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ABSTRACT 

Many cities suffer from noise pollution, which compromises 
people’s working efficiency and even mental health. New 
York City (NYC) has opened a platform, entitled 311, to 
allow people to complain about the city’s issues by using a 
mobile app or making a phone call; noise is the third largest 
category of complaints in the 311 data. As each complaint 
about noises is associated with a location, a time stamp, and 
a fine-grained noise category, such as “Loud Music” or 
“Construction”, the data is actually a result of “human as a 

sensor” and “crowd sensing”, containing rich human 
intelligence that can help diagnose urban noises. In this paper 
we infer the fine-grained noise situation (consisting of a 
noise pollution indicator and the composition of noises) of 
different times of day for each region of NYC, by using the 
311 complaint data together with social media, road network 
data, and Points of Interests (POIs). We model the noise 
situation of NYC with a three dimension tensor, where the 
three dimensions stand for regions, noise categories, and 
time slots, respectively. Supplementing the missing entries 
of the tensor through a context-aware tensor decomposition 
approach, we recover the noise situation throughout NYC. 
The information can inform people and officials’ decision 
making. We evaluate our method with four real datasets, 
verifying the advantages of our method beyond four 
baselines, such as the interpolation-based approach.    
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INTRODUCTION 

The rapid progress of urbanization modernizes people’s lives, 
but also creates noise pollution in cities. In addition to 
compromising working efficiency and quality of sleep, urban 
noises may impair people’s physical and mental health. 

People living in major cities, especially in NYC, are 
increasingly concerned about tackling the problem, calling 
for technology that can diagnose the citywide noise situation 
and the composition of noises in different places. 

Modeling citywide noises, however, is very difficult, as the 
level of noises varies by locations and changes over time 
significantly. Moreover, besides the level of sound measured 
in decibels, the measurement of noise pollution also depends 
on people’s tolerance to noises, which changes over different 
times of day. For example, at night, people’s tolerance to 
noises is much lower than during the daytime. A quieter 
noise at night may be considered a heavier noise pollution. 
Consequently, even if we could deploy sound sensors 
everywhere, diagnosing urban noise pollution solely based 
on sensor data is not thorough. Furthermore, urban noises are 
usually a mixture of multiple sound sources. Understanding 
the composition of noises, e.g., in evening rush hour, 40 

percent of noise in a given place comes from loud music, 30% 

from vehicle traffic and 10% from constructions, is vital to 
tackling noise pollution. 

While modeling urban noise pollution is very difficult, other 
ubiquitous data sources indicating urban noises are already 
available. For example, since 2010, NYC has operated a 
platform that allows people to call 311 to complain about 
what they feel annoyed by (without being an emergency) in 
the city [1]. According to 311 records from 2010 to 2014, the 
third largest category of complaints has been about urban 
noises. When complaining about noises, people are required 
to provide the location, time and a fine-grained noise 
category, such as loud music or construction. This means that 
the 311 complaint data about noises is actually a result of 
“human as a sensor” and “crowd sensing”, containing rich 
human intelligence that can help us understand noise 
pollution from people’s perspectives. Specifically, the 
number of 311 calls (about noises) made in a location is an 
indicator of the noise pollution of the location (see Figure 5), 
and the distribution of these 311 complaints over different 
noise categories may describe the composition of noises in 
the location. On the other hand, the 311 data is very sparse 
(see Figure 6 for details), as there are not always people 
reporting ambient noises at a given place and time. 
Recovering the noise situation of locations that do not have 
sufficient 311 data remains a challenge.   

Fortunately, the big data era has brought us unprecedented 
data in urban areas, such as user check-in data from location-
based social networks, POIs, and road networks. Those data 
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sources also have a correlation with urban noises, providing 
complementary information to pinpointing urban noises. For 
instance, a region with a denser road network is more likely 
to embrace heavier traffic noises. Likewise, a region with 
many bars is very likely to generate music noises in the 
evening. Additionally, a bar with more user check-ins would 
generate a louder noise (see later sections for more details).  

In this paper, we infer the noise situation (consisting of a 
noise pollution indicator and a noise composition) of 
arbitrary regions of NYC, at different time intervals of a day, 
by combining the historical 311 noise complaint data over a 
period of time with social media, POIs, and road network 
data. According to the noise pollution indicator, we can rank 
locations in different time spans, e.g. 0am-5am on weekdays 
and 7pm-11pm on weekends, as illustrated in Figure 1 A); 
the darker the color is the heavier the noise pollution is. Or, 
we can rank locations by a particular noise category, such as 
construction, as depicted in Figure 1 B). We can also check 
the noise composition of a particular location changing over 
time, e.g. Time Square, as shown in Figure 1 C). 

 
Figure 1. Results of our research 

To achieve these goals, we first partition NYC into disjoint 
regions by major roads, using a map segmentation algorithm 
[24]. We then map the 311 noise complaints onto these 
regions according to their geospatial locations, building a 
three dimension tensor, where the three dimensions denote 
regions, categories of noises and time slots. Each entry of the 
tensor stores the number of 311 complaints about a particular 
noise category in a particular region and a particular time slot. 
We fill in the tensor’s missing entries (i.e., without 311 
complaints), using a context-aware tensor decomposition 
approach that combines 311 data with user check-ins, road 
network data and POIs. After that, the value of an entry is 
used as a noise pollution indicator of a region in a time slot 
and in a noise category, and the values of the entries across 
different categories denote the composition of noises in the 
region. Our approach has three primary contributions: 

 Citywide noise modeling: Beyond raw sensor data, the 
311 data indicates not only the level of noise in a place 
but also people’s reaction and tolerance to different 
categories of noise and during different time spans of a 
day. Using a 3D tensor, we simultaneously model the 
correlation of noises among different locations, time 
spans and noise categories.    

 Dealing with data sparsity: The 311 data is very sparse, 
resulting in a sparse tensor.  Filling in the missing entries 
of the tensor solely based on non-zero entries is not 
accurate enough. To deal with the data sparsity of the 
tensor, we extract three categories of features from users’ 
check-in data, POIs and road network data. From 
different perspectives and built from other data sources, 
the three feature sets represent the temporal correlation 
between different time slots, the geospatial correlation 
between different regions, and the correlation between 
different noise categories. By feeding these feature sets 
into the tensor decomposition process, we reduce the 
error of tensor decomposition, thereby improving the 
accuracy of noise inferences.  

