disruptions to peering sessions, as
opposed to internal node or link disruptions.

The subspace method also detects an additional 535 events; al-
though these events are not documented failures,we cannot nec-
essarily consider all of them to be false alarms. Because the Abi-
lene mailing list only documents disruptions that the current detec-
tion systems are capable of detecting, it is possible that some of
the events that the subspace method detects are actually previously
undetected network disruptions. We also manually investigated a
random subset of 120 of these events, all of which showed some
notable BGP activity: found that about 60% have low-volume up-
date bursts that appear at more than one router, about 35-40%are
high-volume correlated spikes, an the remainder are big spikes on
one router. Without “ground truth” data for these events, wecannot
identify the causes of this activity with certainty. Even inthe un-
likely worst-case scenario, where all 535 events are all false alarms,
the average false alarm rate is still only about 3 per day, which is
well within the realm of manageability.

7. Towards Isolating Local Disruptions
Our identification heuristic in Section 6 accurately identifies the

types (i.e., node vs. link) and general locations (i.e., internal vs.
external) of network disruptions, but it does not help a network
operator identify a specific failure scenario (e.g., which link within
the network or at the periphery experienced a disruption). Previous
work has made significant advances in identifying which linkor
node has failed on a global scale [3, 8, 31], and we do not attempt
to tackle this task in our work. On the other hand, our preliminary
results indicate that isolating the cause of failureswithin a single
networkmay prove to be tractable, given that a network operator
has very detailed information about the local network.

We believe that extensions to the approach in Section 6, which
jointly analyzes the semantics of the routing updates and the static
routing configurations to identify network disruptions, can be ex-
tended to help operators identify the location of a disruption, as
well as its type. For example, Figure 12 shows two failures at
the network periphery that a network operator could pinpoint with
knowledge from the routing configuration about the next-hops and
neighboring networks that connect to each router. For example, in
Figure 12(a), the burst of BGP routing updates would containonly
next-hop IP addresses of routersoutsidethe network, as routerA
changed its next-hop route selection from routerB to routerC. On
the other hand, the failure scenario in Figure 12(b) would cause the
monitor at routerA to see BGP routing messages with next-hops
inside the local network, as routerA changed its route selection
from a route with the next-hop outside the local network (routerC)



to one inside the same network (routerE). With knowledge of both
the network configuration and the nature of the next-hop changes
in the BGP update bursts, an identification algorithm could help
localize this network disruption.

8. Related Work
In this section, we survey related work on analysis of routing dy-

namics in three areas: (1) routing dynamics in a single network, (2)
Internet-wide analysis of routing dynamics for “root causeanaly-
sis”, and (3) the effects of routing dynamics on end-to-end path per-
formance. We emphasize the distinction between our work, which
studies network-wide correlations of routing dynamics in asingle
network to diagnose disruptions, and previous related work, which
has largely focused on analysis of single routing streams.

8.1 Single-Network Routing Dynamics
Wu et al. proposed a method for analyzing routing dynamics

from multiple routing streams within a single network to provide
alerts for disruptions [30]. As in other previous work [3, 8,15],
this detection algorithm clusters BGP update messages along three
dimensions according to time, prefixes, and views but does not in-
corporate network-wide dependencies in routing data to improve
detection of network disruptions.

Previous techniques for analyzing routing dynamics in a single
network can detect network events that affect a large numberof
Internet destinations or a large amount of traffic, but they have sev-
eral shortcomings. First, most existing techniques (including that
of Wuet al.) are threshold-based: they involve setting “magic num-
bers” for many aspects of network events, including the typical time
length of an update burst and the magnitude of the update burst.
Second, previous work has shown that clustering updates according
to prefixes can occasionally lead to incorrect conclusions about the
cause of a network disruption [27]. Rather than grouping routing
updatesa priori based on assumptions about how a specific routing
protocol or network configuration behaves, our detection methods
are based on analysis techniques that can extract network-wide de-
pendencies but avoid imposing any specific set of assumptions.

8.2 Learning-Based Anomaly Detection
Learning-based approaches have been applied to routing

anomaly detection in limited contexts. Previous work has noted
the difficulty in setting magic numbers in detection algorithms that
rely purely on analyzing the volume of BGP routing updates and
has proposed building a model of normal behavior using unsuper-
vised learning. One such method relies on wavelet-based clustering
of update volumes to detect abnormal routing behavior [32];sim-
ilar wavelet-based decomposition techniques have been used for
detecting anomalies in network traffic [2].

Our work is inspired by existing techniques that use multivariate
analysis to extract structure from network traffic data [18]and for
using these techniques to build models of normal traffic behavior
and detect deviations that represent anomalies in data traffic [16,
17, 18]. At first brush, one might view this paper as a relatively
straightforward application of these techniques applied to routing
data, rather than traffic data, but, as our results in later sections
demonstrate, diagnosing routing disruptions requires incorporating
a considerable amount of domain-specific knowledge to comple-
ment statistical detection.

