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ABSTRACT

To maintain high availability in the face of changing netiwoondi-
tions, network operators must quickly detect, identifyd asact to
events that cause network disruptions. One way to accomiblis
goal is to monitor routing dynamics, by analyzing routinglaie
streams collected from routers. Existing monitoring apples
typically treat streams of routing updates from differemiters as
independent signals, and report only the “loud” evenes, Events
that involve large volume of routing messages). In this pape
examine BGP routing data from all routers in the Abilene lbacie
for six months and correlate them with a catalog of all knouga d
ruptions to its nodes and links. We find that many importaehey
are not loud enough to be detected from a single stream.alhste
they become detectable only when multiple BGP update sgeam
are simultaneously examined. This is because routing epdst-
hibit network-widedependencies.

This paper proposes using network-wide analysis of routing
formation to diagnosei.g., detect and identify) network disrup-
tions. To detect network disruptions, we apply a multiviarianal-
ysis technigue on dynamic routing informatiohe( update traffic
from all the Abilene routers) and find that this technique darect
every reported disruption to nodes and links within the oekw
with a low rate of false alarms. To identify the type of ditiap,
we jointly analyze both the network-wide static configuratand
details in the dynamic routing updates; we find that our mexttam
correctly explain the scenario that caused the disrup#dtmough
much work remains to make network-wide analysis of routiatad
operationally practical, our results illustrate the imparce and po-
tential of such an approach.

Categories and Subject Descriptors

C.2.6 [Computer Communication Networks]: Internetworking;
C.2.3 [Computer Communication Networks]: Network opera-
tions — network management
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Algorithms, Management, Reliability, Security
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Figure 1: Both internal and external network disruptions cause corre-
lated routing changes at groups of routers within a single nevork.

1. Introduction

To achieve acceptable end-to-end performance in the fadg- of
namic network conditionse(g, traffic shifts, link failures, security
incidents, etc.), network operators must keep constarthvater
the status of their networks. Network disruptions—charnget-
work conditions that are caused by underlying failures oftirgy
protocols or network equipment—have a significant impaatet
work performance and availability. Operators today haveiady
datasetsd.g, NetFlow, SNMP, “syslogs”) at their disposal to mon-
itor for network disruptions, all of which have proven difflcto
use for extracting actionable events from “backgroundeioi®p-
erators have had particular trouble usingting datato detect and
pinpoint network disruptions, even though analyzing nogitilata
holds promise for exposing many important network readtgabi
failures. This missed opportunity results from the fact tloaiting
data is voluminous, complex and noisy, which makes the rgiofn
network disruptions challenging.

Existing approaches for inspecting routing dynamics imalsi
network €.g, [25, 30]) primarily analyze each routing stream with-
out considering the dependencies across multiple routieguss
that arise from the network configuration and topology. Tdps
proach leaves much room for improvement, because any iaform
tion about network disruptions that exists in a single mgtipdate
stream is obscured by a massive amount of noise. Furtheymore
network model can explain the temporal relationships amgmng
dates in a single routing stream, since the updates halee(btid
often no) temporal dependency. As such, these techniqeasar
able to capture typical network conditions to recognizeugisons,
and therefore rely on fixed thresholds to detect only thosatsv
that cause a large number of updates. But, as we will seesipéhi
per, many important operational eventsrai necessarily generate
a large number of updates at a single router. To detect sumta-op
tional events, it is necessary to first continuously moratwdlearn
the typical routing dynamics of the network; deviationsnfirthis
typical behavior indicate a routing incident worth invgsting.

This paper proposes a new approach to learning typicalnguti



dynamics by explicitly harnessing tmetwork-wide dependencies
that are inherent to the routing updates seen by routersiimgées
network. Groups of updates from different routers, wherlyaeal
together, reflect dependencies arising from the networklogy
and static routing configuration: routers’ locations in tregwork
topology relative to each other, how they are connected ¢oaon
other, the neighboring networks they share in common, etcel
ample, Teixeirat al. observed that the failure of a single link inside
a network may result imultiple routers simultaneously switching
“egress routers’i(e., the router used to exit the network) [28] (Fig-
ure 1(a)); similarly, the failure of a single BGP peering sses
results in similar correlated disruptions across the nekwbig-
ure 1(b)). Because of these dependencies, network disnsgptian
appear significant when the effect of the event is viewedsacadl
of the routers in the network, even if the number of updates by
any single router is small.

This paper presents the first known study of network-wideszor
lation of routing updates in a single network, demonstrttasde-
tection schemes should incorporate network-wide anabdfsisut-
ing dynamics, and explores the extent to which multivaratal-
ysis could expose these events.
findings of this paper, which presents the following conttitns:

First, we study how actual, documented network disruptions
are reflected in routing data. Several previous studies examine
how BGP routing updates correlate with poor path perforradbc

13, 29], but these studies do not correlate BGP instabiliith w
“ground truth”, known disruptionse(g, node and link failures) in
an operational network. Our work examines hkmown, docu-
mented network disruptiorare reflected in the BGP routing data
within that network. We perform a joint analysis of docunesht
network component failures in the Abilene network and Adle
BGP routing data for six months in 2006 and find that most net-
work disruptions are reflected in BGP data in some way, though
often not via high-volume network events.

Second, we explore how network-wide analysis can expose
classes of network disruptions that are not detectable wittex-
isting techniques After studying how known disruptions appear
in BGP routing data, we explore how applying multivariatelsn
sis techniques, which are specifically designed to analyaépte
statistical variables in parallel, could better detecséhaisruptions.
We explore how applying a specific multivariate analysisitegue,
Principal Component Analysis (PCA), to routing messageasirs
across the routers in a single network can extract netwoektev
that existing techniques would fail to detect.

Third, we present new techniques for combining analysis of
routing dynamics with static configuration analysis to locdize
network disruptions. In addition to detecting failures, we develop
algorithms to help network operators identify likely faiduscenar-
ios. Our framework helps network operators explain the coof
routing faults by examining the semantics of the routing sagss
involved in a group of routing updates in conjunction with adel
of the network, derived from static configuration analysiEhis
hybrid analysisapproach is the first known framework for using a
combination of routing dynamics and static routing confagian to
help operators detect and isolate the source of networktisns.
Previous work has taken on the audacious goal of Internge-wi
“root cause analysis” [3, 8, 31], but all of these technighase
faced two fundamental limitations: lack of information imya
single routing stream and poor knowledge of global routeel
topology. In this work, we recommend revisiting the use of BG
routing data within a single network using multiple dataeams,
where correlationacrossstreams can provide additional informa-

Table 1 summarizes the major

Finding Location
Many network disruptions cause only low vol- §3.2, Fig. 5
umes of routing messages at any single router.

About 90% of local network disruptions are vis- §4.1, Fig. 8
ible in BGP routing streams.

The number of updates resulting from a disrup<4.2, Fig. 6
tion may vary by several orders of magnitude.

About 75% of network disruptions result in near-§4.3, Fig. 8
simultaneous BGP routing messages at two or

more routers.

The PCA-based subspace method detects 100956.3, Tab. 3
of node and link disruptions and about 60% of
disruptions to peering links, with a low rate of

false alarms.