 Real evaluation: We evaluated our method by extensive 
experiments that use four real data sets [31]. The results 
demonstrate the advantages of our method beyond four 
baselines, such as Kriging [14], and reveal interesting 
discoveries that can bring social good to NYC. 

The rest of this paper is organized as follows: the second 
section overviews the framework of our method. The third 
section describes the datasets we use and how they are 
correlated with noises. The fourth section introduces the 
method for noise inferences, and the fifth section presents 
results and visualizations. The sixth section summarizes the 
related work, followed by the conclusion in the last section. 

OVERVIEW 

Preliminary 

Definition 1 (Road Network): A road network 𝑅𝑁  is 
comprised of a set of road segments {𝑠} connected between 
each other in the format of a graph. Each road segment 𝑠 has 
two terminal nodes, a series of intermediate points between 
the two terminals, a length 𝑠. 𝑙𝑒𝑛 , a classification (level) 𝑠. 𝑙𝑒𝑣 (e.g., a highway or a street). The smaller 𝑠. 𝑙𝑒𝑣 of road 
segment 𝑠 is, the higher the level of 𝑠 is. 

Definition 2 (POI): A point of interest (POI) is a venue in a 
physical world, like a shopping mall or theatre, having a 
name, address, coordinates, category, and other attributes. 

Definition 3 (User Check-in): In a location-based social 
networking service (e.g., Foursquare), a user can mark a 
venue (e.g. a shopping mall) when the user arrives there, 
which is known as a check-in. Each check-in has a time 
stamp and a geospatial coordinate, usually associated with a 
POI category, such as food and dining.  

Definition 4 (Noise Complaint): Each noise complaint 𝑛𝑠 
contains a timestamp, a location 𝑛𝑠. 𝑙 denoted by a (latitude, 
longitude) or street address, and a complaint category 𝑛𝑠. 𝑐. 

Weekday: 6am-6pmWeekend: 7pm-11pm

B)  Construction

Weekday:0-5am

A) Overall noises

C)  Different noise categories in Time Square



 

Framework 

Figure 2 presents the architecture of our system, which 
consists of three major layers: 1) data acquisition, 2) noise 
inference, and 3) service providing. We will detail the first 
two layers in the following sections respectively.  

 
Figure 2. The architecture of our method 

DATA ACQUISITION AND ANALYSIS 

This section introduces four data sources, and analyzes the 
correlation between them and NYC’s noises.   

311 Data about Noises 

311 is NYC’s governmental non-emergency service number, 
allowing people in the city to complain about everything that 
is not urgent by making a phone call, or texting, or using a 
mobile app. According to the 311 data recorded from May 
23, 2013 to Jan. 31, 2014 (168 weekdays and 68 weekends), 
67,378 complaints were about urban noise, which is ranked 
the third largest out of the 187 complaint categories. Table 1 
shows the 14 fine-grained noise categories and their 
proportions in the total number of noise complaints. Loud 

music/party is the largest. Figure 3 paints the 236-day 311 
complaints about noises on a digital map, where the height 
of a bar denotes the number of complaints in a location. For 
example, we can see that south Manhattan was suffering 
from Construction and Loud music/party. 

Table 1. Categories of noise and their proportion in 311 data  

Categories % Categories % 𝑐1. Loud Music/Party 42.2 𝑐8. Alarms 1.7 𝑐2. Construction 17.2 𝑐9. Private carting noise 0.8 𝑐3. Loud Talking 14.6 𝑐10. Manufacturing 0.3 𝑐4. Vehicle 13.7 𝑐11. Lawn care equipment 0.3 𝑐5. AC/Ventilation 
equipment 

3.9 𝑐12. Horn Honking  0.2 𝑐6.Banging/Pounding 2.1 𝑐13. Loud Television 0.1 𝑐7. Jack Hammering 2.1 𝑐14. Others 0.8 

Figure 4 shows the number of 311 complaints in the top five 
noise categories changing over time of day, where the 
complaints of the 68 weekend days are aggregated into one 
day. As the number of weekdays (168) is more than weekend 
days, we randomly select 68 weekdays and aggregate the 
complaints of these days into one day, for a fair comparison 
with weekend days. It is interesting that more complaints 
were made at night than daytime. This indicates that people’s 
tolerance for noise is lower at night. Generally, weekends 
have much more noise complaints than workdays. This could 

be for two possible reasons. One is weekends could have 
more sources of noises than weekdays, such as football 
games and parties. The other is people have more time to 
complain during the weekends. Staying at home, their 
expectation for a quiet day is higher than a workday. 
Specifically, weekends have less complaints about air 
conditions/ventilation than weekdays. The reason is very 
intuitive. The air conditioning and ventilation systems of 
many buildings may be suspended during weekends.  

 

 
Figure 3. Complaints of noises in NYC (5/23/2013 to 1/13/2014) 

    
                   A) Weekdays                                 B) Weekends 

Figure 4. Number of complaints changing over time of day 

The data presented in Figure 3 and 4 well demonstrates the 
value of “human as a sensor” and “crowd sensing”, where 
each individual contributes their own information about the 
ambient noises; the individual information is then aggregated 
to diagnose the noise pollution throughout a city. The noise 
categories tagged by a complainer can help analyze the 
composition of noises in a location. We also find 311 noise 
complaints in a location have a correlation with its real noise 
level. Figure 5 studies the number of noise complaints and 
real noise levels (collected through a mobile phone) in 36 
locations, in daytime and nighttime respectively. [12] details 
how we collect real noise levels. First, given the same time 

span in a day, the more 311 calls are made in a location, the 
louder the real noise is in the location. We see the same trend 
in Figure 5 B) and C). If given sufficient 311 complaints of 
any location and at anytime, we can recover the noise 
situation throughout the city by doing some simple statistical 
analysis on the complaint data. On the other hand, there are 
some locations (marked by the red circles shown in Figure 5) 
having very few 311 complaints but still with considerable 
real noises. This is caused by the sparsity of 311 complaint 
data, i.e., having no complaint records does not mean no 
noise. To diagnose the noises throughout a city, we need to 
recover these missing locations. Second, the data of different 
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time spans are not comparable. As shown in Figure 5 C), the 
real noise level at 6am-6pm is actually higher than 7pm-
11pm; however, more complaints were made in the latter 
time span, as people’s tolerance to noises is much lower at 
night. The discovery reveals the advantage of 311 data 
beyond raw sound data. This also motivates us to model the 
noise situation in different time spans respectively.  