8.3 Internet-Wide Root Cause Analysis
Xu et al. have analyzed BGP routing data using Principal Com-

ponent Analysis to determine sets of ASes that are affected by the
same network event [31]. Their work pioneered the approach of

using multivariate analysis techniques on routing data, based on
the observation that, because the Internet has structure atthe AS-
level, a single network disruption can give rise to groups ofseem-
ingly unrelated routing updates in different ASes. We applythe
same insight to the analysis of routing dynamicswithin a single
network. (Others have made similar observations about failures in-
ducing correlated network data streams both at layer 2 [11] and at
the IP layer [20].) Xuet al. extract correlations from asingle up-
date streamin an attempt to find structure on an AS-level granular-
ity on the global Internet; in contrast, we analyzemultiple routing
streamsfrom a single network in an attempt to detect and isolate
network disruptions within that network. The goals of Xuet al.
center around “root cause” analysis of Internet-wide dynamics and
extracting AS-level structure; in contrast, we focus on diagnosis of
network disruptions within a single network.

Our work differs from previous work on “BGP root cause anal-
ysis” [3, 8], which analyzes Internet-wide routing dynamics from
public vantage points (e.g., RouteViews [23]) to detect Internet-
wide events (many of which are artificially injected with “BGP bea-
cons” [19]) and attempts to identify the network that is responsible
for causing the update. In contrast, our analysis techniques help
an operator of asingle networkdetect when network events happen
inside that network and identify the cause of the disruption.

8.4 Network Dynamics and Path Performance
Various projects have studied routing dynamics and attempted

to characterize and classify them. Previous work has studied BGP
routing instabilities and attempted to classify failures based on the
observed properties of BGP update messages [9, 12, 13]. Govin-
danet al. found that BGP routing instability was exacerbated by the
growth of the Internet [9], and Labovitz discovered that BGPcon-
verges very slowly upon a network failure, and that convergence
was slowed by path exploration [12]. Both of these projects an-
alyzed single routing streams in isolation and equated BGP insta-
bility with network failures but did not study how BGP routing in-
stability correlated with documented network disruptions. Several
existing commercial products monitor routing, traffic, or SNMP
data for faults, but they typically produce noisy reports about events
from the perspective of a single network device [22, 25]. Network-
wide analysis of routing data may help operators both identify the
severity of these alarms and correlate them, reducing the overall
volume of alarms that operators need to process. More recently,
various studies have studied how end-to-end path performance cor-
relates with BGP routing instability [5, 29], but, as in previous
work, these studies analyze single streams of routing messages that
are propagated across the Internet; in contrast, we study correlation
across multiple streams of BGP routing messages as observedfrom
different vantage points within the same network.

9. Conclusion
This paper has demonstrated the promise both of using network-

wide analysis to improve detection of network disruptions and of
using static configuration analysis to help identify the cause of a
network disruption. Our analysis techniques represent a new ap-
proach to analyzing routing data. Rather than attempting todiag-
nose disruptions based on temporal fluctuations in a single routing
stream, we recognize that (1) the structure and configuration of the
network introduces dependencies that give rise to correlated events
in groups of routing streams when a network disruption occurs; and
(2) this network structure and configuration can be mined to con-
struct a model to better identify the nature of a network disruption.

We have studied the characteristics of how network disruptions
induce BGP update messages across the routers in a network back-



bone over a six-month period and found that, while network disrup-
tions induce routing updates that can vary in volume by several or-
ders of magnitude, nearly 80% of network disruptions exhibit some
level of correlation across multiple routers in the network. Based
on this observation, we applied the subspace method, a multivari-
ate analysis technique, on BGP update streams across the Abilene
backbone. We find that it successfully detects all node and link
failures and two-thirds of failures on the network periphery, while
keeping the overall alarm rate to an average of roughly threealarms
per day. The subspace method performs well for reasonably sized
data sets and minimal parameter tuning and, further, that itcan pro-
cess the network-wide routing data in a relatively short amount of
time, which suggests that similar multivariate techniquescould be
incorporated into an online detection and identification system.

We hope that, rather than being the last word on using network-
wide analysis to diagnose network disruptions, this paper opens
a new direction for exploring a variety of techniques that exploit
knowledge of network structure and configuration to jointlyana-
lyze sets of network data streams that are inherently dependent.
Indeed, many extensions to our work are possible; for example,
while this paper has explored the limits of using BGP updatevol-
umesto detect network disruptions, other attributes in the routing
update messages (e.g., the AS path length, next-hop IP address,
etc.) may carry semantics that might improve detection in addi-
tion to identification. We also recognize that BGP routing update
data is not the only possible input to a anomaly detecting system
and much work remains to determine how to mine other network
datasets and incorporate them into a system for diagnosing network
disruptions. As we continue developing techniques to diagnose net-
work disruptions, we hope to gain a better understanding both for
which information that best enables diagnosis and for the limits that
the information available from current protocols and architectures
fundamentally impose on our ability to diagnose these disruptions.
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