The identification algorithm based on hybrids6.3, Fig. 11
static and dynamic analysis correctly identifies

100% of node disruptions, 74% of link disrup-

tions, and 93% of peer disruptions.

Table 1: Summary of major results.

tion about the nature of a failure, and access to network gorat
tions can provide valuable information about the netwopgotogy
(e.g, the routers that have connections to a particular neighbor
ing network). Our goal is not primarily to evaluate or opti
a specific multivariate analysis techniqueg, PCA), but rather
(1) to explore the nature of how disruptions in a single nekwo
are reflected network-wide and temporally in BGP routingadat
(2) to argue in general for the utility of using network-widealy-
sis techniques for improving detection of network disrops and
(3) to demonstrate how, once detected, network models hased
static routing configurations can help operators detectisoldte
the cause of these disruptions.

Many hurdles must be surmounted to make our methods practi-
cal, such as (1) building a system to collect and processlulistd
routing streams in real time; and (2) determining the festun
each signal that are most indicative of high-impact disounst (we
use number of updates, as most existing methods do, but we be-
lieve that more useful features may exist). Rather thanigioy
the last word on analysis of routing dynamics, this papemspe
a new general direction for analyzing routing data basedhen t
following observation:The structure and configuration of the net-
work gives rise to dependencies across routers, and anyysisal
of these streams should be cognizant of these dependerathes,
than treating each routing stream as an independent signad-
dition, we believe that our combined use of static and dynamal-
ysis for helping network operators identify the cause ane 5y
of network disruptions represents an important first stejpridg-
ing the gap between static configuration analysis and mangof
routing dynamics.

2. Background

We now present necessary background material. We first de-
scribe the general problems involved in using routing dyicam
to detect and identify network disruptions. Then, we expladw
changes to conditions within a single network can give s®tt-
ing dynamics that exhibit network-wide correlations asrowulti-
ple routing streams.

2.1 Problem Overview and Approach

Diagnosis entails two complementary approacheeactivetech-
niques, which analyze the network configuration (eitheti-sta
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Figure 2: Overview of the approach to detection and identifiation of
network disruptions.
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cally [6] or with a simulator [26]) before it is deployed; ar@hctive
techniques, which observe the behavior of a running net\éerk
through traffic data or routing data) and alert operatorstionaable
problems. Proactive analysis allows a network operatonstyae
the network configurations offline and determine the effettsset
of configurations before running them on a live network [@]t iv
provides no mechanism for helping operators detect andifgen
problems in running network. To effectively detect, idgntand
eradicate faults on a running network, operators must usera c
bination of proactive and reactive detection techniquéss paper
focuses on how routing data can be useddéaictive detection and
identification ofnetwork disruptions as summarized in Figure 2.

Detection with network-wide analysis of routing dynamics.We

first collect the set of routing updates from every router girgle

domain and perform a multivariate analysis on this set oétiemies
data to identify disruptions. We show in Sections 4 and 5ritreaty
network disruptions cause events that exhibit networkevadrre-
lations in BGP routing streams; multivariate analysis bédientify

the events that appear simultaneously in many routing regdait
do not appear significant from any single routing stream.

Identification with network-wide hybrid analysis. After detect-
ing failures in groups of routing streams, we analyze theneaof
these changes by examining the semantics of the routingagess
in the context of the model of the network configuration. Tgris-
cess allows us to extract information from the network atibat
BGP-level connectivity both inside the network and betwéen
local network and its neighborg.g, which routers in the network
connect to a given neighboring AS).

As we describe in more detail in Section 2, previous effartst-
alyze routing dynamics have typically conflated these twtgdy
assuming that noise in routing data always implies the excst of
a network disruption and applying inference techniquesrtwigs
of routing messages to help localize failure causes. Inrasttwe
address these two problems separately.

2.2 Detection with BGP Routing Data

Both traffic and routing data provide information to netwogk
erators about the performance of a running network. Althoug
traffic data often provides more direct information abowt fer-
formance of individual traffic flows as they traverse the roatuy
routing data can both provide information about systemtaaek
disruptions that affect many traffic flows and offer cluescashya
particular disruption is occurring. In other words, rogtcan assist
operators in both detection and identification.

Routing data in ISP networks typically comprises both BG& an
Interior Gateway Protocols (IGP¢.@g, OSPF [21], IS-IS [24]) data.
Although both types of routing protocols offer informatiabout
how network conditions change, IGP routing data typicaliyyo
contains information about internal topology changes; BGR-
ing data, on the other hand, typically reflects both intenedivork

changes and changes on the network periphery (which eshibit
more instability, as we will describe in more detail in SentB.1).

Unfortunately, routing data—and, in particular, data fréme
BGP—is notoriously difficult to use for these purposes bseau
(1) it is noisy {.e., many routing messages reflect changes in net-
work conditions but not actuactionable network events), and
(2) the routing messages themselves carry little or no inéion
about the source of a problem. Internet-wide root causeysisal
has proven difficult (if notimpossible), as we discuss inteds. 3.

2.3 Single-Network BGP Routing Dynamics

This section provides an overview of single-network rogiity-
namics. We offer the reader intuition for why routing datawhd
exhibit network-wide correlations upon changes in netwamkdi-
tions such as link, node, or protocol session failures. Wesicier
three types of disruptions that are local to a single network

1. Link. A link disruption that is internal to the network, as
shown in Figure 1(a), can result from the physical failureaof
link (or a component on either end of the link), maintenance o
re-provisioning, or the disruption of the routing protacolinning
over that link {.e., the internal routing protocol or internal BGP ses-
sion). These failure modes can cause different types oélzted
events to occur. For example, Teixe@tal. observed that changes
to the internal topology due to either link failures or chesiin link
weights may cause BGP routers to some destinations to chia@ge
router that they use to exit the network to one or more desbima
(i.e., the egress) [28]. Theumberof routing updates caused by a
link disruption will vary depending on the session that isrdpted
and the number of destinationise(, IP prefixes) being routed over
that session. However, link disruptions will typically ca.cor-
relatedevents, because they cause many routers in the network to
change egress routers.

2. Periphery (“peer”). Disruptions that occur at the edge of the
network {.e., on sessions or links that connect the local network
to neighboring networks) can affect how routers inside tee n
work route traffic to external destinations. For examplguié 1(b)
shows an example involving a single link failure that causest-
tiple routers in the local network to change the egress rabs
they select en route to some destination. As with link faigjithis
type of session failure causes correlated routing evemtssadthe
network, although, again, the absolute size of events mgy va

3. Node.As with link failures or disruptions, node disruptions can
cause many other routers in the network to re-route traffib bm
internal destinations and to external destinatiorss, {/ia different
egress routers). These disruptions are usually visiblesaamul-
tiple streams of BGP routing data. As we describe in Section 3
unplanned outright node failures are relatively uncommmoihie
Abilene backbone; we expect that node failures are relgtive-
common in general.