 
Figure 5. Correlation between 311 complaints and real noise 

level: A) shows the geo-distribution of the 36 locations in NYC 

that we test, B) plots the correlation during the time span 6am-

6pm. The blue broken line fits the majority of points except for 

those falling in the red circle. 

Figures 6 and 7 further explore the sparsity of the 311 data. 
Each plot in Figure 6 denotes the proportion of regions (see 
Definition 5) with the number of complaints smaller than its 
value on the horizontal axis. For instance, over 90 percent of 
regions have received less than 60 complaints in total in the 
68 weekdays (i.e. less than one complaint per region per day). 
Figure 7 presents the proportion of regions having at least 
one complaint from the top five most frequent noise 
categories. While a few regions may not really have any 
noise pollution, the majority of regions without 311 data are 
due to lack of people reporting noise. Given the sparseness 
of the complaints, recovering the noise situation throughout 
a city solely based on the complaint data is not good enough, 
so, we turn to other data sources for help. 

 

User Check-in Data 

User check-in data from location-based social networks 
denotes human mobility in cities, which is relevant to urban 
noise. First, people themselves are source of noise, talking 
loudly or playing music intensely. Second, human mobility 
indicates the traffic volume and function of a region [25][26]. 
These factors have a strong correlation with noises. To deal 
with the data sparsity problem of 311 data, we also collect 
from Gowalla 127,558 check-ins that were generated from 
4/24/2009 to 10/13/2013 in NYC, and 173,275 check-ins 
from Foursquare (generated from 5/5/2008 to 7/23/2011) 

also in NYC. The check-in data from Foursquare are also 
associated with one or more categories: Art & Entertainment, 
College & University, Food, Great Outdoors, Nightlife Spot, 
Home/work/other, Shop, and Travel spot.  As NYC has not 
changed tremendously recently, people’s check-ins patterns 
have remained similar over the past two years. This allows 
us to correlate the check-in data of different times with the 
311 data. Other types of human mobility data, such as mobile 
phone data or GPS traces of taxis, can also be applied here.  

As shown in Figure 8 A), we found a strong correlation 
(Pearson correlation 0.873, P-value of T-Test << 0.001) 
between the number of check-ins in the Art & Entertainment 
category and the number of noise complaints about vehicles 
in each hour of a day. The number of check-ins and 
complaints are normalized into a value falling in [0, 1]. 
Likewise, the number of user check-ins at the nightlife spot 

category also has a positive correlation with the number of 
complaints in the category Loud music/Party (Pearson 
correlation 0.745, P-value of T-Test << 0.001). Figure 8 B) 
respectively presents the geospatial distributions of user 
check-ins (in Art & Entertainment and Nightlife spot 

categories) and the noise complaints (in Loud music/party 
category), where they have a similar geospatial distribution 
in some regions (marked by the dotted circles). 

    
A) Temporal review: categories of check-ins vs categories of noises     

 
B) Geospatial distributions of check-ins and noise complaints  

Figure 8. Correlation between user check-ins and 311 in NYC 

Road Network and POIs 

The information on POIs in a region, such as the number of 
POIs in different categories and the density of POIs, 
indicates the function of the region as well as the flow of 
people in the region, which are very relevant to a region’s 
noise situation. For example, if a region has many bars, the 
amount of loud music and talking tend to be high. A park, 
however, is usually quiet. The structure of a road network in 
a region, like the number of intersections and the total length 
of road segments, also has a strong correlation with the 
region’s traffic patterns, which is a major noise source.  

Location with few complaints Locations with sufficient complaints

A) Locations B) Correlation in 6am-6pm C) Correlation in 7pm-11pm

Figure 7. The proportion of regions with 

complaints of a noise category

Figure 6. Proportion of regions with 

complaints smaller than a number
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Figure 9 shows the correlation between noise complaints in 
the vehicles category and a few road network/POI features 
(e.g. the total length of road segments, the number of 
intersections, and the density of POIs). Each column and row 
represents one feature; each marker is a region; different 
symbols stand for different numbers of complaints in the 
vehicles category, e.g. a green square denotes 1-5 complaints. 
So, each box in Figure 9 shows the 311 complaints in the 
vehicles category with respect to two road network/POI 
features. As illustrated in the box of the first row and second 
column, where its horizontal axis denotes the number of 
intersections in a region and the vertical axis means the total 
length of road segments in a region, we can clearly see that 
the more intersections a region has the more red crosses and 
purple triangles occur (denoting more complaints about 
vehicles). We also find a similar trend with respect to length 
of roads.   

 
Figure 9. Correlation between the features of road 

network/POIs and the noises of vehicles 

As illustrated in Figure 10 A) and B), the geospatial 
distribution of Loud talking noise complaints shares some 
similar regions (marked by the dotted circles) with the 
distribution of POIs of food. We also find the similarity 
between the distributions of noises of Loud music and the 
POIs of Art & Entertainment. So, POIs and road network 
data can be treated as complementary information, helping 
supplement the noises of regions without sufficient 311 data. 
There are still some differences between these distributions, 
as each piece of data may only tell us a part of the panoramic 
view of urban noises. That is the reason why we need to 
embrace multiple data sources.  

     
A) Loud talking           B) POI: Food     C) Loud Music  D) POI: Entertainment    

Figure 10. Geospatial distributions of POIs and noise complaints 

NOISE INFERENCE 

Map Segmentation 

We partition NYC’s map into disjoint regions, 𝒓 =[𝑟1, 𝑟2, ⋯ , 𝑟𝑖 , ⋯ , 𝑟𝑛], by major roads (with 𝑠. 𝑙𝑒𝑣 <5), using a 

map segmentation algorithm we propose in [24]. A region 
bound by major roads may stand for a block or a community, 
carrying more semantic meanings than using uniform grid-
based partition. We want to study the noise of a location as 
fine-grained as possible. But, this will lead to an even worse 
data sparsity problem, significantly reducing the accuracy of 
recovered noises. The map segmentation can also be done by 
using NYC ZIP codes. We find that the regions segmented 
by the road network are finer than by ZIP codes. 