3. Data and Preliminary Statistics

This section describes the datasets we used for our studyh€l
Abilene operational mailing lisgbi | ene- ops- 1, which docu-
ments known failures that have occurred on the network ansked
as “ground truth” to study how failures show up in BGP andrlate
for validation; (2) BGP updates from all but one of the rostir
the Abilene network, which we use to for detection; and (Bltirg
configurations from the Abilene network, which we use fonitfé
cation. For the remainder of the paper, we limit our analicfata
collected from the Abilene network because it is the onlymoek
where we have access to all three of these data sets.
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Figure 3: Classes of problems documented on the Abilene netik op-
erations mailing list from January 1, 2006 to June 30, 2006 [[L

instability  unavailability —maintenance total
node 1 1 22 24
link 0 20 65 85
peer 14 82 77 173
total 14 104 164 282

Table 2: Classes of problems documented on the Abilene netwoop-
erations mailing list from January 1, 2006 to June 30, 2006.

3.1 Mailing List: Documented Failures

We analyzed documented network disruptions over a six-mont
period, from January 1, 2006 to June 30, 2006. These docechent
network disruptions affect three types of network elementedes
(“node™), internal links (“link”), and peripheral sessi®to neigh-
boring networks (“peer”)—and can be further classified iti@e
types: instability, unavailability and maintenance. F&8 shows
the distribution of different events reported via email he #Abi-
lene operational mailing list [1]; the reported events cdsgboth
customer-generated complaints and disruptions detegtdetmet-
work’s automated monitoring system. The mailing list camga
multiple emails referring to the same eveatq, updating the sta-
tus of a previously reported event) and some other emaitsdety
network policy. For each actual event, the start time andetice
time field in the email are manually entered into the ticketd a
then reported to the mailing list. We count each event onlgeon
and classify all duplicate emails into a class called “ather97
such events in the six-month period are in this categoryckvhc-
count for 26% of all emails sent to the list.

Table 2 illustrates how many disruptions of each class appea
in our analysis.Instability describes problems where network ele-
ments go down and come up repeatedly in a short time peldoel.

6,766,986

Ry
8,151,555

Figure 4: The Abilene backbone network topology, and the tail num-
ber of BGP updates each router received over the period of ouanal-
ysis. The figure shows physical nodes and links in the topolggbut
omits iIBGP sessions (every router has an iBGP session withesy other
router) and Abilene’s connections to neighboring networks
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Figure 5: BGP update timeseries data from January 2006 forl Abilene
routers, with three examples of network disruptions circled.

many large ISPs and has been used to analyze BGP routingespdat
in a single network in other studies [7, 28, 30].

We analyzed the ensemble of BGP update streams from Abi-
lene’s routers over six months in 2006, as summarized inrEigu
We analyzed data from all 11 Abilene backbone routers, vhiéh t
exception of the router in New York, NY, whose local BGP upgdat
monitor failed on February 20, 2006 at 17:39:23 GMT and wds no

availability means that the some network elements are completely osiored for the remainder of our analysis. After collegptBGP

offline for some time periodMaintenanceefers to planned events.
In this case, operators send email before the event andrpetii@
action in the reserved time window. Because the time wind®w r
served for maintenance is always longer than the actuat esed
because these planned events are likely to be less digupi®
exclude maintenance problems from our analysis for muchef t
remainder of the paper (except in Section 6.3, where we atteam
explain various types of “false alarms”).

3.2 BGP Updates: Routing Dynamics

Abilene has 11 backbone routers. Each router maintains-an in
ternal BGP (iBGP) monitoring session to a collection maehBe-
cause the updates are collected in this fashion, we canisenabd
every BGP update received at each router; rather, we onlyhgee
instances when a routehangests selected route to a destination.
This collection mode is a common way to collect BGP updates in

update streams for each router shown in Figure 4, we digertéie
updates into timebins of 10 minutes; this binsize is a snraligh
time interval for us to manually inspect the detected eveanid it
also reduces the likelihood that a BGP pathology resultinghfa
single network disruption is spread across multiple timskfpre-
vious work observed that most BGP routing pathologies tiesul
from a single disruption do not last longer than 5 minuted].[1
Figure 5 shows an example of BGP update timeseries from dif-
ferent routers in the Abilene network during January 200& @ir-
cles on each timeseries mark three examples of documersiegbéli
tions. These example disruptions illustrate a fundamemtadlem
with detecting network disruptions using BGP update datay A
single stream of routing updates is extremely noisy; to nrake
ters worse, the number of updates in any time interval doés no
correlate well with the severity of the event (for reasongligeuss
in Section 4.2). Simple threshold-based detection schevitlesot



detect disruptions accurately. Thus, the task at handnsiteac-
tionable disruptions from this noisy and complex data.

3.3 Configuration Data: Network Model

Abilene makes its routing configurations publicly avai@brhe
configurations allow us to obtain: (1) the total number ofeext
nal BGP sessions that the local network has with neighboretg
works; (2) the next-hop IP addresses and neighbor AS nunabers
the routers on the other side of those sessions; and (3) theemu
of eBGP-speaking routers inside the local network and th& ne
hop IP addresses of those routers. These configurationg aillo
identification algorithm to incorporate information abdhé net- ‘ ‘ ‘
work configuration and topology that helps in identifying tiype Wotupdates 0%
of network disruptions detected. We describe our identificeal- (a) Internal (., node and link) events
gorithms in more detail in Section 6.

probability

4. Characterizing Network Disruptions

No detection method that relies on BGP updates will detect
anomalies that are not visible in BGP. We believe that, leefoe
can even begin to design a method for detecting network glsru
tions using BGP routing data, we must answer the followingsgu
tion: To what extent do known, documented network disruptions
within a network appear in BGP routing data, as observed from
the perspective of that network®ur approach—which first an-
alyzes “ground truth”, documented cases of network disonpt
and then searches for evidence of these disruptions in B@&mhgo I ‘ ‘ ‘
data—marks a significant departure from previous work otyana ' o ot updates 10000 100000
sis of BGP data, which works in the opposite directiar.(first
observing BGP routing data under the assumption that “haise
routing data implies network disruptions and then seagcfonthe
cause of the disruption). This study, on the other handyaealthe

probability

(b) Peripherali(e., peer) events

Figure 6: The number of BGP updates that occurred in any 10-miute
interval for events documented in the Abilene operational mailing

email list that documents all problems happened in a lodalar list [1]. Both internal and external events vary in maximum sze over
to determine whether these events are visible in BGP andnwhe several orders of magnitude, making it difficult to design a gneral de-
they are, how they are reflected in routing messages. tection scheme based on a single threshold value.

4.1 Most disruptions appear in BGP updates

We first attempted to determine whether the known, docurdente the number of BGP updates at many routers, since these cae cau
network events on the Abilene network backbone (summaiized many routers in the network to change egress routers [28].
Figure 3 and Table 2) appeared in the BGP routing messages mea We find that both of the 2 node disruptions are visible in BGP;
sured on the backbone network. Although this question appea all but one link event and all but 8 peer disruption eventsvisie

rather basic (and our results are not particularly sumgisiit is ble in BGP (Table 3 summarizes these statistics, which wisitév
important to verify, because if network disruptions niat appear Section 5 when we discuss the detection of these eventsh fupo
in BGP, there is no hope of detecting network disruption$ aity ther inspection, we found that these events were not vigiblieP
detection mechanism. For example, previous work has nbtd t  routing data, either. Several events were also reflecteueilBGP
only about half of observed end-to-end path disruptionkénide- routing data even though no IGP changes were reflected. igtis h
area are ever reflected in BGP update messages [5], indjdhtn visibility makes sense, because most internal networkugigns
wide-area “root cause analysis” of performance problemgsmias are likely to affect how traffic is routed to external destioas as
many important events. Some examples where wide-area netwo well. We suspect that the small number of events that areiset v
disruptions and routing failures are not reflected in BGPdwe ible in BGP may even be explainable by factors such as regprti
scribed in detail in previous work [27]. errors to the mailing list.

In contrast, we wanted to gauge the effectiveness of using BG . . . . .
to detect and identify disruptiongithin a single network To do 4.2 Dlsrupt|on Sizes are hlghly variable
so, we analyzed each documented network disruption in the Ab Various factors can affect the number of routing messagas th

lene backbone network on the Abilene operational mailisg|[li] result from a network disruption. When the disruption oscat
and determined whether the documented eventvigislein BGP. the networkperiphery(e.g, when a peering session fails), the size
We say that an event is visible in the following cases: (1)feer” of the disruption is related to the number of routes beingetsed

events, we should see the BGP updates around the time of-the reon that particular session. In the case of a node or linkriajlthe

ported event included BGP update messages with the neigthor
of the peer reported to be involved in the disruption; (2)‘faxde”
events, we should see BGP updates on every other routerethat r
place all the old routes through the node that failed; anddB)
“link” events, we generally expect to see a noticeable iaseein

number of BGP updates in the event is more indirect: It iseeléo
the number of routes for which other routers were using thieda
node or link to reach the destination. In both cases, thedfitee
disruption will vary depending on the router in the networkene
the disruption is being observed. For example, in the case of



peering session failure, the local router will see a disampfor all
routes on that session. For the same event, a monitor ateaediff
router will see only BGP updates both for which the bordetepu
actually changed its route to the destination (causing riater

to see updates) and for which that router also changed ite rou
(causing that router’s monitor to see updates).

We quantify the distribution of the BGP update bursts that re-
sult from network disruptions. Figure 6 shows, for each oekw
disruption, the maximum, median, and minimum number of up-
dates (quantized in 10-minute bins) received across thenotor
each documented disruption; each sub-figure shows thishdist
tion for internal and external events, respectiVel@ne point on
each of the linesif., minimum, median, maximum) on a CDF rep-
resents a single network disruption, which may span meltifl-
minute intervals. For example, for internal network eveshiswn in
Figure 6(a), the “smallest” disruption (reading the “battathree
points from Figure 6(a)) triggered zero BGP updates at omease
of the routers, and a burst of 100 updates in some 10-mintée in
val at one or more routers; the median burst size acrossrsoiate
that event in any 10-minute interval was 11 updates.

Figure 6 reveals interesting characteristics of how irgenet-
work disruptions are reflected in BGP updates. First anchioss,
we note that network disruptions can be reflected in BGP @pdat
“spikes” of sizes that span several orders of magnitude.oi®kc
for internal events, the maximum number of updates is mugjeta

than the median and minimum number of updates; this makes

sense: internal events are likely to cause many updates ewa f
routers, but destinations for which routers are not usiegféiled
node or link will not be affected. For example, in the caseof e
ternal events, 80% of network disruptions have a maximurstbur
size of less than 1,000 updates at any single router; furibe,
the maximum burst size at some router in the Abilene network f
any external network event spans about four orders of madmit
(from 10 updates to more than 10,000 updates).

This wide variation in the size of a network disruption under
scores the difficulty in detecting network disruptions ot their
sizes. Fortunately, as the next section illustrates, theseork dis-
ruptions typically exhibihetwork-wide correlation-i.e., simulta-
neous disruptions at more than one router—regardlessiofibe.

4.3 Disruptions have spatial correlation

Network disruptions of all types almost always elicit soroatr
ing updates at more than one router across the network. d=igur
shows examples of each of the three types of network disnupti
we study and how they appear in the BGP routing data.
case, as we show in the previous section, the actual numbeutsf
ing updates induced varies widely both across events (suergse
cause thousands of updates, while others cause tens oreligihdr
and also across routers for any single event. In all threeples,
though,all routers experience some disruption at nearly the same

probability
&

. . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
# of routers involved

Figure 8: Distribution of number of routers experiencing BGP updates
associated with a single network disruption.

(Houston), sees an abnormally large number of BGP messages;
other routers do not see such large spikes at this time, lrotaérs
witnesssomedisruption.

Link disruption. Figure 7(b) shows a disruption on the link be-
tween routers in Denver and Seattle, which became unaiailab
from 4:56 p.m. to 5:03 p.m. on April 11, 2006. In this casee¢hr
routers—R» (Denver),Rs (Los Angeles) and?r (Indianapolis)—
see about 600 routing changes, while the rest of the routekbir
lene experience far fewer updates.

Peer disruption. Figure 7(c) shows a network disruption where
various peers connecting to the Abilene router in Sunnylade
connectivity from 8:28 PM to 8:43PM on February 9, 2006. In
this case, three routersk. (Denver), Rs (Los Angeles) and

R7 (Indianapolis)—see two update spikes of about 400 updates
each and other routers see two small spikes of about 100agdat
eadfe have shown three specific example network disruptions
where disruptions give rise to routing updates that areetated
across routers; we find that the correlation of routing upslatross
the routers in a single network holds in general. Figure 8vshe
CDF of the number of routers at which any particular netwask d
ruption was “BGP visible” (as we defined in Section 4.1). When
we say a network disruption reported is not visible in BGEntthis

is equivalent to cases where the disruption is visible ai rauters.
Strikingly, more than 75% of network events are visible inlB&
more than one router in the network. This high occurrencente

In each lation acrossrouters suggests that performing multivariate analysis

over collections of routing streams in a single network mayeb
fective for detecting network disruptions; we explore thadibility
of this approach in the next section.

5. Detecting Network Disruptions

time For the reasons described in Section 4.2, a single network The previous section demonstrated that network disrugptigo

disruption may affect not only the routers that are direictiplved
but also other routers in the network.

We first study three specific examples of network disruptiamnd
the resulting routing messages seen across the network:

Node disruption. Figure 7(a) shows the BGP updates that result at
each router in Abilene when the Abilene backbone router inddo
ton became unavailable on May 19, 2006 from 11:01 p.m. to8L1:0
p.m.. The monitor at the router that experienced the failée

IBecause the number of node disruptions is so small (only teats oc-
curred over the six-month period of our analysis), we cfgd®ith node and
link disruptions internal events.

ically exhibit network-wide correlation across stream8&P up-

date messages, even though individual streams of updasagess
can vary in size depending on the actual network elementtaffe
by the disruption and the number of destinatioins, (IP prefixes)

being routed through that network element.