The algorithm chooses the raster-based model to represent 
the road network and utilize morphological image processing 
techniques to segment a map. Specifically, a raster-based 
map is regarded as a binary image (e.g., 0 stands for road 
segments and 1 stands for blank space). In order to remove 
the unnecessary details, such as the lanes of a road and 
overpasses, the algorithm first performs a dilation operation 
to thicken the roads, as demonstrated in Figure 11 B). Second, 
the algorithm obtains the skeleton of the road networks by 
performing a thinning operation. This operation recovers the 
size of a region which was reduced by the dilation operation, 
while keeping the connectivity between regions. Finally, by 
clustering “1”-labeled grids through a connected component 
labeling (CCL) algorithm, individual regions can be found.  

     
 A) Raster-based map       B) Dilation operation     C) Thinning operation 

Figure 11. Map Segmentation by major roads 

Definition 5. (Region): Each region may consist of a number 
of road segments and lands, standing for some connected 
neighborhoods or a community. We use regions as the 
minimal units to study urban noises, assuming each region 
could have a similar noise constitution while different 
regions could have different ones. 

Tensor Construction 

As shown in the left part of Figure 12, we model the noises 
in each region using a tensor,  𝒜 ∈ ℝ𝑁×𝑀×𝐿  with three 
dimensions denoting 𝑁  regions, 𝑀  noise categories, and 𝐿 
time slots, respectively. As weekdays and weekends have 
different noise patterns, we build a tensor for them separately:  

 Region dimension: The first dimension denotes regions 𝒓 = [𝑟1, 𝑟2, ⋯ , 𝑟𝑖 , ⋯ , 𝑟𝑁] obtained after the segmentation;  

 Time span dimension: We divide a day into equal slots 𝒕 = [𝑡1, 𝑡2, ⋯ , 𝑡𝑘, ⋯ , 𝑡𝐿] . Each time slot lasts for a 
period of time, e.g. 2pm-3pm. We project the 311 data 

over a long period of time into one day. As a result, the 
number of slots in the time dimension is fixed.   

 Category dimension: This dimension denotes the 

categories shown in Table 1, 𝒄 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑗 , ⋯ 𝑐𝑀]. 

Length of 
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 An entry: An entry 𝒜(𝑖, 𝑗, 𝑘) stores the total number of 

311 complaints of category 𝑐𝑗 in region 𝑟𝑖 and time slot 𝑡𝑘 over the given period of time (e.g., 68 weekends). For 

the entries with a value smaller than a threshold, e.g. 2, 
we regard them as a missing entry (i.e., filled with an 

inferred value).  The value of each entry in tensor 𝒜 is 
then normalized to [0, 1] for decomposition.  

 

Figure 12. Structure of the noise tensor 

A common approach to filling the missing entries of tensor 𝒜 is to decompose 𝒜 into the multiplication of a few (low-
rank) matrices and a core tensor (or just a few vectors), based 
on 𝒜’s non-zero entries. For example, as illustrated in the 
right part of Figure 12, we can decompose 𝒜  into the 
multiplication of a core tensor  𝑆 ∈ ℝ𝑑𝑅×𝑑𝐶×𝑑𝑇  and three 
matrices, 𝑅 ∈ ℝ𝑁×𝑑𝑅 , 𝐶 ∈ ℝ𝑀×𝑑𝐶 , 𝑇 ∈ ℝ𝐿×𝑑𝑇  , using a 
tucker decomposition model [7]. The objective function to 
control the error of the decomposition is usually defined as: ℒ(𝑆, 𝑅, 𝐶, 𝑇) = 12 ‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 + 𝜆2 (‖𝑆‖2 + ‖𝑅‖2 +‖𝐶‖2 + ‖𝑇‖2),  (1)  

where ‖∙‖2 denotes the 𝑙2 norm; the first part is to control the 

decomposition error and 
𝜆2 (‖𝑆‖2 + ‖𝑅‖2 + ‖𝑈‖2 + ‖𝑇‖2) 

is a regularization penalty to avoid over-fitting; 𝑑𝑅, 𝑑𝐶 , and 𝑑𝑇  are usually very small, denoting the number of latent 
factors. 𝜆 is a parameter controlling the contribution of the 
regularization penalty. By minimizing the objective function, 
we can get optimized 𝑅 , 𝐶 , and 𝑇 . Afterwards, we can 
recover the missing values in 𝒜 by Equation 2: 

                         𝒜𝑟𝑒𝑐 = 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇.                      (2) 

The Symbol “ × ” denotes the matrix multiplication; ×𝑅 
stands for the tensor-matrix multiplication, where the 
subscript 𝑅 stands for the mode of a tensor, e.g., 𝐻 = 𝑆 ×𝑅 𝑅 

is 𝐻𝑖𝑗𝑘 = ∑ 𝑆𝑖𝑗𝑘 × 𝑅𝑖𝑗𝑑𝑅𝑖=1 ;  

Each entry’s value in 𝒜𝑟𝑒𝑐  denotes the noise pollution 
indicator of a region in a time slot and a category. Given 𝒜𝑟𝑒𝑐 , we can easily obtain the distribution of noise over 
different categories in region 𝑟𝑖 , in a time slot 𝑡𝑘 , by 
retrieving the vector 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘), 𝑗 = 1,2, … , 𝑀. Or, we can 
rank regions in a time slot 𝑘 by a noise category 𝑗, by using 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘), 𝑖 = 1,2, … , 𝑁. Or, ranking regions according to 
overall noises by ∑ ∑ 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘)𝑘𝑗 . 

In our problem, however, the tensor is over sparse. For 
example, if setting 1 hour as a time slot, only 5.18% entries 
of 𝒜  have values on weekends. Decomposing 𝒜  solely 
based on its own non-zero entries is not accurate enough (we 

prove this in the experiments). So, we need to seek help from 
additional information sources.  