5.1 Network-Wide Analysis

The results from Section 4 indicate that known network dlisru
tions do appear in routing data as correlated update stredars/
multivariate analysis techniques can be used to extrabtdepen-
dencies from the ensemble of update timeseries. One sulh tec
nique is thesubspace method he subspace method draws on ideas
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Figure 7: Examples of how three types of network disruptionsappear across 10 Abilene routers. The index on thg-axis indicates the router’s ID from
Figure 4; for example, 1 is router R, (Atlanta). These examples illustrate that, though the magitude of updates that may induce a variable number
of updates (thus making threshold-based detection diffict)), multiple routers in the network will often witness some &idence of the disruption.

from multivariate statistical process control [4], and baen previ-
ously used to detect anomalies in timeseries of networle wiaffic
counts [16, 17]. We first introduce notation and then briegljiew
the main ideas of the subspace method from [16], in the confex
network-wide feeds of BGP updates from multiple routers.

Let X denote & x r matrix (¢ > r), wheret is the number
of time bins and- is the number of routers. Each element of this
matrix, x;; denotes the number of BGP updates in roytat time
1. Each columry of this matrix is the timeseries of the number of
BGP updates seen at rouger

The subspace method performs a transformation of basipto se
arate the multivariate timeseries into normal and anonsatem-
poral patterns. Normal patterns are those that are most comm
temporal trends irX: together they capture a dominant fraction
of variance ofX. These common patterns are extracted by decom-
posingX via Principal Component Analysis (PCA); previous work
has performed similar analysis on network traffic [18]. PG& d
composes the collection of update timeseries into theistimient
temporal patterns, such that these trends are ranked &ugdod
the amount of variance they capture in the original data. tOulee
strong network-wide dependency in the BGP update strearassac
the routers in the network, we find that the top 2-4 temportiepas
capture the vast majority of the variance (90%) in the uptate-
series. The subspace method uses this ordering to desiteate
temporal patterns that account for a large fraction of tha! tcari-
ance as constituting theormal subspaceand all remaining trends
as being th@nomalous subspace

After the subspace method computes normal and anomalous sub

spaces, each router’s timeseries can be expressed asrechnea
bination of normal and abnormal components, by projectache
router’s timeseries onto each of the two subspaces. Spabific
we can express the number of updates seen by all the routars at
particular point in timex), as the sum of normal and residual com-
ponentsj.e, x = x + X. Here,x is the reconstruction ot with
only the normal temporal patterns, akdcontains the remaining
temporal patterns. Anomalies by the subspace method sretddt
by inspecting the size of residual vectdi(|*) across time for un-
usually large values. In particular, an anomaly is triggerden
%> > do wheres,, denotes the Q-statistic at thenleonfidence
level, as given in [10] and used for traffic analysis in [16]e Bét

« to be 0.001, which puts detection at the 99.9% confidence. leve

5.2 Design and Implementation

Our detection system is implemented in three phases: tiolec
and database insertion, post-processing, and analysithough

our detection system currently performs only offline anialys/e
believe that it could be extended to perform online anakystisout
fundamental modifications to the architecture. Our systenog-
ically collects Abilene BGP update data that is logged byAbe
lene BGP monitors, as described in Section 3.2; we then psoce
these files and insert them into an SQL database, which also co
tains the network representation from the network’s r@iton-
figurations that we use for identification (described in ®ec6).
Insertion of one day’s worth of Abilene routing data (thergriar-

ity at which we were inserting batches of routing messagd®st
less than 5 minutes, including building the database irglfoethat
data. The collection and data processing modules are ingpitd

in about 800 lines of Perl and Ruby.

We have implemented a BGP update post-processor that groups
BGP update timeseries data into timebins of arbitrary sizpuds
matrixes for input to our implementation of the subspacehbt
The update post-processor is implemented in about 550 &tihes
Ruby, and our implementation of the subspace method is about
70 lines of Matlab and processes280 x 11 BGP update time-
series matrix i(e., the number of routers, times about 1.5 day’s
worth of 10-minute timebins) in an average of 22.7 millised®
on a 2.80GHz processor with 4GB of RAM. (We show in the next
section that this amount of routing data is reasonable feaatieg
network disruptions using the subspace method.)

5.3 Results

In this section, we quantify the effectiveness of using mait-
ate, network-wide analysis of routing updates to detecivoukt
disruptions that might otherwise be missed. In particuar.find
the following: (1) the subspace method detects every dontede
link and node failure on the Abilene backbone network andlpea
two-thirds of documented failures on Abilene peering lin(& the
amount of routing data that must be processed to succeskfeii-
tify network disruptions are reasonable, suggesting thatiech-
niques could ultimately be incorporated into an online clie
system; and (3) though specific parameters in the subspabedne
are tunable, the technique works well for a wide range ofregst
Our evaluation should not be read as the last word on tunipga s
cific algorithm {.e., PCA) to detect network events; indeed, there
are many other angles to explore in terms of network-widdyana
sis (.e., different multivariate analysis algorithms, differenput
timeseries, etc.), which we discuss further in Section 9.

In this section, we quantify how well the subspace method de-
tects the network disruptions that are visible in BGP, and ivell
it detects events of various magnitudes. Based on our dieaizse



Instability Visible in BGP  Detected Rate
and Unavailability by PCA
node 1+1=2 2 2 100%
link 0420=20 19 19 100%
peer 14 + 82 = 96 89 54 60.67%

Table 3: Number and fraction of network disruptions of each type de-
tected by the subspace method.

tions of how network disruptions are reflected in BGP update-m
sages in Section 4, we hypothesized that a multivariateyarkt
wide detection scheme would be effective at detecting nétwo
disruptions, (because these disruptions exhibit coicglatacross
routers) and, further, that such a scheme could even do twed-a
tecting network disruptions that did not generate a largalrer of
updates. We find that, over the duration of the six months of ou
study, the subspace method detects all documented nodén&nd |
disruptions on the Abilene backbone and about two-thirddoaf
umented failures on peering sessions. Furthermore, we Higid t
the subspace method detects many network disruptions ahadtd
generate a large volume of updates at any single routeffiniisg
highlights the strength of the subspace method, which céectle
events that exhibit correlation across routers, even ¥ the not
generate a large “spike” in any single routing stream.

Detection rate. Table 3 illustrates the number of documented dis-
ruptions that are visible in BGP and, among those, the numter
percentage of disruptions that the subspace method captiline
subspace method detects every disruption to an interna pod
link and about 60% of disruptions to peering links, at a cdst o
reasonable rate of “false alarms”: our method generateserage

of no more than three false alarms per @&akigure 9 shows the
maximum, median, and minimum number of updates received in a
ten-minute interval by any router in the Abilene backbongwvoek

for all internal and external events detected by the sulespethod
and demonstrates that the subspace method can detectkéis-or
ruptions even when these disruptions do not induce a langibar

of routing updates.
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Figure 9: The number of BGP updates that occurred in any 10-
minute interval for events documented in the Abilene operabnal mail-
ing list [1], for all events detected by the subspace method. The sub-
space method is capable of detecting a significant fractionf dow vol-
ume events, particularly the “BGP-visible” internal events (for which

We wondered why the subspace method was less successful aj has a 100% detection rate, even for low-volume eventd).

detecting disruptions on peering links at the network pgeip. We
found that the 35 peering sessions that the subspace metitexd! f
to detect all had two common characteristics. First, thesate
only caused a significant number of updates at a single rdbéer
ond, even the disruption that occurred was very small, aftars-
ing far less 100 routing updates at any single router. It makaise
that multivariate analysis fails to detect events that doaxhibit
network-wide correlation. It is also reasonable that pgpevents,
which occur outside the network, may not give rise to cotegla
events within the network, especially if the sessions docaoty
many routes or if they do not cause many routers in the netteork
update their selection of routes.

Detection time. Our detection algorithms might also be able re-
duce detection time. To gain some intuition about just hovetmu
our methods could reduce detection time, we study the dedery f
when the subspace method detected a network disruptioriseon t
Abilene network to the time when it was actually reportedhe t
Abilene operational mailing list. Although much of the Adile
outage reporting to the operational mailing list is autedatwe

2We cannot precisely determine the rate of false alarms lsecttue opera-
tional mailing list is not guaranteed to capture all disioips to the network;
therefore, an event detected by our techniques that is portesl to the
mailing list may simply represent an undocumented faillmeSection 6.3,
we aim to better understand the alarms raised by the subspetbe@d that
do not correspond to documented disruptions.

median  minimum
node | 43.35 29.17
link 57.87 14.38
peer | 96.13 9.25

Table 4: Delay (in minutes) for the time each network disrupton was
reported to the Abilene mailing list from the time it actually occurred,
for the three types of disruptions.

recognize that there is often inherent delay in reportingnev to
mailing lists. Therefore, our study should be consideredras-
formal indication that there is room for improvement in reig
detection time. Table 4 shows the results of this experimtiet
shortest delay we observed for any type of network disrapiber
than maintenance was 9 minutes, which indicates that evesirou
ple detection techniques could reduce the time to detection

Effects of parameter settings.To evaluate how the performance
of the subspace method was affected by various parametieigset
we evaluated its detection rate for various window sizes. sé/e
lected a window size of 200 10-minute intervals as a defarlt f

4Figure 9(a) considers statistics over only the interval i@hihe subspace
method detected an event, so it differs slightly from Fig6@¢e), which
considers statistics over the time interval documentedenrtailing list.



window size (bins)| node | link | peer
100 1 17 | 57
200 2 19 54
300 2 18 | 45
400 2 17 | 39

Table 5: Number of each type of disruption detected by the suspace
method using different window sizes. In all cases, the sizd one time-
bin is 10 minutes, so 100 timebins represent a time intervalfgust under

17 hours. The rest of our experiments €.g, the results from Table 3)
use a default window size of 200, but our experiments indicatthat the
algorithm is relatively insensitive to this parameter.

our experiments, but we also evaluated our detection mefihrod
other window sizes. The results in Table 5 show how the detect
rate for peer events changes for different window sizes; #iso
illustrate that the subspace method is effective at detgctetwork
disruptions for various window size settings and that outhoe is
relatively insensitive to the exact value of this parameter

6. Identifying Local Network Disruptions

In the last section, we demonstrated that multivariate yaisl
techniques are effective detectingnetwork disruptions, but net-
work operators need to know not only that a significant neltvais-
ruption occurred but also more information about the likedyse
of that disruption. In this section, we present the desigmple-
mentation, and evaluation of a simple heuristic that idiegtithe
type of network disruption that occurred. We call our gehama
proachhybrid analysidbecause it uses a combination of static anal-
ysis of router configuration files and analysis of the routipdates
to identify the type of failure.

Although our approach bears some similarities to the BGP
anomaly classification in previous work [30], it has severghifi-
cant differences. First, this previous work describedowsidisrup-
tion scenarios in terms of their effects.g, internal path change)
but did not propose an algorithm for determining the reason f
the changese(g, node failure). In contrast, we proposepee-
scriptive algorithmfor identifying the type of network disruption
(i.e., node, link, peripheral, or external) and implement thigoal
rithm to process the static routing configurations and dyo&GP
routing data. Second, wealidate our identification algorithm us-
ing “ground truth” information about network disruptionsin the
Abilene backbone network to verify that our identificatioiga
rithm is correct. classifier correctly identifies every naahel link
disruption and 93% (28 of 30) of the detected peer disruptiiir
nally, as we describe further in Section 7, our hybrid arialgp-
proach is general: we explain how it could be used not only for
identifying the type of disruption that occurred but alsohilp
identify the actual location of the disruption within thetwerk.

6.1 Network-Wide Hybrid Analysis

Our identification algorithm builds a network model from the
static router configuration files and uses this model withrie-
hop attribute in the routing updates to distinguish diffemgetwork
disruptions. Our current algorithm only differentiates thipe of
network disruption without actually locating the actuatwerk el-
ement that failed; this heuristic only requires the IP adsies of
the routers within the network and the IP addresses of the-opp
site ends of the external BGP sessioins, (the IP addresses of the
routers in neighboring networks with peering BGP sessiorthé
local network). Section 7 describes our ongoing work to igedg
locate disruptions within the local network, a task whichuiees
additional information from the routing configuration files

Figure 10: Decision tree for identifying network disruption types.

Figure 10 describes the algorithm we use to identify the tfpe
network disruption that occurs on the Abilene network. Tdenii-
fication algorithm maintains and tracks three featuresth@)otal
number of next-hop IP addresses selected by all routereinety
work (“global internal BGP (iBGP) next-hops”); (2) at eaduter,
the distinct number of next-hop IP addresses selected byahier
to other routers within the network (“local iBGP next-hopsind
(3) at each router, the number of distinct next-hop IP adeé®ese-
lected by that router to other routers outside the netwoldcé!
external BGP (eBGP) next-hops”). The first feature allovesah
gorithm to determine how many routers in the network aresnly
being selected as the egress router from the network; ihthisoer
decreases universally for all routers, the likely explamats that
some node in the network has failed. The second featurestthek
number of other routers within the local network that eacltepis
selecting as an egress router; if this count decreases atsarter,
but does not decrease for the entire network, our algoritifers
that an internal link has failed. This rule is also fairlyuiive—if
one node becomes unreachable from another, it will oftem ste
lecting that node as an egress router. We apply similar néago
for the third phase of identification, which identifies distions at
the periphery of the network—which typically affect whatbeme
router selects some router in a neighboring network (and &fiu
fects the number of eBGP next-hops at that router). Our émies
algorithm does not identify link and peer disruptions pettie but
the algorithm is more than 80% accurate for all types of fa#y
it is simple to implement, and it is computationally effidiewWe
discuss our validation in Section 6.3.

6.2 Design and Implementation

The identification algorithm is implemented in two phases: a
bootstrapping phase, where the algorithm constructs thgng
tables for each router in the network and computes initibles
for the three features that it tracks; and a run-time tragkihase,
where the algorithm maintains the sets of iBGP and eBGP next
hops both for each local router and globally for the netwohK.
BGP data is maintained in the SQL database described in Sec-
tion 5.2; we use this update data to derive a new table, whaepk
track of changes to the sets of next-hop IP addresses owerttiis
derived table will allows the system to issue a query for aiioe
time (i.e., the time of the detected event) and determine whether
the cardinality of any of the three next-hop sets changedralo
the time of the failure. Additionally, we use the publiclyagéiable
rcc tool [6] to parse the routing configurations to glean iinfa-
tion about which next-hop IP addresses are internal vs.rreadte
which routers in the network have sessions with which next-h
IP addresses, etc. The algorithm for deriving this auxildata is
implemented in about 100 lines of Perl and can process orie day
worth of BGP update data in about 5-10 minutes, dependingen t
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Figure 11: Results for identification over six months of opeation. The
535 detected events (about three per day) may either be “fadsalarms”
or disruptions that were undocumented on the Abilene mailirg list[1].

volume of routing updates for a single day. The tracking ptias
implemented in about 30 lines of Perl.