Feature Extraction 

To deal with the data sparsity problem, we extract three 
categories of features, geographical features, human mobility 
features and noise category correlation features (denoted by 
matrices 𝑋 , 𝑌 , and 𝑍), from POI/road network data, user 
check-ins, and 311 data, respectively. These features will be 
used as contexts in the decomposition process to reduce 
inference errors.  

The geographical feature set is comprised of two parts: POI 
features 𝑭𝒑 and road network features 𝑭𝒓. As illustrated in 

Figure 13, road network features 𝑭𝒓 consist of the number of 
intersections 𝑓𝑠 (denoted as blue points) and the total length 
of road segments in different levels, 𝑓𝑟 (e.g., 𝑠. 𝑙𝑒𝑣 ∈ [1,6], 
|𝑓𝑟 |=6). The major roads binding a region are also counted in 𝑓𝑟. 𝑭𝒑 is extracted from POIs falling in a region, consisting 

of the total number of POIs 𝑓𝑛, density of POIs 𝑓𝑑, and the 
distribution of POIs 𝑓𝑐 over 15 categories: Entertainment & 

Arts, Vehicles, Business to Business, Computers, Education, 
Food & Dining, Government, Health & Beauty, Home & 

Family, Legal & Finance, Professional & Services, Estate & 

Construction, Shopping, Sports & Recreation, and Travel. 
By putting together the geographical features of a region into 
a vector, we formulate a matrix 𝑋 ∈ ℝ𝑁×𝑃 (𝑃  denotes the 
dimension of geographical features), as illustrated in the 
bottom left part of Figure 13. Matrix 𝑋  incorporates the 
similarity between two regions in terms of their geographic 
features. Intuitively, regions with similar geographic features 
could have a similar noise situation.  

 

Figure 13. Feature extraction and representation 

Human mobility features are derived from check-ins created 
by users in different regions and time slots. An entry 𝑑𝑘𝑖 of 
matrix 𝑌 ∈ ℝ𝐿×𝑁, shown in the bottom right part of Figure 
13, denotes the number of check-ins generated in region 𝑟𝑖 
and time slot 𝑡𝑘 . Matrix 𝑌 reveals the correlation between 
different time slots in terms of the distribution of check-ins 
over different regions. Two time slots sharing a similar user 
check-in pattern could have a similar noise situation. 

The correlation between different noise categories can be 
learned from the 311 data itself. Once the correlation is 
determined, we can infer the presence of other categories in 
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a region given the observed category in the region. For 
example, private carting noise (𝑐9) has a strong correlation 
with Jack Hammering (𝑐7) on weekdays, as shown in Figure 
14 A), while is correlated with loud television (𝑐13 ) on 
weekends, as illustrated in Figure 14 B). (Refer to Table 1) 

 
Figure 14. Correlation between different noise categories 

Specifically, for a 311 complaint record 𝑛𝑠  (of the 𝑖 th 
category), we count the complaints of other categories 𝜑𝑗 

( 1 ≤ 𝑗 ≤ 𝑀, 𝑗 ≠ 𝑖 ) within a circle distance 𝛿  to 𝑛𝑠 , as 
illustrated in Figure 13.  Then the correlation between two 
categories 𝑐𝑖 and 𝑐𝑗 can be calculated by Equation 3. 

               𝐶𝑜𝑟(𝑐𝑖 , 𝑐𝑗) = ∑ |𝜑𝑗|𝑛𝑠∈𝚿,𝑛𝑠.𝑐=𝑐𝑖|𝑐𝑖|∙|𝑐𝑗| ;  𝑐𝑖 ≠ 𝑐𝑗;                                      

         𝜑𝑗 = {𝑛𝑠′|𝑑𝑖𝑠𝑡(𝑛𝑠. 𝑙, 𝑛𝑠′. 𝑙) ≤ 𝛿 ∧ 𝑛𝑠′. 𝑐 = 𝑐𝑗};          (3)   

Where |𝑐𝑖|  and |𝑐𝑗|  denote the number of complaints in 

category 𝑐𝑖  and 𝑐𝑗  respectively; 𝚿 is the collection of 311 

data. By putting together 𝐶𝑜𝑟(𝑐𝑖 , 𝑐𝑗), we formulate matrix 𝑍 ∈ ℝ𝑀×𝑀 . Though tensor 𝒜  can capture the correlation 
between different noise categories to some extent, matrix 𝑍 
can further intensify the correlation.  

Context-Aware Tensor Decomposition 

To achieve a higher accuracy of filling in the missing entries 
of 𝒜, we decompose 𝒜 with feature matrices 𝑋, 𝑌, and 𝑍 
collaboratively, as illustrated in Figure 15. Matrix 𝑋 can be 
factorized into the multiplication of two matrices, 𝑋 = 𝑅 ×𝑈 , where 𝑅 ∈ ℝ𝑁×𝑑𝑅  and 𝑈 ∈ ℝ𝑑𝑅×𝑃  are low rank latent 
factors for regions and geographical features, respectively. 
Likewise, matrix 𝑌 can be factorized into the multiplication 
of two matrices, 𝑌 = 𝑇 × 𝑅𝑇 , where 𝑇 ∈ ℝ𝐿×𝑑𝑇  is a low 
rank latent factor matrices for time slots. 𝑑𝑇  and 𝑑𝑅  are 
usually very small (in our model 𝑑𝑇 = 𝑑𝑅 ); 

 
Figure 15. Context-aware tensor decomposition  

The objective function is defined as Equation 4: ℒ(𝑆, 𝑅, 𝐶, 𝑇, 𝑈) = 12 ‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 + 

𝜆12 ‖𝑋 − 𝑅𝑈‖2 +  𝜆22 tr(𝐶𝑇𝐿𝑍𝐶) + 𝜆32 ‖𝑌 − 𝑇𝑅𝑇‖2 +𝜆42 (‖𝑆‖2 + ‖𝑅‖2 + ‖𝐶‖2 + ‖𝑇‖2 + ‖𝑈‖2)                         (4)                               

Where ‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 is to control the error of 
decomposing 𝒜 ; ‖𝑋 − 𝑅𝑈‖2  is to control the error of 
factorization of 𝑋 ; ‖𝑌 − 𝑇𝑅𝑇‖2  is to control the error of 
factorization of 𝑌 ; ‖𝑆‖2 + ‖𝑅‖2 + ‖𝐶‖2 + ‖𝑇‖2 + ‖𝑈‖2  is a 
regularization penalty to avoid over-fitting;  𝜆1, 𝜆2, 𝜆3, and 𝜆4 are parameters controlling the contribution of each part 
during the collaborative decomposition. When 𝜆1=𝜆2= 𝜆3= 𝜆4 =0, our model degenerates to the original tucker 
decomposition. 𝐶 ∈ ℝ𝑀×𝑑𝐶,  𝑡𝑟(∙) denotes the matrix trace; 𝐷𝑖𝑖 = ∑ 𝑍𝑖𝑗𝑖  is a diagonal matrix, and 𝐿𝑍 = 𝐷 − 𝑍  is the 

Laplacian matrix of the category correlation graph. 𝑡𝑟(𝐶𝑇𝐿𝑍𝐶)  is obtained through the following deduction, 
which guarantees two (e.g. the 𝑖th and 𝑗th) noise categories 
with a higher similarity (i.e., 𝑍𝑖𝑗 is big) should also have a 

closer distance between the vectors ( 𝑐𝑖  and 𝑐𝑗 ) they 

correspond to in 𝐶. 12 ∑ ‖𝑐𝑖 − 𝑐𝑗‖2𝑍𝑖𝑗𝑖,𝑗 = ∑ 𝑐𝑖𝑖,𝑗 𝑍𝑖𝑗𝑐𝑖𝑇 − ∑ 𝑐𝑖𝑖,𝑗 𝑍𝑖𝑗𝑐𝑗𝑇  = ∑ 𝑐𝑖𝑖,𝑗 𝐷𝑖𝑖𝑐𝑖 𝑇 − ∑ 𝑐𝑖𝑖,𝑗 𝑍𝑖𝑗𝑐𝑗𝑇  = 𝑡𝑟(𝐶𝑇(𝐷 − 𝑍)𝐶) = 𝑡𝑟(𝐶𝑇𝐿𝑍𝐶),                                 (5) 

where 𝐶𝑇 = {𝑐1, 𝑐2, … , 𝑐𝑀}. 

Finally, we can recover 𝒜 by 𝒜𝑟𝑒𝑐 = 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇.  

In our model, 𝒜  and 𝑋  share matrix 𝑅 ; 𝒜  and 𝑌  share 
matrix 𝑅  and 𝑇; 𝐿𝑍  influences factor matrix 𝐶 . The dense 
representation of 𝑋, 𝑌 and 𝑍 contributes to the generation of 
a relatively accurate 𝑅 , 𝐶 , and 𝑇 , which reduce the 
decomposition error of 𝒜  in turn. In other words, the 
knowledge from geographical features, human mobility 
features, and the correlation between noise categories is 
propagated into tensor 𝒜.  

Algorithm 1: Context-Aware Tensor Decomposition 

Input: tensor 𝒜, matrix 𝑋, matrix 𝑌, matrix 𝑍, an error threshold 𝜀 
Output: 𝑅, 𝐶, 𝑇, 𝑆 
1. Initialize 𝑆 ∈ ℝ𝑑𝑅×𝑑𝑈×𝑑𝑇, 𝑅 ∈ ℝ𝑁×𝑑𝑅, 𝐶 ∈ ℝ𝑀×𝑑𝐶, 𝑇 ∈ ℝ2𝐿×𝑑𝑇, 
                   𝑈 ∈ ℝ𝑑𝑅×𝑃 with small random values 
2. Set 𝜂 as step size 
3. 𝐷𝑖𝑖 = ∑ 𝑍𝑖𝑗𝑖  

4. 𝐿𝑍 = 𝐷 − 𝑍 
5. While 𝐿𝑜𝑠𝑠𝑡 − 𝐿𝑜𝑠𝑠𝑡+1 > 𝜀  
6.      Foreach 𝒜𝑖𝑗𝑘 ≠0  

7.           𝑌𝑖𝑗𝑘 = 𝑆 ×𝑅 𝑅𝑖∗ ×𝐶 𝐶𝑗∗ ×𝑇 𝑇𝑘∗; 

8.           𝑅𝑖∗ ← 𝑅𝑖∗ − 𝜂𝜆4𝑅𝑖∗ − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑆 ×𝐶 𝐶𝑗∗ ×𝑇 𝑇𝑘∗ 

                        −𝜂𝜆1(𝑅𝑖∗ × 𝑈 − 𝑋𝑖∗) × 𝑈 − 𝜂𝜆3(𝑇 × 𝑅𝑖∗𝑇 − 𝑌∗𝑖) × 𝑇; 

9.           𝐶𝑗∗ ← 𝐶𝑗∗ − 𝜂𝜆4𝐶𝑗∗ − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑆 ×𝑅 𝑅𝑖∗ ×𝑇 𝑇𝑘∗ 

                        −𝜂𝜆2(𝐿𝑍 ∗ 𝐶)𝑗∗; 

10.          𝑇𝑘∗ ← 𝑇𝑘∗ − 𝜂𝜆4𝑇𝑘∗ − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑆 ×𝑅 𝑅𝑖∗ ×𝑈 𝐶𝑗∗ 

                         −𝜂𝜆3(𝑇𝑘∗ × 𝑅𝑇 − 𝑌𝑘∗) × 𝑅; 

11.          𝑆 ← 𝑆 − 𝜂𝜆4𝑆 − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑅𝑖∗ ⊗ 𝐶𝑗∗ ⊗ 𝑇𝑘∗; 

12.          𝑈 ← 𝑈 − 𝜂𝜆4𝑈 − 𝜂𝜆1(𝑅𝑖∗ × 𝑈 − 𝑋𝑖∗) × 𝑅𝑖∗;  
13. Return 𝑅, 𝐶, 𝑈, 𝑇, 𝑆 

Figure 16. Algorithm for the tensor decomposition 

Figure 16 presents the algorithm for the collaborative tensor 
decomposition. As there is no closed-form solution for 
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finding the global optimal result of the objective function 
(shown in Equation 3), we use a numeric method, gradient 
descent, to find a local optimization. Specifically, we use an 
element-wise optimization algorithm [6], which updates 
each entry in the tensor independently. 