6.3 Validation Results

In this section, we validate the identification algorithmorfr Sec-
tion 6.1 (Figure 10). Our goal is two-fold. First and foremos
we seek to evaluate the correctness of our algorithm by compa
ing its results against the network disruptions for which vesre
“ground truth” documentation about the type of disruptibattoc-
curred {.e., from the Abilene operational mailing list [1]). Second,

(a) External next hops only.

(b) Internal and external next hops.

Figure 12: An example where a combination of static and dynaric
analysis can help localize disruptions. Knowledge about ternal and
external next-hops, and observations of how they change imaupdate
burst can differentiate different cases.

instability and unavailability events. An additional 12%ats oc-

cur within documented maintenance intervals, suggeshiaighese
detected events very likely correspond to maintenancgee|dis-
ruptions. As previously discussed in Section 5.3 (Tabléh®) sub-
space method fails to detect 43 disruptions related tobilgteand
unavailability, most of which are disruptions to peeringsiens, as
opposed to internal node or link disruptions.

The subspace method also detects an additional 535 evénts; a

though these events are not documented failumescannot nec-
essarily consider all of them to be false alarniBecause the Abi-

we aim to understand as best we can the network events that thgene mailing list only documents disruptions that the cuircetec-

subspace method detected but were not network disruptions.

To validate our identification algorithm, we applied thealg
rithm shown in Figure 10 to every network disruption that \das
tected by the subspace method. For the 75 disruptions that we
documented as instability or unavailability and we detgatéth
multivariate analysis, we checked whether the output ofidemti-
fication algorithm agreed with the type of disruption thasviradi-
cated on the mailing list. Of these disruptions, our al¢yonitsuc-
cessfully classified both node disruptions, 14 of 19 linkwgiions
(74%), and 28 of the 30 peer disruptions (93%) where we have
BGP update data from all eleven routérs.

We examined in closer detail the 2 peer disruptions and 5 link
disruptions that were mis-identified as external events. bé/e
lieve that it is entirely possible that the two misclassiiimas for
peer disruptions are due to reporting mistakes to the nggligt:

a close examination of the BGP data shows absolutely noigctiv
for the neighboring networks listed as being involved indfssup-
tion. The reasons for misclassifying the link disruptioppear to
be more subtle and include multiple possibilities. In somses, it
appears that the duration of the link failure is extremelgrshin
these cases, it is possible that the routers did not updeitei BGP
next-hops to another router before the link was restoredbéheve
that refinements to our identification algorithm—perhapsniopr-
porating additional data sourcesd, internal routing data)—may
help us disambiguate these few ambiguities. Another pitisgib
is to relax the rules in the existing algorithm: rather thaguir-
ing the number of iIBGP next-hops to drop to zero to declarala li
failure, identifying a link failure based on a sharp drophe hum-
ber of routers selecting a particular iBGP next-hop may aklp
correctly identify these cases.

We also perform identification oall of the events detected by
the subspace method to better understand some of the ekants t
were detected but not documented on the mailing list. Figdre
summarizes the events detected by the subspace methodeind th
relationship to the set of known, documented disruptioe Jub-
space method detected a total of 735 events: 75 of which arerkn

5Recall from Section 3.2 that we are missing BGP update data the
Abilene router in New York after February 20, 2006 (aboutrfownths of
data from that router). Although we detected a total of 54 peguptions,
24 of these disruptions occurred that concerned the New éurter, so we
are missing the data that would help us make those idenitdficat

tion systems are capable of detecting, it is possible thatesof
the events that the subspace method detects are actualigysly
undetected network disruptions. We also manually invastig) a
random subset of 120 of these events, all of which showed some
notable BGP activity: found that about 60% have low-volumpe u
date bursts that appear at more than one router, about 3548%
high-volume correlated spikes, an the remainder are bigespin
one router. Without “ground truth” data for these eventscaenot
identify the causes of this activity with certainty. Eventlire un-
likely worst-case scenario, where all 535 events are aéfalarms,
the average false alarm rate is still only about 3 per daychws
well within the realm of manageability.

7. Towards Isolating Local Disruptions

Our identification heuristic in Section 6 accurately idées the
types (.e., node vs. link) and general locationise(, internal vs.
external) of network disruptions, but it does not help a oekwv
operator identify a specific failure scenarad, whichlink within
the network or at the periphery experienced a disruptiorgviBus
work has made significant advances in identifying which lank
node has failed on a global scale [3, 8, 31], and we do not attem
to tackle this task in our work. On the other hand, our preiemny
results indicate that isolating the cause of failungthin a single
networkmay prove to be tractable, given that a network operator
has very detailed information about the local network.

We believe that extensions to the approach in Section 6,hwhic
jointly analyzes the semantics of the routing updates aadttic
routing configurations to identify network disruptionsndae ex-
tended to help operators identify the location of a disauptias
well as its type. For example, Figure 12 shows two failures at
the network periphery that a network operator could pinpwith
knowledge from the routing configuration about the nextshapd
neighboring networks that connect to each router. For el@mp
Figure 12(a), the burst of BGP routing updates would cordaig
next-hop IP addresses of routenstsidethe network, as routed
changed its next-hop route selection from rouseto routerC'. On
the other hand, the failure scenario in Figure 12(b) wouldseghe
monitor at routerA to see BGP routing messages with next-hops
inside the local network, as routed changed its route selection
from a route with the next-hop outside the local network (god”)



to one inside the same network (routgy. With knowledge of both using multivariate analysis techniques on routing dataeteon
the network configuration and the nature of the next-hop gean  the observation that, because the Internet has structtihe #&S-
in the BGP update bursts, an identification algorithm cowdtp h level, a single network disruption can give rise to groupse¥m-

localize this network disruption. ingly unrelated routing updates in different ASes. We apply
same insight to the analysis of routing dynamizishin a single
8. Related Work network (Others have made similar observations about failures in-

ducing correlated network data streams both at layer 2 [dd]e
the IP layer [20].) Xuet al. extract correlations from single up-
date streamin an attempt to find structure on an AS-level granular-
ity on the global Internet; in contrast, we analymeltiple routing
streamsfrom a single network in an attempt to detect and isolate
network disruptions within that network. The goals of Xtual.
center around “root cause” analysis of Internet-wide dyicarand
extracting AS-level structure; in contrast, we focus orgdizsis of
network disruptions within a single network.