EVALUATION 

Datasets 

Table 2 summarizes the information of the four data sets; 
Table 3 further details the road network data. Road segments 
with a level from 𝐿1  to 𝐿5  are used to partition NYC, 
resulting in 891 regions. As weekdays and weekends have 
different noise situations, we build an individual tensor for 
them. If setting 1 hour as a time slot, the size of the two 
tensors is 891×14×24. The time length of a time slot can be 
adjusted based on applications. By feeding the 311 data of 
168 weekdays and 68 weekends into the two tensors, we 
obtain 7.39% non-zero entries (i.e., the entry’s value≥1) on 
weekdays and 5.18% on weekends, as shown in Table 4. 
However, one complaint in an hour may not be safe enough, 
which could be a false record. Setting a higher threshold to 
determine a none-zero entry improves the quality of an 
individual entry’s value, but leading to a worse data sparsity. 
Considering the trade-off, we set threshold=2 here. Thus, 
291,143 cells in the weekday tensor and 293,897 cells in the 
weekend tensor need supplemented by the inference. 

Table 2. Description on datasets  

Data sets Period Scales  

311 noise data 5/23/2013-1/31/2014 67,378; 14 categories 

Foursquare 4/24/2009-10/13/2013 173,275 

Gowalla 5/5/2008-7/23/2011 127,558 

POIs 2013 26,884; 15 categories 

Road Network 2013 87,898 nodes, 91,649 edges 

Table 3. Statistics on NYC’s road network data 

Lev Num. edges Length Lev Num. edges Length 𝐿1 3,236 381 𝐿4 8,409 699 𝐿2 4,816 677 𝐿5 1,906 1,321 𝐿3 762 54 𝐿6 96,934 9,279 

  KM Total 133,225 12,412 

Table 4. The sparseness of the tensor with different thresholds 

Data sets Threshold=1 Threshold=2 Threshold=3 

Weekdays 7.39% 2.75% 1.49% 

Weekends 5.18% 1.83% 1.01% 

Evaluation on the Tensor Model 

We evaluate the context-aware tensor decomposition model 
in two approaches. In the first approach, we randomly 
remove 30% non-zero entries from the tensor and fill in these 
entries using our model. We then use the original values of 
these entries as a ground truth to measure the inferred values. 
In the second approach, we perform an in-the-field study in 
36 locations in Manhattan (24 in the daytime and 12 in the 
nighttime), collecting the real noise level of each location via 
a mobile phone’s microphone. We then rank these locations 
in terms of the real noise level and the inferred values 
respectively, measuring the closeness of the two ranks using 
NDCG (Normalized Discounted cumulative gain) [22]. 

Table 5 shows the results of the first evaluation approach, in 
which we compare our model with four baselines: 1) AWR 
fills a missing entry with the average of all non-zero entries 
that pertain to the region; 2) AWH fills in a missing entry with 
the average of all entries belonging to the time slot; 3) MF 
fills the missing entries by factorizing the region-category 
matrix hour by hour; 4) Kriging interpolates the noise of a 
missing entry with the non-zero entries geospatially nearby. 
We also study the contribution of matrix 𝑋 , 𝑌 , and 𝑍  in 
helping supplement the missing entries. The performance is 
measured by two metrics: Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE), where 𝑦�̂�is an inference 
and 𝑦𝑖  is the ground truth; 𝑛 is the number of instances. 

                                 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−𝑦�̂�)2𝑖 𝑛 ,                        (6) 

                                    𝑀𝐴𝐸 = ∑ |𝑦𝑖−𝑦�̂�|𝑖 𝑛    ,                         (7) 

Table 5. Performance comparison of different methods 

Methods 
Weekdays Weekends 

RMSE MAE RMSE MAE 

AWR 4.736 2.582 4.446 2.599 

AWH 4.631 2.461 4.42 2.522 

MF 4.600 2.474 4.393 2.516 

Kriging 4.59 2.424 4.253 2.495 

TD 4.391 2.381 4.141 2.393 

TD+ 𝑋 4.285 2.279 4.155 2.326 

TD+ 𝑋 + 𝑌 4.160 2.110 4.003 2.198 

TD+ 𝑿 + 𝒀+ 𝒁 4.010 2.013 3.930 2.072 

Figure 17 presents the performance of the second evaluation 
approach, where our method outperforms the method only 
using 311 noise complaints. The higher NDCG is the better 
ranking performance is. The results validate the capability of 
our model in differentiating between locations with different 
noise levels in the same time span [12]. 

 

Figure 17. Performance of in-the field study 

Results 

Figure 18 presents six heat maps of NYC in different time 
spans of weekdays and weekends, in terms of the overall 
noise pollution indicator of a region, i.e., ∑ ∑ 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘)𝑘𝑗 . 

As mentioned previously, the noise pollution indicator is a 
result of two factors: the noise level in a location and 
people’s reaction (or tolerance) to the noises. So, we can 
understand the heat maps in the following way: to what 
extent people would feel uncomfortable due to the noises in 
a given time span and a region. The deeper the color is, the 
higher the probability of feeling uncomfortable. Generally, 
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people complain more about noise pollution on weekends as 
1) they have time to complain and 2) their tolerance to noise 
is lower than on weekdays. Particularly, during the night (0-
5am) when people expect to have quality sleep, their 
tolerance to noise pollution is very low; so, the noise 
pollution indicator is higher than other time slots, as shown 
in the bottom-left part of Figure 18. More specifically, the 
region where Columbia University is located has a heavier 
noise pollution than other areas, while Central Park is 
generally a quieter place.  

 

Figure 18. Overall noise situation in NYC 

Figure 19 shows the noise composition of the five locations 
marked in Figure 18. The noise indicators of the five regions 
is a summation of their own individual noise indicators in 
each hour and on both weekends and weekdays. Columbia 
University and Wall Street have a heavier noise situation 
than other places. The largest noise category in Wall Street 
is Construction while the other four is Loud music/Party.  

 

Figure 19. Noise composition of five well-known places in NYC 

Figure 20 further compares the noise pollution indicator of 
the top six noise categories, changing over time of day, at 
Columbia University and New York University (NYU), 
where we find some similarities and differences. Both 
locations have two spikes in the daytime; the same one is at 
6am. But, the second spike of NYU comes earlier than 
Columbia. The noise pollution caused by Loud Music 

reaches a local peak at 12pm, indicating that the party time 
starts earlier at NYU than Columbia University. Additionally, 
Air condition/ventilation and Jack Hamming in NYU have a 
higher presence than Columbia University. It is quite true 
that quite a few regions around NYU are under construction.    