8.1 Single-Network Routing Dynamics Our work differs from previous work on “BGP root cause anal-
Wu et al. proposed a method for analyzing routing dynamics ysIS: [3, 8], which gnalyzes lmem.Et'W'de routing dynasnfcom
from multiple routing streams within a single network to yice pl.Jb"C vantage pomtse(g, Routev!gvys [2.3].) to dett_act“lnternet-
alerts for disruptions [30]. As in other previous work [3, 5], Wlde”events (many of whlch_are a_rt|f|C|aIIy|nJected W'Fh mea'
this detection algorithm clusters BGP update messageg #hoee cons [1.9]) and attempts to identify the network that IS Wb'e
dimensions according to time, prefixes, and views but doesno for causing the update. In contrast, our analysis techsidusp

; T - . an operator of aingle networldetect when network events happen
corporate network-wide dependencies in routing data taore M . - . ;
| . X inside that network and identify the cause of the disruption
detection of network disruptions.

Previous techniques for analyzing routing dynamics in glsin 8.4 Network Dynamics and Path Performance

Fnig':r?gz (f:sr;ir?:ttii(r:\tsr:)?tg?zilr( g\fmn:)sum?)tf ?rf;%?é %llj?;ge nur:\?_er Various projects have studied routing dynamics and attedhpt
9 ’ EBYETs to characterize and classify them. Previous work has siuBi&P

eral shortcomings. First, most existing techniques (uicig that routing instabilities and attempted to classify failureséd on the

of Wu et al)) are threshold-based: they involve setting “magic num- : .
N . . - observed properties of BGP update messages [9, 12, 13].nGovi
bers” for many aspects of network events, including thecgftime danet al. found that BGP routing instability was exacerbated by the

Isegggr]] dOfp?QVEJOpudsa\f\?OIl’:)kulrlsatsa;%c(i)\}vhneﬂ’?;?gmtsligﬁnc;fJggaLtl(:t]e;burs growth of the Internet [9], and Labovitz discovered that B&R-

i fi ' ionallv lead to i X usidosiath verges very slowly upon a network failure, and that convecge

CC;S;(Z Ié?ZCnaer;v\c/)gflleics)?S t)i/oﬁaEZ?? w}::;rr:g;: tﬁggc LrJg:J indi N was slowed by path exploration [12]. Both of these projecis a
o P A groupir gngu . alyzed single routing streams in isolation and equated BGR

updatesa priori based on assumptions about how a specific routing bility with network failures but did not study how BGP rougiin-

protocol or network configuration behaves, our detectiothors . . . .
) . . stability correlated with documented network disruptioSgveral

are based on analysis techniques that can extract netwdekee- - . : - .
existing commercial products monitor routing, traffic, diI8P

pendencies but avoid imposing any specific set of assunsption data for faults, but they typically produce noisy reportswtevents

8.2 Learning-Based Anomaly Detection from the perspective of a single network device [22, 25].vhéek-
Learning-based approaches have been applied to routingWlde gnaly3|s of routing data may help operators bo.th idethe
anomaly detection in limited contexts. Previous work hatedo severity of these alarms and correlate them, reducing theabv

o A . - : . . volume of alarms that operators need to process. More dgcent
the difficulty in settlng' magic numbers in detectlon aldumits that various studies have studied how end-to-end path perfax ]
rely purely on analyzing the volume of BGP routing updateg an . S ” S

S - . relates with BGP routing instability [5, 29], but, as in pias
has proposed building a model of normal behavior using wrsup

vised learning. One such method relies on wavelet-basstecing \;Vr(()erk’rz)hZSeatsél:jd;ifoigigg?nstg}gr]::t'sitrr]ecaomntsr;);trowugnsgtju%iﬁit
of update volumes to detect abnormal routing behavior [8i- propag ’ ’

ilar wavelet-based decomposition techniques have beeh fose across multiple Streams Of. B.GP routing messages as obseeved
. Co : different vantage points within the same network.
detecting anomalies in network traffic [2].

Our work is inspired by existing techniques that use multate .
analysis to extract structure from network traffic data [a8¢ for 9. Conclusion

In this section, we survey related work on analysis of rautg-
namics in three areas: (1) routing dynamics in a single nétwa)
Internet-wide analysis of routing dynamics for “root caasely-
sis”, and (3) the effects of routing dynamics on end-to-eatth per-
formance. We emphasize the distinction between our workgtwh
studies network-wide correlations of routing dynamics isirgle
network to diagnose disruptions, and previous related wehich
has largely focused on analysis of single routing streams.

using these techniques to build models of normal traffic bieha This paper has demonstrated the promise both of using rietwor
and detect deviations that represent anomalies in dafictfa6, wide analysis to improve detection of network disruptiond af
17, 18]. At first brush, one might view this paper as a relfive  using static configuration analysis to help identify thesmaof a
straightforward application of these techniques appleedotting network disruption. Our analysis techniques representvaape
data, rather than traffic data, but, as our results in lateticses proach to analyzing routing data. Rather than attemptirgjag-
demonstrate, diagnosing routing disruptions requiresrjmarating nose disruptions based on temporal fluctuations in a singitgng
a considerable amount of domain-specific knowledge to cempl stream, we recognize that (1) the structure and configuratithe
ment statistical detection. network introduces dependencies that give rise to coaglevents
. . in groups of routing streams when a network disruption cgcamd
8.3 Internet-Wide Root Cause AnaIyS|s (2) this network structure and configuration can be minedoto ¢
Xu et al. have analyzed BGP routing data using Principal Com- struct a model to better identify the nature of a networkugison.
ponent Analysis to determine sets of ASes that are affegtetieh We have studied the characteristics of how network disongti

same network event [31]. Their work pioneered the approdch o induce BGP update messages across the routers in a netvesrk ba



bone over a six-month period and found that, while netwoskug-
tions induce routing updates that can vary in volume by séwer
ders of magnitude, nearly 80% of network disruptions exisibine
level of correlation across multiple routers in the netwoBased
on this observation, we applied the subspace method, avamiti
ate analysis technique, on BGP update streams across tlenébi
backbone. We find that it successfully detects all node amd li
failures and two-thirds of failures on the network periphevhile
keeping the overall alarm rate to an average of roughly thl@ens
per day. The subspace method performs well for reasonatdy si
data sets and minimal parameter tuning and, further, teanipro-
cess the network-wide routing data in a relatively short amof
time, which suggests that similar multivariate techniqoesid be
incorporated into an online detection and identificatiostes.

We hope that, rather than being the last word on using network
wide analysis to diagnose network disruptions, this pajpems
a new direction for exploring a variety of techniques thapleit
knowledge of network structure and configuration to joiraha-
lyze sets of network data streams that are inherently degmend
Indeed, many extensions to our work are possible; for exampl
while this paper has explored the limits of using BGP update
umesto detect network disruptions, other attributes in the irgut
update messages., the AS path length, next-hop IP address,
etc.) may carry semantics that might improve detection idi-ad
tion to identification. We also recognize that BGP routinglate
data is not the only possible input to a anomaly detectingeays
and much work remains to determine how to mine other network
datasets and incorporate them into a system for diagnositgprk
disruptions. As we continue developing techniques to diagmet-
work disruptions, we hope to gain a better understanding foot
which information that best enables diagnosis and for thadithat
the information available from current protocols and aesttures
fundamentally impose on our ability to diagnose these gdisoas.
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