 
Figure 20. Top six noise categories changing over time 

Figure 21 presents the heat maps of NYC in terms of the 
noise pollution indicator in four different categories, from 
7pm-11pm. Weekends generally have a heavier noise 
pollution of Loud music, while weekdays have more 
Construction noise pollution. Specifically, the strip region 
marked in the first column is Riverbank State Park, where 
many people entertain themselves with loud music on 
weekends. On the contrary, as illustrated in the second 
column, the region where Columbia University is located has 
less Loud talking noise pollution on weekends, as many 
students may be off the campus. Yankee Stadium, marked in 
the third column, has a heavier vehicle noise on weekends, 
because many people drive there to watch baseball games.  

 

Figure 21. Noise situation of specific categories in NYC. 

Figure 22 compares the heat maps built based on 311 data 
and our inference values, illustrating the value of our model. 
Without recovering the noises of missing locations, we can 
barely see vehicle noises from 6am-6pm on weekends. After 
the inference, we find that the regions close to bridges 
(marked by the dotted circles) are suffering from vehicle 
noises. According to our experiences visiting these places, 
the vehicles passing by the bridges are quite noisy. Likewise, 
without using our model, we cannot find loud talking to be a 
problem at Times Square and Columbia University either. 
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Figure 22. Comparison of heat maps in weekend 

RELATED WORK 

Urban Noise Sensing 

The first step towards understanding noise pollution is to 
monitor noises. Silvia et al. [4][17][18] propose using 
wireless sensor networks to monitor environmental noise 
pollution in urban areas. To deploy and maintain a citywide 
sensor network, especially in major cities like NYC, however, 
is very expensive, in terms of money and human resources. 
Another solution is to leverage crowdsourcing, where people 
collect and share their ambient environmental information 
using a mobile device, e.g., a smart phone [10][15][20]. For 
example, NoiseTube [8] presents a person-centric approach 
that leverages noise measurements shared by mobile phone 
users to paint a noise map in a city [3][19]. Because we 
cannot guarantee having a user reporting their ambient noises 
anywhere and anytime, the noise map generated through this 
approach is usually very sparse. As mentioned before, urban 
noises change by location and over time non-linearly; Thus, 
we cannot use a linear interpolation to fill the missing places 
in the map. To deal with this issue, Rajib et al. [16] proposed 
to recover a noise map from incomplete and random samples 
based on compressive sensing.   

Though our method is also a crowd sensing-based approach, 
the differences between our research and the above-
mentioned works lie in three aspects. First, beyond raw 
sensor data, the 311 data we use does not indicate the noise 
levels but also people’s reaction and tolerance to noise. 
Second, besides recovering the noise pollution of a city, our 
method also explores the distribution of noises over different 
categories. The information can inform governmental 
authorities’ decision making on tackling noise pollution. 
Third, when dealing with the data sparsity problem, we 
incorporate other data sources, such as user check-ins and 
POIs. According to the experimental results and data 
analytics, these datasets have a correlation with urban noises, 
therefore helping supplement the noise situation of places 
without sufficient 311 data. 

Noise Understanding 

A number of works [2][5][9][11][13] have focused on 
classifying environmental noises so as to understand a user’s 
contexts, such as in a car or on a street. For example, 
Couvreur and Bresleer [2] propose a statistical framework 
for a noise event recognition, including noises from cars, 
trucks and airplanes. This approach works for recognizing a 
separated noise event rather than mixed noise sources [9]. 

Later, Gainard et al. [5] proposed a hidden Markov model 
(HMM)-based classifier to recognize five noise events (car, 
truck, moped, aircraft and train), which is claimed to be 
better than human listeners. Ma et al. [9] use a HMM-based 
strategy capable of classifying ten environments. 
SoundSense [13] combines supervised and unsupervised 
learning techniques to classify not only general sound types 
(e.g., music) but also novel sound events. 

Our method differs from the above-mentioned approaches in 
two aspects. First, diagnosing the composition of noises in a 
location is different from classifying the environmental 
contexts of a user. The output of the latter is usually a 
probability distribution over possible noise categories, where 
the category with the biggest probability is used as a 
prediction. In our method, instead, the proportion of 311 
complaints of different noise categories in a location could 
well describe the composition of the noises in the location. 
Second, applying such classification methods to a major city 
like NYC needs a huge volume of training data that covers 
different locations and time spans. However, we model urban 
noises with a 3D tensor, which incorporates the temporal 
correlation among different time slots and the spatial 
correlation among different locations to recover a location’s 
noises. Using a tensor decomposition-based method, which 
is an unsupervised approach, we can obtain the composition 
of noises in a location based on sparse data. 

Tensor Decomposition for Urban Computing 

The method of tensor decomposition incorporating multiple 
datasets has been widely used in urban computing [30]. 
[21][23][28][29] used a context-aware tensor decomposition 
incorporating additional information, such as the activity-
activity correlation and geographical features of a location, 
to conduct different kinds of recommendations. Tensor 
factorization was also applied in [27] to infer urban refueling 
behavior, together with POI data, traffic features, and gas 
stations’ contextual features. Sharing the similar approach 
with these works, our goal is different from theirs and more 
data sources (e.g., user check-ins) are included. 

CONCLUSION 

In this paper, we diagnose the noise pollution in NYC using 
four data sources: 311 complaint data, social media, POIs 
and road network data. We model the noise in NYC with a 
three dimension tensor, filling in the missing entries of the 
tensor using a context-aware tensor decomposition approach. 
A noise pollution indicator is generated for each region in a 
time span and a noise category. The indicator reflects not 
only the level of noise in a location but also people’s 
tolerance to noise during different time spans. This is an 
approach of using human as a sensor and crowd sensing 
implicitly. With the research, we can rank locations by using 
the noise pollution indicator (individually or aggregately) 
and study the composition of noises in arbitrary locations. 
We evaluate our model with extensive experiments and 
validate its advantages beyond four baseline methods. The 
data we use in the research has been released at [31], and a 
demonstration is available at [32].  
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